Overview
TokenID
111
Total Transfers
-
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract
Loading...
Loading
Loading...
Loading
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Milady
Compiler Version
v0.8.26+commit.8a97fa7a
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "./ERC721A.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; contract Milady is ERC721A, Ownable { using Strings for uint256; uint256 public MAX_SUPPLY = 10000; uint256 public constant MAX_PER_WALLET = 100; uint256 public PRICE = 5 ether; // 5 APE string public baseURI = "https://www.miladymaker.net/milady/json/"; constructor() ERC721A("Milady", "MIL") Ownable(msg.sender) {} function mint(uint256 quantity) external payable { require(totalSupply() + quantity <= MAX_SUPPLY, "Exceeds max supply"); require(balanceOf(msg.sender) + quantity <= MAX_PER_WALLET, "Exceeds max per wallet"); require(msg.value >= PRICE * quantity, "Insufficient payment"); _mint(msg.sender, quantity); // send funds to owner (bool success, ) = payable(owner()).call{ gas: 210000, value: msg.value }(""); require(success, "Transfer failed"); } function reduceMaxSupply(uint256 newMaxSupply) external onlyOwner { require(newMaxSupply < MAX_SUPPLY, "New max supply must be less than the current max supply"); require(totalSupply() <= newMaxSupply, "New max supply must be greater than the total supply"); MAX_SUPPLY = newMaxSupply; } function updatePrice(uint256 newPrice) external onlyOwner { PRICE = newPrice; } function _baseURI() internal view override returns (string memory) { return baseURI; } function setBaseURI(string memory _newBaseURI) external onlyOwner { baseURI = _newBaseURI; } function tokenURI(uint256 tokenId) public view override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); string memory baseURI_ = _baseURI(); return bytes(baseURI_).length != 0 ? string(abi.encodePacked(baseURI_, tokenId.toString())) : ""; } function withdraw() external onlyOwner { uint256 balance = address(this).balance; (bool success, ) = payable(owner()).call{ gas: 210000, value: balance }(""); require(success, "Transfer failed"); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.3.0 // Creator: Chiru Labs pragma solidity ^0.8.4; import './IERC721A.sol'; /** * @dev Interface of ERC721 token receiver. */ interface ERC721A__IERC721Receiver { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } /** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * The `_sequentialUpTo()` function can be overriden to enable spot mints * (i.e. non-consecutive mints) for `tokenId`s greater than `_sequentialUpTo()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is IERC721A { // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). struct TokenApprovalRef { address value; } // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 private _currentIndex; // The number of tokens burned. uint256 private _burnCounter; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) private _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) private _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => TokenApprovalRef) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // The amount of tokens minted above `_sequentialUpTo()`. // We call these spot mints (i.e. non-sequential mints). uint256 private _spotMinted; // ============================================================= // CONSTRUCTOR // ============================================================= constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _currentIndex = _startTokenId(); if (_sequentialUpTo() < _startTokenId()) _revert(SequentialUpToTooSmall.selector); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID for sequential mints. * * Override this function to change the starting token ID for sequential mints. * * Note: The value returned must never change after any tokens have been minted. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the maximum token ID (inclusive) for sequential mints. * * Override this function to return a value less than 2**256 - 1, * but greater than `_startTokenId()`, to enable spot (non-sequential) mints. * * Note: The value returned must never change after any tokens have been minted. */ function _sequentialUpTo() internal view virtual returns (uint256) { return type(uint256).max; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return _currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256 result) { // Counter underflow is impossible as `_burnCounter` cannot be incremented // more than `_currentIndex + _spotMinted - _startTokenId()` times. unchecked { // With spot minting, the intermediate `result` can be temporarily negative, // and the computation must be unchecked. result = _currentIndex - _burnCounter - _startTokenId(); if (_sequentialUpTo() != type(uint256).max) result += _spotMinted; } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256 result) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { result = _currentIndex - _startTokenId(); if (_sequentialUpTo() != type(uint256).max) result += _spotMinted; } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return _burnCounter; } /** * @dev Returns the total number of tokens that are spot-minted. */ function _totalSpotMinted() internal view virtual returns (uint256) { return _spotMinted; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector); return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(_packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = _packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); _packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnerships[index]); } /** * @dev Returns whether the ownership slot at `index` is initialized. * An uninitialized slot does not necessarily mean that the slot has no owner. */ function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) { return _packedOwnerships[index] != 0; } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (_packedOwnerships[index] == 0) { _packedOwnerships[index] = _packedOwnershipOf(index); } } /** * @dev Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) { if (_startTokenId() <= tokenId) { packed = _packedOwnerships[tokenId]; if (tokenId > _sequentialUpTo()) { if (_packedOwnershipExists(packed)) return packed; _revert(OwnerQueryForNonexistentToken.selector); } // If the data at the starting slot does not exist, start