Overview
APE Balance
0 APE
APE Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
0x60806040 | 4603452 | 19 hrs ago | IN | 0 APE | 0.01034182 |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
NativeDepositor
Compiler Version
v0.8.23+commit.f704f362
Optimization Enabled:
Yes with 800 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; import "../interfaces/IGTokenExtended.sol"; import "../interfaces/IWETH9.sol"; import "../interfaces/IGeneralErrors.sol"; import "../libraries/ChainUtils.sol"; /** * @dev GToken depositor helper. Accepts native tokens, wraps them and deposits them for msg.sender */ contract NativeDepositor { receive() external payable {} function validateRequest( IGTokenExtended _gToken, uint256 _value, address _receiver ) public view returns (address asset) { if (address(_gToken) == address(0) || _receiver == address(0)) revert IGeneralErrors.ZeroAddress(); if (_value == 0) revert IGeneralErrors.ZeroValue(); asset = _gToken.asset(); if (!ChainUtils.isWrappedNativeToken(asset)) revert IGeneralErrors.InvalidAddress(); } /** * @dev Accepts native payment, wraps native token and deposits value for `_receiver` * @param _gToken the gToken address * @param _receiver the address receiving the gTokens */ function deposit(IGTokenExtended _gToken, address _receiver) external payable returns (uint256 shares) { IWETH9 asset = IWETH9(validateRequest(_gToken, msg.value, _receiver)); asset.deposit{value: msg.value}(); asset.approve(address(_gToken), msg.value); return _gToken.deposit(msg.value, _receiver); } /** * @dev Accepts native payment, wraps native token and deposits value for `_receiver` with discount and lock * @param _gToken the gToken address * @param _lockDuration the duration of the lock * @param _receiver the address receiving the gTokens */ function depositWithDiscountAndLock( IGTokenExtended _gToken, uint256 _lockDuration, address _receiver ) external payable returns (uint256 shares) { IWETH9 asset = IWETH9(validateRequest(_gToken, msg.value, _receiver)); asset.deposit{value: msg.value}(); asset.approve(address(_gToken), msg.value); return _gToken.depositWithDiscountAndLock(msg.value, _lockDuration, _receiver); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; /** * @dev Interface for Arbitrum special l2 functions */ interface IArbSys { function arbBlockNumber() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; /** * @dev Interface for errors potentially used in all libraries (general names) */ interface IGeneralErrors { error InitError(); error InvalidAddresses(); error InvalidAddress(); error InvalidInputLength(); error InvalidCollateralIndex(); error WrongParams(); error WrongLength(); error WrongOrder(); error WrongIndex(); error BlockOrder(); error Overflow(); error ZeroAddress(); error ZeroValue(); error AlreadyExists(); error DoesntExist(); error Paused(); error BelowMin(); error AboveMax(); error NotAuthorized(); error WrongTradeType(); error WrongOrderType(); error InsufficientBalance(); error UnsupportedChain(); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; /** * @dev Interface for GToken contract */ interface IGToken { struct GnsPriceProvider { address addr; bytes signature; } struct LockedDeposit { address owner; uint256 shares; // collateralConfig.precision uint256 assetsDeposited; // collateralConfig.precision uint256 assetsDiscount; // collateralConfig.precision uint256 atTimestamp; // timestamp uint256 lockDuration; // timestamp } struct ContractAddresses { address asset; address owner; // 2-week timelock contract address manager; // 3-day timelock contract address admin; // bypasses timelock, access to emergency functions address gnsToken; address lockedDepositNft; address pnlHandler; address openTradesPnlFeed; GnsPriceProvider gnsPriceProvider; } struct Meta { string name; string symbol; } function manager() external view returns (address); function admin() external