APE Price: $1.15 (+0.33%)

Contract Diff Checker

Contract Name:
NativeDepositor

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

/**
 * @dev Interface for Arbitrum special l2 functions
 */
interface IArbSys {
    function arbBlockNumber() external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

/**
 * @dev Interface for errors potentially used in all libraries (general names)
 */
interface IGeneralErrors {
    error InitError();
    error InvalidAddresses();
    error InvalidAddress();
    error InvalidInputLength();
    error InvalidCollateralIndex();
    error WrongParams();
    error WrongLength();
    error WrongOrder();
    error WrongIndex();
    error BlockOrder();
    error Overflow();
    error ZeroAddress();
    error ZeroValue();
    error AlreadyExists();
    error DoesntExist();
    error Paused();
    error BelowMin();
    error AboveMax();
    error NotAuthorized();
    error WrongTradeType();
    error WrongOrderType();
    error InsufficientBalance();
    error UnsupportedChain();
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

/**
 * @dev Interface for GToken contract
 */
interface IGToken {
    struct GnsPriceProvider {
        address addr;
        bytes signature;
    }

    struct LockedDeposit {
        address owner;
        uint256 shares; // collateralConfig.precision
        uint256 assetsDeposited; // collateralConfig.precision
        uint256 assetsDiscount; // collateralConfig.precision
        uint256 atTimestamp; // timestamp
        uint256 lockDuration; // timestamp
    }

    struct ContractAddresses {
        address asset;
        address owner; // 2-week timelock contract
        address manager; // 3-day timelock contract
        address admin; // bypasses timelock, access to emergency functions
        address gnsToken;
        address lockedDepositNft;
        address pnlHandler;
        address openTradesPnlFeed;
        GnsPriceProvider gnsPriceProvider;
    }

    struct Meta {
        string name;
        string symbol;
    }

    function manager() external view returns (address);

    function admin() external view returns (address);

    function currentEpoch() external view returns (uint256);

    function currentEpochStart() external view returns (uint256);

    function currentEpochPositiveOpenPnl() external view returns (uint256);

    function updateAccPnlPerTokenUsed(
        uint256 prevPositiveOpenPnl,
        uint256 newPositiveOpenPnl
    ) external returns (uint256);

    function getLockedDeposit(uint256 depositId) external view returns (LockedDeposit memory);

    function sendAssets(uint256 assets, address receiver) external;

    function receiveAssets(uint256 assets, address user) external;

    function distributeReward(uint256 assets) external;

    function tvl() external view returns (uint256);

    function marketCap() external view returns (uint256);

    function shareToAssetsPrice() external view returns (uint256);

    function collateralConfig() external view returns (uint128, uint128);

    event ManagerUpdated(address newValue);
    event AdminUpdated(address newValue);
    event PnlHandlerUpdated(address newValue);
    event OpenTradesPnlFeedUpdated(address newValue);
    event GnsPriceProviderUpdated(GnsPriceProvider newValue);
    event WithdrawLockThresholdsPUpdated(uint256[2] newValue);
    event MaxAccOpenPnlDeltaUpdated(uint256 newValue);
    event MaxDailyAccPnlDeltaUpdated(uint256 newValue);
    event MaxSupplyIncreaseDailyPUpdated(uint256 newValue);
    event LossesBurnPUpdated(uint256 newValue);
    event MaxGnsSupplyMintDailyPUpdated(uint256 newValue);
    event MaxDiscountPUpdated(uint256 newValue);
    event MaxDiscountThresholdPUpdated(uint256 newValue);

    event CurrentMaxSupplyUpdated(uint256 newValue);
    event DailyAccPnlDeltaReset();
    event ShareToAssetsPriceUpdated(uint256 newValue);
    event OpenTradesPnlFeedCallFailed();

    event WithdrawRequested(
        address indexed sender,
        address indexed owner,
        uint256 shares,
        uint256 currEpoch,
        uint256 indexed unlockEpoch
    );
    event WithdrawCanceled(
        address indexed sender,
        address indexed owner,
        uint256 shares,
        uint256 currEpoch,
        uint256 indexed unlockEpoch
    );

    event DepositLocked(address indexed sender, address indexed owner, uint256 depositId, LockedDeposit d);
    event DepositUnlocked(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 depositId,
        LockedDeposit d
    );

    event RewardDistributed(address indexed sender, uint256 assets);

    event AssetsSent(address indexed sender, address indexed receiver, uint256 assets);
    event AssetsReceived(address indexed sender, address indexed user, uint256 assets, uint256 assetsLessDeplete);