the scan. if (packed == 0) { if (tokenId >= _currentIndex) _revert(OwnerQueryForNonexistentToken.selector); // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `tokenId` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. for (;;) { unchecked { packed = _packedOwnerships[--tokenId]; } if (packed == 0) continue; if (packed & _BITMASK_BURNED == 0) return packed; // Otherwise, the token is burned, and we must revert. // This handles the case of batch burned tokens, where only the burned bit // of the starting slot is set, and remaining slots are left uninitialized. _revert(OwnerQueryForNonexistentToken.selector); } } // Otherwise, the data exists and we can skip the scan. // This is possible because we have already achieved the target condition. // This saves 2143 gas on transfers of initialized tokens. // If the token is not burned, return `packed`. Otherwise, revert. if (packed & _BITMASK_BURNED == 0) return packed; } _revert(OwnerQueryForNonexistentToken.selector); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}. * * Requirements: * * - The caller must own the token or be an approved operator. */ function approve(address to, uint256 tokenId) public payable virtual override { _approve(to, tokenId, true); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) _revert(ApprovalQueryForNonexistentToken.selector); return _tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { _operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool result) { if (_startTokenId() <= tokenId) { if (tokenId > _sequentialUpTo()) return _packedOwnershipExists(_packedOwnerships[tokenId]); if (tokenId < _currentIndex) { uint256 packed; while ((packed = _packedOwnerships[tokenId]) == 0) --tokenId; result = packed & _BITMASK_BURNED == 0; } } } /** * @dev Returns whether `packed` represents a token that exists. */ function _packedOwnershipExists(uint256 packed) private pure returns (bool result) { assembly { // The following is equivalent to `owner != address(0) && burned == false`. // Symbolically tested. result := gt(and(packed, _BITMASK_ADDRESS), and(packed, _BITMASK_BURNED)) } } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner( address approvedAddress, address owner, address msgSender ) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) public payable virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); // Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean. from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS)); if (address(uint160(prevOwnershipPacked)) != from) _revert(TransferFromIncorrectOwner.selector); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --_packedAddressData[from]; // Updates: `balance -= 1`. ++_packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. from, // `from`. toMasked, // `to`. tokenId // `tokenId`. ) } if (toMasked == 0) _revert(TransferToZeroAddress.selector); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public payable virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public payable virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns ( bytes4 retval ) { return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { _revert(TransferToNonERC721ReceiverImplementer.selector); } assembly { revert(add(32, reason), mload(reason)) } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (quantity == 0) _revert(MintZeroQuantity.selector); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; if (toMasked == 0) _revert(MintToZeroAddress.selector); uint256 end = startTokenId + quantity; uint256 tokenId = startTokenId; if (end - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector); do { assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. tokenId // `tokenId`. ) } // The `!=` check ensures that large values of `quantity` // that overflows uint256 will make the loop run out of gas. } while (++tokenId != end); _currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (to == address(0)) _revert(MintToZeroAddress.selector); if (quantity == 0) _revert(MintZeroQuantity.selector); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) _revert(MintERC2309QuantityExceedsLimit.selector); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); if (startTokenId + quantity - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); _currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = _currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } } while (index < end); // This prevents reentrancy to `_safeMint`. // It does not prevent reentrancy to `_safeMintSpot`. if (_currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ''); } /** * @dev Mints a single token at `tokenId`. * * Note: A spot-minted `tokenId` that has been burned can be re-minted again. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` must be greater than `_sequentialUpTo()`. * - `tokenId` must not exist. * * Emits a {Transfer} event for each mint. */ function _mintSpot(address to, uint256 tokenId) internal virtual { if (tokenId <= _sequentialUpTo()) _revert(SpotMintTokenIdTooSmall.selector); uint256 prevOwnershipPacked = _packedOwnerships[tokenId]; if (_packedOwnershipExists(prevOwnershipPacked)) _revert(TokenAlreadyExists.selector); _beforeTokenTransfers(address(0), to, tokenId, 1); // Overflows are incredibly unrealistic. // The `numberMinted` for `to` is incremented by 1, and has a max limit of 2**64 - 1. // `_spotMinted` is incremented by 1, and has a max limit of 2**256 - 1. unchecked { // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `true` (as `quantity == 1`). _packedOwnerships[tokenId] = _packOwnershipData( to, _nextInitializedFlag(1) | _nextExtraData(address(0), to, prevOwnershipPacked) ); // Updates: // - `balance += 1`. // - `numberMinted += 1`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += (1 << _BITPOS_NUMBER_MINTED) | 1; // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; if (toMasked == 0) _revert(MintToZeroAddress.selector); assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. tokenId // `tokenId`. ) } ++_spotMinted; } _afterTokenTransfers(address(0), to, tokenId, 1); } /** * @dev Safely mints a single token at `tokenId`. * * Note: A spot-minted `tokenId` that has been burned can be re-minted again. * * Requirements: * * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}. * - `tokenId` must be greater than `_sequentialUpTo()`. * - `tokenId` must not exist. * * See {_mintSpot}. * * Emits a {Transfer} event. */ function _safeMintSpot( address to, uint256 tokenId, bytes memory _data ) internal virtual { _mintSpot(to, tokenId); unchecked { if (to.code.length != 0) { uint256 currentSpotMinted = _spotMinted; if (!