view returns (address); function currentEpoch() external view returns (uint256); function currentEpochStart() external view returns (uint256); function currentEpochPositiveOpenPnl() external view returns (uint256); function updateAccPnlPerTokenUsed( uint256 prevPositiveOpenPnl, uint256 newPositiveOpenPnl ) external returns (uint256); function getLockedDeposit(uint256 depositId) external view returns (LockedDeposit memory); function sendAssets(uint256 assets, address receiver) external; function receiveAssets(uint256 assets, address user) external; function distributeReward(uint256 assets) external; function tvl() external view returns (uint256); function marketCap() external view returns (uint256); function shareToAssetsPrice() external view returns (uint256); function collateralConfig() external view returns (uint128, uint128); event ManagerUpdated(address newValue); event AdminUpdated(address newValue); event PnlHandlerUpdated(address newValue); event OpenTradesPnlFeedUpdated(address newValue); event GnsPriceProviderUpdated(GnsPriceProvider newValue); event WithdrawLockThresholdsPUpdated(uint256[2] newValue); event MaxAccOpenPnlDeltaUpdated(uint256 newValue); event MaxDailyAccPnlDeltaUpdated(uint256 newValue); event MaxSupplyIncreaseDailyPUpdated(uint256 newValue); event LossesBurnPUpdated(uint256 newValue); event MaxGnsSupplyMintDailyPUpdated(uint256 newValue); event MaxDiscountPUpdated(uint256 newValue); event MaxDiscountThresholdPUpdated(uint256 newValue); event CurrentMaxSupplyUpdated(uint256 newValue); event DailyAccPnlDeltaReset(); event ShareToAssetsPriceUpdated(uint256 newValue); event OpenTradesPnlFeedCallFailed(); event WithdrawRequested( address indexed sender, address indexed owner, uint256 shares, uint256 currEpoch, uint256 indexed unlockEpoch ); event WithdrawCanceled( address indexed sender, address indexed owner, uint256 shares, uint256 currEpoch, uint256 indexed unlockEpoch ); event DepositLocked(address indexed sender, address indexed owner, uint256 depositId, LockedDeposit d); event DepositUnlocked( address indexed sender, address indexed receiver, address indexed owner, uint256 depositId, LockedDeposit d ); event RewardDistributed(address indexed sender, uint256 assets); event AssetsSent(address indexed sender, address indexed receiver, uint256 assets); event AssetsReceived(address indexed sender, address indexed user, uint256 assets, uint256 assetsLessDeplete); event Depleted(address indexed sender, uint256 assets, uint256 amountGns); event Refilled(address indexed sender, uint256 assets, uint256 amountGns); event AccPnlPerTokenUsedUpdated( address indexed sender, uint256 indexed newEpoch, uint256 prevPositiveOpenPnl, uint256 newPositiveOpenPnl, uint256 newEpochPositiveOpenPnl, int256 newAccPnlPerTokenUsed ); error OnlyManager(); error OnlyTradingPnlHandler(); error OnlyPnlFeed(); error AddressZero(); error PriceZero(); error ValueZero(); error BytesZero(); error NoActiveDiscount(); error BelowMin(); error AboveMax(); error WrongValue(); error WrongValues(); error GnsPriceCallFailed(); error GnsTokenPriceZero(); error PendingWithdrawal(); error EndOfEpoch(); error NotAllowed(); error NoDiscount(); error NotUnlocked(); error NotEnoughAssets(); error MaxDailyPnl(); error NotUnderCollateralized(); error AboveInflationLimit(); // Ownable error OwnableInvalidOwner(address owner); // ERC4626 error ERC4626ExceededMaxDeposit(); error ERC4626ExceededMaxMint(); error ERC4626ExceededMaxWithdraw(); error ERC4626ExceededMaxRedeem(); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; import "./IGToken.sol"; /** * @dev Extended interface for GToken contract */ interface IGTokenExtended is IGToken { function asset() external view returns (address); function deposit(uint256 assets, address receiver) external returns (uint256); function depositWithDiscountAndLock( uint256 assets, uint256 lockDuration, address receiver ) external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; /** * @dev Interface for WETH9 token */ interface IWETH9 { function approve(address spender, uint256 amount) external returns (bool); function transfer(address to, uint256 amount) external returns (bool); function deposit() external payable; function withdraw(uint256) external; function balanceOf(address account) external view returns (uint256); event Approval(address indexed src, address indexed guy, uint256 wad); event Transfer(address indexed src, address indexed dst, uint256 wad); event Deposit(address indexed dst, uint256 wad); event Withdrawal(address indexed src, uint256 wad); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; /** * @dev Interface for BlockManager_Mock contract (test helper) */ interface IBlockManager_Mock { function getBlockNumber() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.23; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import "../interfaces/IArbSys.sol"; import "../interfaces/IGeneralErrors.sol"; import "../interfaces/mock/IBlockManager_Mock.sol"; /** * @dev Chain helpers internal library */ library ChainUtils { // Supported chains uint256 internal constant ARBITRUM_MAINNET = 42161; uint256 internal constant ARBITRUM_SEPOLIA = 421614; uint256 internal constant POLYGON_MAINNET = 137; uint256 internal constant BASE_MAINNET = 8453; uint256 internal constant APECHAIN_MAINNET = 33139; uint256 internal constant TESTNET = 31337; // Wrapped native tokens address private constant ARBITRUM_MAINNET_WETH = 0x82aF49447D8a07e3bd95BD0d56f35241523fBab1; address private constant ARBITRUM_SEPOLIA_WETH = 0x980B62Da83eFf3D4576C647993b0c1D7faf17c73; address private constant POLYGON_MAINNET_WMATIC = 0x0d500B1d8E8eF31E21C99d1Db9A6444d3ADf1270; address private constant BASE_MAINNET_WETH = 0x4200000000000000000000000000000000000006; address private constant APECHAIN_MAINNET_WAPE = 0x00000000000f7e000644657dC9417b185962645a; // Custom non-rebasing WAPE IArbSys private constant ARB_SYS = IArbSys(address(100)); error Overflow(); /** * @dev Returns the current block number (l2 block for arbitrum) */ function getBlockNumber() internal view returns (uint256) { if (block.chainid == ARBITRUM_MAINNET || block.chainid == ARBITRUM_SEPOLIA) { return ARB_SYS.arbBlockNumber(); } if (block.chainid == TESTNET) { return IBlockManager_Mock(address(420)).getBlockNumber(); } return block.number; } /** * @dev Returns blockNumber converted to uint48 * @param blockNumber block number to convert */ function getUint48BlockNumber(uint256 blockNumber) internal pure returns (uint48) { if (blockNumber > type(uint48).max) revert Overflow(); return uint48(blockNumber); } /** * @dev Returns the wrapped native token address for the current chain */ function getWrappedNativeToken() internal view returns (address) { if (block.chainid == ARBITRUM_MAINNET) { return ARBITRUM_MAINNET_WETH; } if (block.chainid == BASE_MAINNET) { return BASE_MAINNET_WETH; } if (block.chainid == APECHAIN_MAINNET) { return APECHAIN_MAINNET_WAPE; } if (block.chainid == POLYGON_MAINNET) { return POLYGON_MAINNET_WMATIC; } if (block.chainid == ARBITRUM_SEPOLIA) { return ARBITRUM_SEPOLIA_WETH; } if (block.chainid == TESTNET) { return address(421); } return address(0); } /** * @dev Returns whether a token is the wrapped native token for the current chain * @param _token token address to check */ function isWrappedNativeToken(address _token) internal view returns (bool) { return _token != address(0) && _token == getWrappedNativeToken(); } /** * @dev Converts blocks to seconds for the current chain. * @dev Important: the result is an estimation and may not be accurate. Use with caution. * @param _blocks block count to convert to seconds */ function convertBlocksToSeconds(uint256 _blocks) internal view returns (uint256) { uint256 millisecondsPerBlock; if (block.chainid == ARBITRUM_MAINNET || block.chainid == ARBITRUM_SEPOLIA) { millisecondsPerBlock = 300; // 0.3 seconds per block } else if (block.chainid == BASE_MAINNET) { millisecondsPerBlock = 2000; // 2 seconds per block } else if (block.chainid == POLYGON_MAINNET) { millisecondsPerBlock = 2200; // 2.2 seconds per block } else if (block.chainid == APECHAIN_MAINNET) { millisecondsPerBlock = 12000; // for apescan we use L1 blocktime (12s) } else if (block.chainid == TESTNET) { millisecondsPerBlock = 1000; // 1 second per block } else { revert IGeneralErrors.UnsupportedChain(); } return Math.mulDiv(_blocks, millisecondsPerBlock, 1000, Math.Rounding.Up); } }
{ "optimizer": { "enabled": true, "runs": 800 }, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroValue","type":"error"},{"inputs":[{"internalType":"contract IGTokenExtended","name":"_gToken","type":"address"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IGTokenExtended","name":"_gToken","type":"address"},{"internalType":"uint256","name":"_lockDuration","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"depositWithDiscountAndLock","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IGTokenExtended","name":"_gToken","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"validateRequest","outputs":[{"internalType":"address","name":"asset","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
608060405234801561001057600080fd5b50610666806100206000396000f3fe6080604052600436106100385760003560e01c806323a3a28514610044578063e344c47214610081578063f9609f08146100a257600080fd5b3661003f57005b600080fd5b34801561005057600080fd5b5061006461005f36600461055d565b6100b5565b6040516001600160a01b0390911681526020015b60405180910390f35b61009461008f36600461055d565b6101a4565b604051908152602001610078565b6100946100b036600461059f565b6102fe565b60006001600160a01b03841615806100d457506001600160a01b038216155b156100f25760405163d92e233d60e01b815260040160405180910390fd5b8260000361011357604051637c946ed760e01b815260040160405180910390fd5b836001600160a01b03166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610151573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061017591906105d8565b905061018081610450565b61019d5760405163e6c4247b60e01b815260040160405180910390fd5b9392505050565b6000806101b28534856100b5565b9050806001600160a01b031663d0e30db0346040518263ffffffff1660e01b81526004016000604051808303818588803b1580156101ef57600080fd5b505af1158015610203573d6000803e3d6000fd5b505060405163095ea7b360e01b81526001600160a01b0389811660048301523460248301528516935063095ea7b3925060440190506020604051808303816000875af1158015610257573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061027b91906105f5565b50604051630e8e431160e41b8152346004820152602481018590526001600160a01b03848116604483015286169063e8e43110906064016020604051808303816000875af11580156102d1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102f59190610617565b95945050505050565b60008061030c8434856100b5565b9050806001600160a01b031663d0e30db0346040518263ffffffff1660e01b81526004016000604051808303818588803b15801561034957600080fd5b505af115801561035d573d6000803e3d6000fd5b505060405163095ea7b360e01b81526001600160a01b0388811660048301523460248301528516935063095ea7b3925060440190506020604051808303816000875af11580156103b1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103d591906105f5565b50604051636e553f6560e01b81523460048201526001600160a01b038481166024830152851690636e553f65906044016020604051808303816000875af1158015610424573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104489190610617565b949350505050565b60006001600160a01b03821615801590610482575061046d610488565b6001600160a01b0316826001600160a01b0316145b92915050565b600061a4b146036104ac57507382af49447d8a07e3bd95bd0d56f35241523fbab190565b61210546036104ce575073420000000000000000000000000000000000000690565b61817346036104eb57506e0f7e000644657dc9417b185962645a90565b6089460361050c5750730d500b1d8e8ef31e21c99d1db9a6444d3adf127090565b62066eee460361052f575073980