    event Depleted(address indexed sender, uint256 assets, uint256 amountGns);
    event Refilled(address indexed sender, uint256 assets, uint256 amountGns);

    event AccPnlPerTokenUsedUpdated(
        address indexed sender,
        uint256 indexed newEpoch,
        uint256 prevPositiveOpenPnl,
        uint256 newPositiveOpenPnl,
        uint256 newEpochPositiveOpenPnl,
        int256 newAccPnlPerTokenUsed
    );

    error OnlyManager();
    error OnlyTradingPnlHandler();
    error OnlyPnlFeed();
    error AddressZero();
    error PriceZero();
    error ValueZero();
    error BytesZero();
    error NoActiveDiscount();
    error BelowMin();
    error AboveMax();
    error WrongValue();
    error WrongValues();
    error GnsPriceCallFailed();
    error GnsTokenPriceZero();
    error PendingWithdrawal();
    error EndOfEpoch();
    error NotAllowed();
    error NoDiscount();
    error NotUnlocked();
    error NotEnoughAssets();
    error MaxDailyPnl();
    error NotUnderCollateralized();
    error AboveInflationLimit();

    // Ownable
    error OwnableInvalidOwner(address owner);

    // ERC4626
    error ERC4626ExceededMaxDeposit();
    error ERC4626ExceededMaxMint();
    error ERC4626ExceededMaxWithdraw();
    error ERC4626ExceededMaxRedeem();
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

import "./IGToken.sol";
/**
 * @dev Extended interface for GToken contract
 */
interface IGTokenExtended is IGToken {
    function asset() external view returns (address);
    function deposit(uint256 assets, address receiver) external returns (uint256);
    function depositWithDiscountAndLock(
        uint256 assets,
        uint256 lockDuration,
        address receiver
    ) external returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

/**
 * @dev Interface for WETH9 token
 */
interface IWETH9 {
    function approve(address spender, uint256 amount) external returns (bool);

    function transfer(address to, uint256 amount) external returns (bool);

    function deposit() external payable;

    function withdraw(uint256) external;

    function balanceOf(address account) external view returns (uint256);

    event Approval(address indexed src, address indexed guy, uint256 wad);
    event Transfer(address indexed src, address indexed dst, uint256 wad);
    event Deposit(address indexed dst, uint256 wad);
    event Withdrawal(address indexed src, uint256 wad);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

/**
 * @dev Interface for BlockManager_Mock contract (test helper)
 */
interface IBlockManager_Mock {
    function getBlockNumber() external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

import "../interfaces/IArbSys.sol";
import "../interfaces/IGeneralErrors.sol";
import "../interfaces/mock/IBlockManager_Mock.sol";

/**
 * @dev Chain helpers internal library
 */
library ChainUtils {
    // Supported chains
    uint256 internal constant ARBITRUM_MAINNET = 42161;
    uint256 internal constant ARBITRUM_SEPOLIA = 421614;
    uint256 internal constant POLYGON_MAINNET = 137;
    uint256 internal constant BASE_MAINNET = 8453;
    uint256 internal constant APECHAIN_MAINNET = 33139;
    uint256 internal constant TESTNET = 31337;

    // Wrapped native tokens
    address private constant ARBITRUM_MAINNET_WETH = 0x82aF49447D8a07e3bd95BD0d56f35241523fBab1;
    address private constant ARBITRUM_SEPOLIA_WETH = 0x980B62Da83eFf3D4576C647993b0c1D7faf17c73;
    address private constant POLYGON_MAINNET_WMATIC = 0x0d500B1d8E8eF31E21C99d1Db9A6444d3ADf1270;
    address private constant BASE_MAINNET_WETH = 0x4200000000000000000000000000000000000006;
    address private constant APECHAIN_MAINNET_WAPE = 0x00000000000f7e000644657dC9417b185962645a; // Custom non-rebasing WAPE

    IArbSys private constant ARB_SYS = IArbSys(address(100));

    error Overflow();
    /**
     * @dev Returns the current block number (l2 block for arbitrum)
     */
    function getBlockNumber() internal view returns (uint256) {
        if (block.chainid == ARBITRUM_MAINNET || block.chainid == ARBITRUM_SEPOLIA) {
            return ARB_SYS.arbBlockNumber();
        }

        if (block.chainid == TESTNET) {
            return IBlockManager_Mock(address(420)).getBlockNumber();
        }

        return block.number;
    }

    /**
     * @dev Returns blockNumber converted to uint48
     * @param blockNumber block number to convert
     */
    function getUint48BlockNumber(uint256 blockNumber) internal pure returns (uint48) {
        if (blockNumber > type(uint48).max) revert Overflow();
        return uint48(blockNumber);
    }