_checkContractOnERC721Received(address(0), to, tokenId, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } // This prevents reentrancy to `_safeMintSpot`. // It does not prevent reentrancy to `_safeMint`. if (_spotMinted != currentSpotMinted) revert(); } } } /** * @dev Equivalent to `_safeMintSpot(to, tokenId, '')`. */ function _safeMintSpot(address to, uint256 tokenId) internal virtual { _safeMintSpot(to, tokenId, ''); } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Equivalent to `_approve(to, tokenId, false)`. */ function _approve(address to, uint256 tokenId) internal virtual { _approve(to, tokenId, false); } /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - `tokenId` must exist. * * Emits an {Approval} event. */ function _approve( address to, uint256 tokenId, bool approvalCheck ) internal virtual { address owner = ownerOf(tokenId); if (approvalCheck && _msgSenderERC721A() != owner) if (!isApprovedForAll(owner, _msgSenderERC721A())) { _revert(ApprovalCallerNotOwnerNorApproved.selector); } _tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as `_burnCounter` cannot be exceed `_currentIndex + _spotMinted` times. unchecked { _burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = _packedOwnerships[index]; if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); _packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData( address from, address to, uint24 previousExtraData ) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData( address from, address to, uint256 prevOwnershipPacked ) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } /** * @dev For more efficient reverts. */ function _revert(bytes4 errorSelector) internal pure { assembly { mstore(0x00, errorSelector) revert(0x00, 0x04) } } }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.3.0 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721A. */ interface IERC721A { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); /** * `_sequentialUpTo()` must be greater than `_startTokenId()`. */ error SequentialUpToTooSmall(); /** * The `tokenId` of a sequential mint exceeds `_sequentialUpTo()`. */ error SequentialMintExceedsLimit(); /** * Spot minting requires a `tokenId` greater than `_sequentialUpTo()`. */ error SpotMintTokenIdTooSmall(); /** * Cannot mint over a token that already exists. */ error TokenAlreadyExists(); /** * The feature is not compatible with spot mints. */ error NotCompatibleWithSpotMints(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external payable; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external payable; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "remappings": [] }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[],"name":"NotCompatibleWithSpotMints","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"SequentialMintExceedsLimit","type":"error"},{"inputs":[],"name":"SequentialUpToTooSmall","type":"error"},{"inputs":[],"name":"SpotMintTokenIdTooSmall","type":"error"},{"inputs":[],"name":"TokenAlreadyExists","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"MAX_PER_WALLET","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newMaxSupply","type":"uint256"}],"name":"reduceMaxSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_newBaseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newPrice","type":"uint256"}],"name":"updatePrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
612710600a55674563918244f40000600b5560e0604052602860808181529061193e60a039600c9061003190826101c1565b5034801561003d575f80fd5b5033604051806040016040528060068152602001654d696c61647960d01b8152506040518060400160405280600381526020016213525360ea1b815250816002908161008991906101c1565b50600361009682826101c1565b50505f8055506001600160a01b0381166100c957604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100d2816100d8565b5061027b565b600980546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b634e487b7160e01b5f52604160045260245ffd5b600181811c9082168061015157607f821691505b60208210810361016f57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156101bc57805f5260205f20601f840160051c8101602085101561019a5750805b601f840160051c820191505b818110156101b9575f81556001016101a6565b50505b505050565b81516001600160401b038111156101da576101da610129565b6101ee816101e8845461013d565b84610175565b6020601f821160018114610220575f83156102095750848201515b5f19600385901b1c1916600184901b1784556101b9565b5f84815260208120601f198516915b8281101561024f578785015182556020948501946001909201910161022f565b508482101561026c57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b6116b6806102885f395ff3fe60806040526004361061017b575f3560e01c806370a08231116100cd57806395d89b4111610087578063b88d4fde11610062578063b88d4fde146103e3578063c87b56dd146103f6578063e985e9c514610415578063f2fde38b14610434575f80fd5b806395d89b411461039d578063a0712d68146103b1578063a22cb465146103c4575f80fd5b806370a08231146102fa578063715018a614610319578063735328021461032d5780638d6cc56d1461034c5780638d859f3e1461036b5780638da5cb5b14610380575f80fd5b806323b872dd1161013857806342842e0e1161011357806342842e0e1461029557806355f804b3146102a85780636352211e146102c75780636c0360eb146102e6575f80fd5b806323b872dd1461025957806332cb6b0c1461026c5780633ccfd60b14610281575f80fd5b806301ffc9a71461017f57806306fdde03146101b3578063081812fc146101d4578063095ea7b31461020b5780630f2cdd6c1461022057806318160ddd14610242575b5f80fd5b34801561018a575f80fd5b5061019e6101993660046111b9565b610453565b60405190151581526020015b60405180910390f35b3480156101be575f80fd5b506101c76104a4565b6040516101aa9190611202565b3480156101df575f80fd5b506101f36101ee366004611214565b610534565b6040516001600160a01b0390911681526020016101aa565b61021e610219366004611241565b61056d565b005b34801561022b575f80fd5b50610234606481565b6040519081526020016101aa565b34801561024d575f80fd5b506001545f5403610234565b61021e610267366004611269565b61057d565b348015610277575f80fd5b50610234600a5481565b34801561028c575f80fd5b5061021e6106d7565b61021e6102a3366004611269565b61078d565b3480156102b3575f80fd5b5061021e6102c236600461132e565b6107ac565b3480156102d2575f80fd5b506101f36102e1366004611214565b6107c0565b3480156