b62da83eff3d4576c647993b0c1d7faf17c7390565b617a69460361053f57506101a590565b50600090565b6001600160a01b038116811461055a57600080fd5b50565b60008060006060848603121561057257600080fd5b833561057d81610545565b925060208401359150604084013561059481610545565b809150509250925092565b600080604083850312156105b257600080fd5b82356105bd81610545565b915060208301356105cd81610545565b809150509250929050565b6000602082840312156105ea57600080fd5b815161019d81610545565b60006020828403121561060757600080fd5b8151801515811461019d57600080fd5b60006020828403121561062957600080fd5b505191905056fea2646970667358221220e50e7fb9e0d6b8b6b7749d12877532dc43ff93b64952b8252b53b44eb1643dc264736f6c63430008170033
Deployed Bytecode
0x6080604052600436106100385760003560e01c806323a3a28514610044578063e344c47214610081578063f9609f08146100a257600080fd5b3661003f57005b600080fd5b34801561005057600080fd5b5061006461005f36600461055d565b6100b5565b6040516001600160a01b0390911681526020015b60405180910390f35b61009461008f36600461055d565b6101a4565b604051908152602001610078565b6100946100b036600461059f565b6102fe565b60006001600160a01b03841615806100d457506001600160a01b038216155b156100f25760405163d92e233d60e01b815260040160405180910390fd5b8260000361011357604051637c946ed760e01b815260040160405180910390fd5b836001600160a01b03166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610151573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061017591906105d8565b905061018081610450565b61019d5760405163e6c4247b60e01b815260040160405180910390fd5b9392505050565b6000806101b28534856100b5565b9050806001600160a01b031663d0e30db0346040518263ffffffff1660e01b81526004016000604051808303818588803b1580156101ef57600080fd5b505af1158015610203573d6000803e3d6000fd5b505060405163095ea7b360e01b81526001600160a01b0389811660048301523460248301528516935063095ea7b3925060440190506020604051808303816000875af1158015610257573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061027b91906105f5565b50604051630e8e431160e41b8152346004820152602481018590526001600160a01b03848116604483015286169063e8e43110906064016020604051808303816000875af11580156102d1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102f59190610617565b95945050505050565b60008061030c8434856100b5565b9050806001600160a01b031663d0e30db0346040518263ffffffff1660e01b81526004016000604051808303818588803b15801561034957600080fd5b505af115801561035d573d6000803e3d6000fd5b505060405163095ea7b360e01b81526001600160a01b0388811660048301523460248301528516935063095ea7b3925060440190506020604051808303816000875af11580156103b1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103d591906105f5565b50604051636e553f6560e01b81523460048201526001600160a01b038481166024830152851690636e553f65906044016020604051808303816000875af1158015610424573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104489190610617565b949350505050565b60006001600160a01b03821615801590610482575061046d610488565b6001600160a01b0316826001600160a01b0316145b92915050565b600061a4b146036104ac57507382af49447d8a07e3bd95bd0d56f35241523fbab190565b61210546036104ce575073420000000000000000000000000000000000000690565b61817346036104eb57506e0f7e000644657dc9417b185962645a90565b6089460361050c5750730d500b1d8e8ef31e21c99d1db9a6444d3adf127090565b62066eee460361052f575073980b62da83eff3d4576c647993b0c1d7faf17c7390565b617a69460361053f57506101a590565b50600090565b6001600160a01b038116811461055a57600080fd5b50565b60008060006060848603121561057257600080fd5b833561057d81610545565b925060208401359150604084013561059481610545565b809150509250925092565b600080604083850312156105b257600080fd5b82356105bd81610545565b915060208301356105cd81610545565b809150509250929050565b6000602082840312156105ea57600080fd5b815161019d81610545565b60006020828403121561060757600080fd5b8151801515811461019d57600080fd5b60006020828403121561062957600080fd5b505191905056fea2646970667358221220e50e7fb9e0d6b8b6b7749d12877532dc43ff93b64952b8252b53b44eb1643dc264736f6c63430008170033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.