    /**
     * @dev Returns the wrapped native token address for the current chain
     */
    function getWrappedNativeToken() internal view returns (address) {
        if (block.chainid == ARBITRUM_MAINNET) {
            return ARBITRUM_MAINNET_WETH;
        }

        if (block.chainid == BASE_MAINNET) {
            return BASE_MAINNET_WETH;
        }

        if (block.chainid == APECHAIN_MAINNET) {
            return APECHAIN_MAINNET_WAPE;
        }

        if (block.chainid == POLYGON_MAINNET) {
            return POLYGON_MAINNET_WMATIC;
        }

        if (block.chainid == ARBITRUM_SEPOLIA) {
            return ARBITRUM_SEPOLIA_WETH;
        }

        if (block.chainid == TESTNET) {
            return address(421);
        }

        return address(0);
    }

    /**
     * @dev Returns whether a token is the wrapped native token for the current chain
     * @param _token token address to check
     */
    function isWrappedNativeToken(address _token) internal view returns (bool) {
        return _token != address(0) && _token == getWrappedNativeToken();
    }

    /**
     * @dev Converts blocks to seconds for the current chain.
     * @dev Important: the result is an estimation and may not be accurate. Use with caution.
     * @param _blocks block count to convert to seconds
     */
    function convertBlocksToSeconds(uint256 _blocks) internal view returns (uint256) {
        uint256 millisecondsPerBlock;

        if (block.chainid == ARBITRUM_MAINNET || block.chainid == ARBITRUM_SEPOLIA) {
            millisecondsPerBlock = 300; // 0.3 seconds per block
        } else if (block.chainid == BASE_MAINNET) {
            millisecondsPerBlock = 2000; // 2 seconds per block
        } else if (block.chainid == POLYGON_MAINNET) {
            millisecondsPerBlock = 2200; // 2.2 seconds per block
        } else if (block.chainid == APECHAIN_MAINNET) {
            millisecondsPerBlock = 12000; // for apescan we use L1 blocktime (12s)
        } else if (block.chainid == TESTNET) {
            millisecondsPerBlock = 1000; // 1 second per block
        } else {
            revert IGeneralErrors.UnsupportedChain();
        }

        return Math.mulDiv(_blocks, millisecondsPerBlock, 1000, Math.Rounding.Up);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

import "../interfaces/IGTokenExtended.sol";
import "../interfaces/IWETH9.sol";
import "../interfaces/IGeneralErrors.sol";

import "../libraries/ChainUtils.sol";

/**
 * @dev GToken depositor helper. Accepts native tokens, wraps them and deposits them for msg.sender
 */
contract NativeDepositor {
    receive() external payable {}

    function validateRequest(
        IGTokenExtended _gToken,
        uint256 _value,
        address _receiver
    ) public view returns (address asset) {
        if (address(_gToken) == address(0) || _receiver == address(0)) revert IGeneralErrors.ZeroAddress();
        if (_value == 0) revert IGeneralErrors.ZeroValue();

        asset = _gToken.asset();

        if (!ChainUtils.isWrappedNativeToken(asset)) revert IGeneralErrors.InvalidAddress();
    }

    /**
     * @dev Accepts native payment, wraps native token and deposits value for `_receiver`
     * @param _gToken the gToken address
     * @param _receiver the address receiving the gTokens
     */
    function deposit(IGTokenExtended _gToken, address _receiver) external payable returns (uint256 shares) {
        IWETH9 asset = IWETH9(validateRequest(_gToken, msg.value, _receiver));

        asset.deposit{value: msg.value}();
        asset.approve(address(_gToken), msg.value);

        return _gToken.deposit(msg.value, _receiver);
    }

    /**
     * @dev Accepts native payment, wraps native token and deposits value for `_receiver` with discount and lock
     * @param _gToken the gToken address
     * @param _lockDuration the duration of the lock
     * @param _receiver the address receiving the gTokens
     */
    function depositWithDiscountAndLock(
        IGTokenExtended _gToken,
        uint256 _lockDuration,
        address _receiver
    ) external payable returns (uint256 shares) {
        IWETH9 asset = IWETH9(validateRequest(_gToken, msg.value, _receiver));

        asset.deposit{value: msg.value}();
        asset.approve(address(_gToken), msg.value);

        return _gToken.depositWithDiscountAndLock(msg.value, _lockDuration, _receiver);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):