102f1575f80fd5b506101c76107ca565b348015610305575f80fd5b50610234610314366004611373565b610856565b348015610324575f80fd5b5061021e61089a565b348015610338575f80fd5b5061021e610347366004611214565b6108ad565b348015610357575f80fd5b5061021e610366366004611214565b6109a9565b348015610376575f80fd5b50610234600b5481565b34801561038b575f80fd5b506009546001600160a01b03166101f3565b3480156103a8575f80fd5b506101c76109b6565b61021e6103bf366004611214565b6109c5565b3480156103cf575f80fd5b5061021e6103de36600461138c565b610b06565b61021e6103f13660046113c5565b610b71565b348015610401575f80fd5b506101c7610410366004611214565b610bb2565b348015610420575f80fd5b5061019e61042f36600461143c565b610c33565b34801561043f575f80fd5b5061021e61044e366004611373565b610c60565b5f6301ffc9a760e01b6001600160e01b03198316148061048357506380ac58cd60e01b6001600160e01b03198316145b8061049e5750635b5e139f60e01b6001600160e01b03198316145b92915050565b6060600280546104b39061146d565b80601f01602080910402602001604051908101604052809291908181526020018280546104df9061146d565b801561052a5780601f106105015761010080835404028352916020019161052a565b820191905f5260205f20905b81548152906001019060200180831161050d57829003601f168201915b5050505050905090565b5f61053e82610c9d565b610552576105526333d1c03960e21b610cdf565b505f908152600660205260409020546001600160a01b031690565b61057982826001610ce7565b5050565b5f61058782610d88565b6001600160a01b0394851694909150811684146105ad576105ad62a1148160e81b610cdf565b5f8281526006602052604090208054338082146001600160a01b038816909114176105f0576105dc8633610c33565b6105f0576105f0632ce44b5f60e11b610cdf565b80156105fa575f82555b6001600160a01b038681165f9081526005602052604080822080545f19019055918716808252919020805460010190554260a01b17600160e11b175f85815260046020526040812091909155600160e11b8416900361068657600184015f818152600460205260408120549003610684575f548114610684575f8181526004602052604090208490555b505b6001600160a01b0385168481887fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4805f036106ce576106ce633a954ecd60e21b610cdf565b50505050505050565b6106df610e17565b475f6106f36009546001600160a01b031690565b6001600160a01b031662033450836040515b5f60405180830381858888f193505050503d805f8114610740576040519150601f19603f3d011682016040523d82523d5f602084013e610745565b606091505b50509050806105795760405162461bcd60e51b815260206004820152600f60248201526e151c985b9cd9995c8819985a5b1959608a1b60448201526064015b60405180910390fd5b6107a783838360405180602001604052805f815250610b71565b505050565b6107b4610e17565b600c61057982826114f0565b5f61049e82610d88565b600c80546107d79061146d565b80601f01602080910402602001604051908101604052809291908181526020018280546108039061146d565b801561084e5780601f106108255761010080835404028352916020019161084e565b820191905f5260205f20905b81548152906001019060200180831161083157829003601f168201915b505050505081565b5f6001600160a01b038216610875576108756323d3ad8160e21b610cdf565b506001600160a01b03165f9081526005602052604090205467ffffffffffffffff1690565b6108a2610e17565b6108ab5f610e44565b565b6108b5610e17565b600a54811061092c5760405162461bcd60e51b815260206004820152603760248201527f4e6577206d617820737570706c79206d757374206265206c657373207468616e60448201527f207468652063757272656e74206d617820737570706c790000000000000000006064820152608401610784565b806109396001545f540390565b11156109a45760405162461bcd60e51b815260206004820152603460248201527f4e6577206d617820737570706c79206d7573742062652067726561746572207460448201527368616e2074686520746f74616c20737570706c7960601b6064820152608401610784565b600a55565b6109b1610e17565b600b55565b6060600380546104b39061146d565b600a54816109d56001545f540390565b6109df91906115bf565b1115610a225760405162461bcd60e51b815260206004820152601260248201527145786365656473206d617820737570706c7960701b6044820152606401610784565b606481610a2e33610856565b610a3891906115bf565b1115610a7f5760405162461bcd60e51b8152602060048201526016602482015275115e18d959591cc81b585e081c195c881dd85b1b195d60521b6044820152606401610784565b80600b54610a8d91906115d2565b341015610ad35760405162461bcd60e51b8152602060048201526014602482015273125b9cdd59999a58da595b9d081c185e5b595b9d60621b6044820152606401610784565b610add3382610e95565b5f610af06009546001600160a01b031690565b6001600160a01b03166203345034604051610705565b335f8181526007602090815260408083206001600160a01b03871680855290835292819020805460ff191686151590811790915590519081529192917f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a35050565b610b7c84848461057d565b6001600160a01b0383163b15610bac57610b9884848484610f4f565b610bac57610bac6368d2bf6b60e11b610cdf565b50505050565b6060610bbd82610c9d565b610bda57604051630a14c4b560e41b815260040160405180910390fd5b5f610be361102e565b905080515f03610c015760405180602001604052805f815250610c2c565b80610c0b8461103d565b604051602001610c1c929190611600565b6040516020818303038152906040525b9392505050565b6001600160a01b039182165f90815260076020908152604080832093909416825291909152205460ff1690565b610c68610e17565b6001600160a01b038116610c9157604051631e4fbdf760e01b81525f6004820152602401610784565b610c9a81610e44565b50565b5f8054821015610cda575f5b505f8281526004602052604081205490819003610cd057610cc983611614565b9250610ca9565b600160e01b161590505b919050565b805f5260045ffd5b5f610cf1836107c0565b9050818015610d095750336001600160a01b03821614155b15610d2c57610d188133610c33565b610d2c57610d2c6367d9dca160e11b610cdf565b5f8381526006602052604080822080546001600160a01b0319166001600160a01b0388811691821790925591518693918516917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591a450505050565b5f81815260046020526040902054805f03610df5575f548210610db557610db5636f96cda160e11b610cdf565b5b505f19015f818152600460205260409020548015610db657600160e01b81165f03610de057919050565b610df0636f96cda160e11b610cdf565b610db6565b600160e01b81165f03610e0757919050565b610cda636f96cda160e11b610cdf565b6009546001600160a01b031633146108ab5760405163118cdaa760e01b8152336004820152602401610784565b600980546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f805490829003610eb057610eb063b562e8dd60e01b610cdf565b5f8181526004602090815260408083206001600160a01b0387164260a01b6001881460e11b17811790915580845260059092528220805468010000000000000001860201905590819003610f0d57610f0d622e076360e81b610cdf565b818301825b80835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4818160010191508103610f1257505f5550505050565b604051630a85bd0160e11b81525f906001600160a01b0385169063150b7a0290610f83903390899088908890600401611629565b6020604051808303815f875af1925050508015610fbd575060408051601f3d908101601f19168201909252610fba91810190611665565b60015b611010573d808015610fea576040519150601f19603f3d011682016040523d82523d5f602084013e610fef565b606091505b5080515f03611008576110086368d2bf6b60e11b610cdf565b805181602001fd5b6001600160e01b031916630a85bd0160e11b1490505b949350505050565b6060600c80546104b39061146d565b60605f611049836110cd565b60010190505f8167ffffffffffffffff811115611068576110686112a3565b6040519080825280601f01601f191660200182016040528015611092576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461109c57509392505050565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b831061110b5772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611137576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061115557662386f26fc10000830492506010015b6305f5e100831061116d576305f5e100830492506008015b612710831061118157612710830492506004015b60648310611193576064830492506002015b600a831061049e5760010192915050565b6001600160e01b031981168114610c9a575f80fd5b5f602082840312156111c9575f80fd5b8135610c2c816111a4565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610c2c60208301846111d4565b5f60208284031215611224575f80fd5b5035919050565b80356001600160a01b0381168114610cda575f80fd5b5f8060408385031215611252575f80fd5b61125b8361122b565b946020939093013593505050565b5f805f6060848603121561127b575f80fd5b6112848461122b565b92506112926020850161122b565b929592945050506040919091013590565b634e487b7160e01b5f52604160045260245ffd5b5f8067ffffffffffffffff8411156112d1576112d16112a3565b50604051601f19601f85018116603f0116810181811067ffffffffffffffff82111715611300576113006112a3565b604052838152905080828401851015611317575f80fd5b838360208301375f60208583010152509392505050565b5f6020828403121561133e575f80fd5b813567ffffffffffffffff811115611354575f80fd5b8201601f81018413611364575f80fd5b611026848235602084016112b7565b5f60208284031215611383575f80fd5b610c2c8261122b565b5f806040838503121561139d575f80fd5b6113a68361122b565b9150602083013580151581146113ba575f80fd5b809150509250929050565b5f805f80608085870312156113d8575f80fd5b6113e18561122b565b93506113ef6020860161122b565b925060408501359150606085013567ffffffffffffffff811115611411575f80fd5b8501601f81018713611421575f80fd5b611430878235602084016112b7565b91505092959194509250565b5f806040838503121561144d575f80fd5b6114568361122b565b91506114646020840161122b565b90509250929050565b600181811c9082168061148157607f821691505b60208210810361149f57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156107a757805f5260205f20601f840160051c810160208510156114ca5750805b601f840160051c820191505b818110156114e9575f81556001016114d6565b5050505050565b815167ffffffffffffffff81111561150a5761150a6112a3565b61151e81611518845461146d565b846114a5565b6020601f821160018114611550575f83156115395750848201515b5f19600385901b1c1916600184901b1784556114e9565b5f84815260208120601f198516915b8281101561157f578785015182556020948501946001909201910161155f565b508482101561159c57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b634e487b7160e01b5f52601160045260245ffd5b8082018082111561049e5761049e6115ab565b808202811582820484141761049e5761049e6115ab565b5f81518060208401855e5f93019283525090919050565b5f61102661160e83866115e9565b846115e9565b5f81611622576116226115ab565b505f190190565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f9061165b908301846111d4565b9695505050505050565b5f60208284031215611675575f80fd5b8151610c2c816111a456fea2646970667358221220ca7440e7f96636b6f42cae756080f7769c05f9d74b0e5b7899dfa2bb4849e3af64736f6c634300081a003368747470733a2f2f7777772e6d696c6164796d616b65722e6e65742f6d696c6164792f6a736f6e2f
Deployed Bytecode
0x60806040526004361061017b575f3560e01c806370a08231116100cd57806395d89b4111610087578063b88d4fde11610062578063b88d4fde146103e3578063c87b56dd146103f6578063e985e9c514610415578063f2fde38b14610434575f80fd5b806395d89b411461039d578063a0712d68146103b1578063a22cb465146103c4575f80fd5b806370a08231146102fa578063715018a614610319578063735328021461032d5780638d6cc56d1461034c5780638d859f3e1461036b5780638da5cb5b14610380575f80fd5b806323b872dd1161013857806342842e0e1161011357806342842e0e1461029557806355f804b3146102a85780636352211e146102c75780636c0360eb146102e6575f80fd5b806323b872dd1461025957806332cb6b0c1461026c5780633ccfd60b14610281575f80fd5b806301ffc9a71461017f57806306fdde03146101b3578063081812fc146101d4578063095ea7b31461020b5780630f2cdd6c1461022057806318160ddd14610242575b5f80fd5b34801561018a575f80fd5b5061019e6101993660046111b9565b610453565b60405190151581526020015b60405180910390f35b3480156101be575f80fd5b506101c76104a4565b6040516101aa9190611202565b3480156101df575f80fd5b506101f36101ee366004611214565b610534565b6040516001600160a01b0390911681526020016101aa565b61021e610219366004611241565b61056d565b005b34801561022b575f80fd5b50610234606481565b6040519081526020016101aa565b34801561024d575f80fd5b506001545f5403610234565b61021e610267366004611269565b61057d565b348015610277575f80fd5b50610234600a5481565b34801561028c575f80fd5b5061021e6106d7565b61021e6102a3366004611269565b61078d565b3480156102b3575f80fd5b5061021e6102c236600461132e565b6107ac565b3480156102d2575f80fd5b506101f36102e1366004611214565b6107c0565b3480156102f1575f80fd5b506101c76107ca565b348015610305575f80fd5b50610234610314366004611373565b610856565b348015610324575f80fd5b5061021e61089a565b348015610338575f80fd5b5061021e610347366004611214565b6108ad565b348015610357575f80fd5b5061021e610366366004611214565b6109a9565b348015610376575f80fd5b50610234600b5481565b34801561038b575f80fd5b506009546001600160a01b03166101f3565b3480156103a8575f80fd5b506101c76109b6565b61021e6103bf366004611214565b6109c5565b3480156103cf575f80fd5b5061021e6103de36600461138c565b610b06565b61021e6103f13660046113c5565b610b71565b348015610401575f80fd5b506101c7610410366004611214565b610bb2565b348015610420575f80fd5b5061019e61042f36600461143c565b610c33565b34801561043f575f80fd5b5061021e61044e366004611373565b610c60565b5f6301ffc9a760e01b6001600160e01b03198316148061048357506380ac58cd60e01b6001600160e01b03198316145b8061049e5750635b5e139f60e01b6001600160e01b03198316145b92915050565b6060600280546104b39061146d565b80601f01602080910402602001604051908101604052809291908181526020018280546104df9061146d565b801561052a5780601f106105015761010080835404028352916020019161052a565b820191905f5260205f20905b81548152906001019060200180831161050d57829003601f168201915b5050505050905090565b5f61053e82610c9d565b610552576105526333d1c03960e21b610cdf565b505f908152600660205260409020546001600160a01b031690565b61057982826001610ce7565b5050565b5f61058782610d88565b6001600160a01b0394851694909150811684146105ad576105ad62a1148160e81b610cdf565b5f8281526006602052604090208054338082146001600160a01b038816909114176105f0576105dc8633610c33565b6105f0576105f0632ce44b5f60e11b610cdf565b80156105fa575f82555b6001600160a01b038681165f9081526005602052604080822080545f19019055918716808252919020805460010190554260a01b17600160e11b175f85815260046020526040812091909155600160e11b8416900361068657600184015f818152600460205260408120549003610684575f548114610684575f8181526004602052604090208490555b505b6001600160a01b0385168481887fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4805f036106ce576106ce633a954ecd60e21b610cdf565b50505050505050565b6106df610e17565b475f6106f36009546001600160a01b031690565b6001600160a01b031662033450836040515b5f60405180830381858888f193505050503d805f8114610740576040519150601f19603f3d011682016040523d82523d5f602084013e610745565b606091505b50509050806105795760405162461bcd60e51b815260206004820152600f60248201526e151c985b9cd9995c8819985a5b1959608a1b60448201526064015b60405180910390fd5b6107a783838360405180602001604052805f815250610b71565b505050565b6107b4610e17565b600c61057982826114f0565b5f61049e82610d88565b600c80546107d79061146d565b80601f01602080910402602001604051908101604052809291908181526020018280546108039061146d565b801561084e5780601f106108255761010080835404028352916020019161084e565b820191905f5260205f20905b81548152906001019060200180831161083157829003601f168201915b505050505081565b5f6001600160a01b038216610875576108756323d3ad8160e21b610cdf565b506001600160a01b03165f9081526005602052604090205467ffffffffffffffff1690565b6108a2610e17565b6108ab5f610e44565b565b6108b5610e17565b600a54811061092c5760405162461bcd60e51b815260206004820152603760248201527f4e6577206d617820737570706c79206d757374206265206c657373207468616e60448201527f207468652063757272656e74206d617820737570706c790000000000000000006064820152608401610784565b806109396001545f540390565b11156109a45760405162461bcd60e51b815260206004820152603460248201527f4e6577206d617820737570706c79206d7573742062652067726561746572207460448201527368616e2074686520746f74616c20737570706c7960601b6064820152608401610784565b600a55565b6109b1610e17565b600b55565b6060600380546104b39061146d565b600a54816109d56001545f540390565b6109df91906115bf565b1115610a225760405162461bcd60e51b815260206004820152601260248201527145786365656473206d617820737570706c7960701b6044820152606401610784565b606481610a2e33610856565b610a3891906115bf565b1115610a7f5760405162461bcd60e51b8152602060048201526016602482015275115e18d959591cc81b585e081c195c881dd85b1b195d60521b6044820152606401610784565b80600b54610a8d91906115d2565b341015610ad35760405162461bcd60e51b8152602060048201526014602482015273125b9cdd59999a58da595b9d081c185e5b595b9d60621b6044820152606401610784565b610add3382610e95565b5f610af06009546001600160a01b031690565b6001600160a01b03166203345034604051610705565b335f8181526007602090815260408083206001600160a01b03871680855290835292819020805460ff191686151590811790915590519081529192917f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a35050565b610b7c84848461057d565b6001600160a01b0383163b15610bac57610b9884848484610f4f565b610bac57610bac6368d2bf6b60e11b610cdf565b50505050565b6060610bbd82610c9d565b610bda57604051630a14c4b560e41b815260040160405180910390fd5b5f610be361102e565b905080515f03610c015760405180602001604052805f815250610c2c565b80610c0b8461103d565b604051602001610c1c929190611600565b6040516020818303038152906040525b9392505050565b6001600160a01b039182165f90815260076020908152604080832093909416825291909152205460ff1690565b610c68610e17565b6001600160a01b038116610c9157604051631e4fbdf760e01b81525f6004820152602401610784565b610c9a81610e44565b50565b5f8054821015610cda575f5b505f8281526004602052604081205490819003610cd057610cc983611614565b9250610ca9565b600160e01b161590505b919050565b805f5260045ffd5b5f610cf1836107c0565b9050818015610d095750336001600160a01b03821614155b15610d2c57610d188133610c33565b610d2c57610d2c6367d9dca160e11b610cdf565b5f8381526006602052604080822080546001600160a01b0319166001600160a01b0388811691821790925591518693918516917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591a450505050565b5f81815260046020526040902054805f03610df5575f548210610db557610db5636f96cda160e11b610cdf565b5b505f19015f818152600460205260409020548015610db657600160e01b81165f03610de057919050565b610df0636f96cda160e11b610cdf565b610db6565b600160e01b81165f03610e0757919050565b610cda636f96cda160e11b610cdf565b6009546001600160a01b031633146108ab5760405163118cdaa760e01b8152336004820152602401610784565b600980546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f805490829003610eb057610eb063b562e8dd60e01b610cdf565b5f8181526004602090815260408083206001600160a01b0387164260a01b6001881460e11b17811790915580845260059092528220805468010000000000000001860201905590819003610f0d57610f0d622e076360e81b610cdf565b818301825b80835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4818160010191508103610f1257505f5550505050565b604051630a85bd0160e11b81525f906001600160a01b0385169063150b7a0290610f83903390899088908890600401611629565b6020604051808303815f875af1925050508015610fbd575060408051601f3d908101601f19168201909252610fba91810190611665565b60015b611010573d808015610fea576040519150601f19603f3d011682016040523d82523d5f602084013e610fef565b606091505b5080515f03611008576110086368d2bf6b60e11b610cdf565b805181602001fd5b6001600160e01b031916630a85bd0160e11b1490505b949350505050565b6060600c80546104b39061146d565b60605f611049836110cd565b60010190505f8167ffffffffffffffff811115611068576110686112a3565b6040519080825280601f01601f191660200182016040528015611092576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461109c57509392505050565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b831061110b5772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611137576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061115557662386f26fc10000830492506010015b6305f5e100831061116d576305f5e100830492506008015b612710831061118157612710830492506004015b60648310611193576064830492506002015b600a831061049e5760010192915050565b6001600160e01b031981168114610c9a575f80fd5b5f602082840312156111c9575f80fd5b8135610c2c816111a4565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610c2c60208301846111d4565b5f60208284031215611224575f80fd5b5035919050565b80356001600160a01b0381168114610cda575f80fd5b5f8060408385031215611252575f80fd5b61125b8361122b565b946020939093013593505050565b5f805f6060848603121561127b575f80fd5b6112848461122b565b92506112926020850161122b565b929592945050506040919091013590565b634e487b7160e01b5f52604160045260245ffd5b5f8067ffffffffffffffff8411156112d1576112d16112a3565b50604051601f19601f85018116603f0116810181811067ffffffffffffffff82111715611300576113006112a3565b604052838152905080828401851015611317575f80fd5b838360208301375f60208583010152509392505050565b5f6020828403121561133e575f80fd5b813567ffffffffffffffff811115611354575f80fd5b8201601f81018413611364575f80fd5b611026848235602084016112b7565b5f60208284031215611383575f80fd5b610c2c8261122b565b5f806040838503121561139d575f80fd5b6113a68361122b565b9150602083013580151581146113ba575f80fd5b809150509250929050565b5f805f80608085870312156113d8575f80fd5b6113e18561122b565b93506113ef6020860161122b565b925060408501359150606085013567ffffffffffffffff811115611411575f80fd5b8501601f81018713611421575f80fd5b611430878235602084016112b7565b91505092959194509250565b5f806040838503121561144d575f80fd5b6114568361122b565b91506114646020840161122b565b90509250929050565b600181811c9082168061148157607f821691505b60208210810361149f57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156107a757805f5260205f20601f840160051c810160208510156114ca5750805b601f840160051c820191505b818110156114e9575f81556001016114d6565b5050505050565b815167ffffffffffffffff81111561150a5761150a6112a3565b61151e81611518845461146d565b846114a5565b6020601f821160018114611550575f83156115395750848201515b5f19600385901b1c1916600184901b1784556114e9565b5f84815260208120601f198516915b8281101561157f578785015182556020948501946001909201910161155f565b508482101561159c57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b634e487b7160e01b5f52601160045260245ffd5b8082018082111561049e5761049e6115ab565b808202811582820484141761049e5761049e6115ab565b5f81518060208401855e5f93019283525090919050565b5f61102661160e83866115e9565b846115e9565b5f81611622576116226115ab565b505f190190565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f9061165b908301846111d4565b9695505050505050565b5f60208284031215611675575f80fd5b8151610c2c816111a456fea2646970667358221220ca7440e7f96636b6f42cae756080f7769c05f9d74b0e5b7899dfa2bb4849e3af64736f6c634300081a0033
Deployed Bytecode Sourcemap
188:1916:9:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10689:630:7;;;;;;;;;;-1:-1:-1;10689:630:7;;;;;:::i;:::-;;:::i;:::-;;;565:14:10;;558:22;540:41;;528:2;513:18;10689:630:7;;;;;;;;11573:98;;;;;;;;;;;;;:::i;:::-;;;;;;;:::i;18636:223::-;;;;;;;;;;-1:-1:-1;18636:223:7;;;;;:::i;:::-;;:::i;:::-;;;-1:-1:-1;;;;;1528:32:10;;;1510:51;;1498:2;1483:18;18636:223:7;1364:203:10;18364:122:7;;;;;;:::i;:::-;;:::i;:::-;;295:44:9;;;;;;;;;;;;336:3;295:44;;;;;2201:25:10;;;2189:2;2174:18;295:44:9;2055:177:10;6890:564:7;;;;;;;;;;-1:-1:-1;7328:12:7;;6951:14;7312:13;:28;6890:564;;22796:3447;;;;;;:::i;:::-;;:::i;258:33:9:-;;;;;;;;;;;;;;;;1891:211;;;;;;;;;;;;;:::i;26334:187:7:-;;;;;;:::i;:::-;;:::i;1491:98:9:-;;;;;;;;;;-1:-1:-1;1491:98:9;;;;;:::i;:::-;;:::i;12934:150:7:-;;;;;;;;;;-1:-1:-1;12934:150:7;;;;;:::i;:::-;;:::i;387:66:9:-;;;;;;;;;;;;;:::i;8570:239:7:-;;;;;;;;;;-1:-1:-1;8570:239:7;;;;;:::i;:::-;;:::i;2293:101:0:-;;;;;;;;;;;;;:::i;1001:301:9:-;;;;;;;;;;-1:-1:-1;1001:301:9;;;;;:::i;:::-;;:::i;1306:85::-;;;;;;;;;;-1:-1:-1;1306:85:9;;;;;:::i;:::-;;:::i;343:30::-;;;;;;;;;;;;;;;;1638:85:0;;;;;;;;;;-1:-1:-1;1710:6:0;;-1:-1:-1;;;;;1710:6:0;1638:85;;11742:102:7;;;;;;;;;;;;;:::i;523:474:9:-;;;;;;:::i;:::-;;:::i;19186:231:7:-;;;;;;;;;;-1:-1:-1;19186:231:7;;;;;:::i;:::-;;:::i;27102:405::-;;;;;;:::i;:::-;;:::i;1593:294:9:-;;;;;;;;;;-1:-1:-1;1593:294:9;;;;;:::i;:::-;;:::i;19567:162:7:-;;;;;;;;;;-1:-1:-1;19567:162:7;;;;;:::i;:::-;;:::i;2543:215:0:-;;;;;;;;;;-1:-1:-1;2543:215:0;;;;;:::i;:::-;;:::i;10689:630:7:-;10774:4;-1:-1:-1;;;;;;;;;11092:25:7;;;;:101;;-1:-1:-1;;;;;;;;;;11168:25:7;;;11092:101;:177;;;-1:-1:-1;;;;;;;;;;11244:25:7;;;11092:177;11073:196;10689:630;-1:-1:-1;;10689:630:7:o;11573:98::-;11627:13;11659:5;11652:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;11573:98;:::o;18636:223::-;18712:7;18736:16;18744:7;18736;:16::i;:::-;18731:73;;18754:50;-1:-1:-1;;;18754:7:7;:50::i;:::-;-1:-1:-1;18822:24:7;;;;:15;:24;;;;;:30;-1:-1:-1;;;;;18822:30:7;;18636:223::o;18364:122::-;18452:27;18461:2;18465:7;18474:4;18452:8;:27::i;:::-;18364:122;;:::o;22796:3447::-;22933:27;22963;22982:7;22963:18;:27::i;:::-;-1:-1:-1;;;;;23115:22:7;;;;22933:57;;-1:-1:-1;23173:45:7;;;;23169:95;;23220:44;-1:-1:-1;;;23220:7:7;:44::i;:::-;23276:27;21929:24;;;:15;:24;;;;;22153:26;;47819:10;21566:30;;;-1:-1:-1;;;;;21263:28:7;;21544:20;;;21541:56;23459:188;;23551:43;23568:4;47819:10;19567:162;:::i;23551:43::-;23546:101;;23596:51;-1:-1:-1;;;23596:7:7;:51::i;:::-;23790:15;23787:157;;;23928:1;23907:19;23900:30;23787:157;-1:-1:-1;;;;;24316:24:7;;;;;;;:18;:24;;;;;;24314:26;;-1:-1:-1;;24314:26:7;;;24384:22;;;;;;;;;24382:24;;-1:-1:-1;24382:24:7;;;17492:11;17467:23;17463:41;17450:63;-1:-1:-1;;;17450:63:7;24670:26;;;;:17;:26;;;;;:172;;;;-1:-1:-1;;;24959:47:7;;:52;;24955:617;;25063:1;25053:11;;25031:19;25184:30;;;:17;:30;;;;;;:35;;25180:378;;25320:13;;25305:11;:28;25301:239;;25465:30;;;;:17;:30;;;;;:52;;;25301:239;25013:559;24955:617;-1:-1:-1;;;;;25700:20:7;;26071:7;25700:20;26003:4;25946:25;25681:16;;25814:292;26129:8;26141:1;26129:13;26125:58;;26144:39;-1:-1:-1;;;26144:7:7;:39::i;:::-;22923:3320;;;;22796:3447;;;:::o;1891:211:9:-;1531:13:0;:11;:13::i;:::-;1954:21:9::1;1936:15;2008:7;1710:6:0::0;;-1:-1:-1;;;;;1710:6:0;;1638:85;2008:7:9::1;-1:-1:-1::0;;;;;2000:21:9::1;2028:6;2043:7;2000:56;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1981:75;;;2070:7;2062:35;;;::::0;-1:-1:-1;;;2062:35:9;;6248:2:10;2062:35:9::1;::::0;::::1;6230:21:10::0;6287:2;6267:18;;;6260:30;-1:-1:-1;;;6306:18:10;;;6299:45;6361:18;;2062:35:9::1;;;;;;;;26334:187:7::0;26475:39;26492:4;26498:2;26502:7;26475:39;;;;;;;;;;;;:16;:39::i;:::-;26334:187;;;:::o;1491:98:9:-;1531:13:0;:11;:13::i;:::-;1563:7:9::1;:21;1573:11:::0;1563:7;:21:::1;:::i;12934:150:7:-:0;13006:7;13048:27;13067:7;13048:18;:27::i;387:66:9:-;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;8570:239:7:-;8642:7;-1:-1:-1;;;;;8665:19:7;;8661:69;;8686:44;-1:-1:-1;;;8686:7:7;:44::i;:::-;-1:-1:-1;;;;;;8747:25:7;;;;;:18;:25;;;;;;1518:13;8747:55;;8570:239::o;2293:101:0:-;1531:13;:11;:13::i;:::-;2357:30:::1;2384:1;2357:18;:30::i;:::-;2293:101::o:0;1001:301:9:-;1531:13:0;:11;:13::i;:::-;1096:10:9::1;;1081:12;:25;1073:93;;;::::0;-1:-1:-1;;;1073:93:9;;8716:2:10;1073:93:9::1;::::0;::::1;8698:21:10::0;8755:2;8735:18;;;8728:30;8794:34;8774:18;;;8767:62;8865:25;8845:18;;;8838:53;8908:19;;1073:93:9::1;8514:419:10::0;1073:93:9::1;1197:12;1180:13;7328:12:7::0;;6951:14;7312:13;:28;6890:564;;1180:13:9::1;:29;;1172:94;;;::::0;-1:-1:-1;;;1172:94:9;;9140:2:10;1172:94:9::1;::::0;::::1;9122:21:10::0;9179:2;9159:18;;;9152:30;9218:34;9198:18;;;9191:62;-1:-1:-1;;;9269:18:10;;;9262:50;9329:19;;1172:94:9::1;8938:416:10::0;1172:94:9::1;1272:10;:25:::0;1001:301::o;1306:85::-;1531:13:0;:11;:13::i;:::-;1370:5:9::1;:16:::0;1306:85::o;11742:102:7:-;11798:13;11830:7;11823:14;;;;;:::i;523:474:9:-;614:10;;602:8;586:13;7328:12:7;;6951:14;7312:13;:28;6890:564;;586:13:9;:24;;;;:::i;:::-;:38;;578:69;;;;-1:-1:-1;;;578:69:9;;9823:2:10;578:69:9;;;9805:21:10;9862:2;9842:18;;;9835:30;-1:-1:-1;;;9881:18:10;;;9874:48;9939:18;;578:69:9;9621:342:10;578:69:9;336:3;685:8;661:21;671:10;661:9;:21::i;:::-;:32;;;;:::i;:::-;:50;;653:85;;;;-1:-1:-1;;;653:85:9;;10170:2:10;653:85:9;;;10152:21:10;10209:2;10189:18;;;10182:30;-1:-1:-1;;;10228:18:10;;;10221:52;10290:18;;653:85:9;9968:346:10;653:85:9;773:8;765:5;;:16;;;;:::i;:::-;752:9;:29;;744:62;;;;-1:-1:-1;;;744:62:9;;10694:2:10;744:62:9;;;10676:21:10;10733:2;10713:18;;;10706:30;-1:-1:-1;;;10752:18:10;;;10745:50;10812:18;;744:62:9;10492:344:10;744:62:9;813:27;819:10;831:8;813:5;:27::i;:::-;875:12;901:7;1710:6:0;;-1:-1:-1;;;;;1710:6:0;;1638:85;901:7:9;-1:-1:-1;;;;;893:21:9;921:6;936:9;893:58;;;5836:205:10;19186:231:7;47819:10;19280:39;;;;:18;:39;;;;;;;;-1:-1:-1;;;;;19280:49:7;;;;;;;;;;;;:60;;-1:-1:-1;;19280:60:7;;;;;;;;;;19355:55;;540:41:10;;;19280:49:7;;47819:10;19355:55;;513:18:10;19355:55:7;;;;;;;19186:231;;:::o;27102:405::-;27271:31;27284:4;27290:2;27294:7;27271:12;:31::i;:::-;-1:-1:-1;;;;;27316:14:7;;;:19;27312:189;;27354:56;27385:4;27391:2;27395:7;27404:5;27354:30;:56::i;:::-;27349:152;;27430:56;-1:-1:-1;;;27430:7:7;:56::i;:::-;27102:405;;;;:::o;1593:294:9:-;1658:13;1684:16;1692:7;1684;:16::i;:::-;1679:59;;1709:29;;-1:-1:-1;;;1709:29:9;;;;;;;;;;;1679:59;1745:22;1770:10;:8;:10::i;:::-;1745:35;;1799:8;1793:22;1819:1;1793:27;:89;;;;;;;;;;;;;;;;;1847:8;1857:18;:7;:16;:18::i;:::-;1830:46;;;;;;;;;:::i;:::-;;;;;;;;;;;;;1793:89;1786:96;1593:294;-1:-1:-1;;;1593:294:9:o;19567:162:7:-;-1:-1:-1;;;;;19687:25:7;;;19664:4;19687:25;;;:18;:25;;;;;;;;:35;;;;;;;;;;;;;;;19567:162::o;2543:215:0:-;1531:13;:11;:13::i;:::-;-1:-1:-1;;;;;2627:22:0;::::1;2623:91;;2672:31;::::0;-1:-1:-1;;;2672:31:0;;2700:1:::1;2672:31;::::0;::::1;1510:51:10::0;1483:18;;2672:31:0::1;1364:203:10::0;2623:91:0::1;2723:28;2742:8;2723:18;:28::i;:::-;2543:215:::0;:::o;19978:465:7:-;20043:11;20231:13;;20221:7;:23;20217:210;;;20264:14;20296:60;-1:-1:-1;20313:26:7;;;;:17;:26;;;;;;;20303:42;;;20296:60;;20347:9;;;:::i;:::-;;;20296:60;;;-1:-1:-1;;;20383:24:7;:29;;-1:-1:-1;20217:210:7;19978:465;;;:::o;49703:160::-;49802:13;49796:4;49789:27;49842:4;49836;49829:18;41333:460;41457:13;41473:16;41481:7;41473;:16::i;:::-;41457:32;;41504:13;:45;;;;-1:-1:-1;47819:10:7;-1:-1:-1;;;;;41521:28:7;;;;41504:45;41500:198;;;41568:44;41585:5;47819:10;19567:162;:::i;41568:44::-;41563:135;;41632:51;-1:-1:-1;;;41632:7:7;:51::i;:::-;41708:24;;;;:15;:24;;;;;;:35;;-1:-1:-1;;;;;;41708:35:7;-1:-1:-1;;;;;41708:35:7;;;;;;;;;41758:28;;41708:24;;41758:28;;;;;;;41447:346;41333:460;;;:::o;14380:2173::-;14528:26;;;;:17;:26;;;;;;14847:6;14857:1;14847:11;14843:1270;;14893:13;;14882:7;:24;14878:77;;14908:47;-1:-1:-1;;;14908:7:7;:47::i;:::-;15502:597;-1:-1:-1;;;15596:9:7;15578:28;;;;:17;:28;;;;;;15650:25;;15502:597;15650:25;-1:-1:-1;;;15701:6:7;:24;15729:1;15701:29;15697:48;;14380:2173;;;:::o;15697:48::-;16033:47;-1:-1:-1;;;16033:7:7;:47::i;:::-;15502:597;;14843:1270;-1:-1:-1;;;16435:6:7;:24;16463:1;16435:29;16431:48;;14380:2173;;;:::o;16431:48::-;16499:47;-1:-1:-1;;;16499:7:7;:47::i;1796:162:0:-;1710:6;;-1:-1:-1;;;;;1710:6:0;47819:10:7;1855:23:0;1851:101;;1901:40;;-1:-1:-1;;;1901:40:0;;47819:10:7;1901:40:0;;;1510:51:10;1483:18;;1901:40:0;1364:203:10;2912:187:0;3004:6;;;-1:-1:-1;;;;;3020:17:0;;;-1:-1:-1;;;;;;3020:17:0;;;;;;;3052:40;;3004:6;;;3020:17;3004:6;;3052:40;;2985:16;;3052:40;2975:124;2912:187;:::o;30652:2343:7:-;30724:20;30747:13;;;30774;;;30770:53;;30789:34;-1:-1:-1;;;30789:7:7;:34::i;:::-;31323:31;;;;:17;:31;;;;;;;;-1:-1:-1;;;;;17320:28:7;;17492:11;17467:23;17463:41;17925:1;17912:15;;17886:24;17882:46;17460:52;17450:63;;31323:170;;;31704:22;;;:18;:22;;;;;:71;;31742:32;31730:45;;31704:71;;;17320:28;31960:13;;;31956:54;;31975:35;-1:-1:-1;;;31975:7:7;:35::i;:::-;32039:23;;;;32213:662;32623:7;32580:8;32536:1;32471:25;32409:1;32345;32315:351;32870:3;32857:9;;;;;;:16;32213:662;;-1:-1:-1;32889:13:7;:19;-1:-1:-1;26334:187:7;;;:::o;29533:673::-;29711:88;;-1:-1:-1;;;29711:88:7;;29691:4;;-1:-1:-1;;;;;29711:45:7;;;;;:88;;47819:10;;29778:4;;29784:7;;29793:5;;29711:88;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;-1:-1:-1;29711:88:7;;;;;;;;-1:-1:-1;;29711:88:7;;;;;;;;;;;;:::i;:::-;;;29707:493;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;29989:6;:13;30006:1;29989:18;29985:113;;30027:56;-1:-1:-1;;;30027:7:7;:56::i;:::-;30168:6;30162:13;30153:6;30149:2;30145:15;30138:38;29707:493;-1:-1:-1;;;;;;29867:64:7;-1:-1:-1;;;29867:64:7;;-1:-1:-1;29707:493:7;29533:673;;;;;;:::o;1395:92:9:-;1447:13;1475:7;1468:14;;;;;:::i;637:632:3:-;693:13;742:14;759:17;770:5;759:10;:17::i;:::-;779:1;759:21;742:38;;794:20;828:6;817:18;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;817:18:3;-1:-1:-1;794:41:3;-1:-1:-1;924:28:3;;;940:2;924:28;979:247;-1:-1:-1;;1010:5:3;-1:-1:-1;;;1109:2:3;1098:14;;1093:32;1010:5;1080:46;1170:2;1161:11;;;-1:-1:-1;1190:21:3;979:247;1190:21;-1:-1:-1;1246:6:3;637:632;-1:-1:-1;;;637:632:3:o;25316:916:4:-;25369:7;;-1:-1:-1;;;25444:17:4;;25440:103;;-1:-1:-1;;;25481:17:4;;;-1:-1:-1;25526:2:4;25516:12;25440:103;25569:8;25560:5;:17;25556:103;;25606:8;25597:17;;;-1:-1:-1;25642:2:4;25632:12;25556:103;25685:8;25676:5;:17;25672:103;;25722:8;25713:17;;;-1:-1:-1;25758:2:4;25748:12;25672:103;25801:7;25792:5;:16;25788:100;;25837:7;25828:16;;;-1:-1:-1;25872:1:4;25862:11;25788:100;25914:7;25905:5;:16;25901:100;;25950:7;25941:16;;;-1:-1:-1;25985:1:4;25975:11;25901:100;26027:7;26018:5;:16;26014:100;;26063:7;26054:16;;;-1:-1:-1;26098:1:4;26088:11;26014:100;26140:7;26131:5;:16;26127:66;;26177:1;26167:11;26219:6;25316:916;-1:-1:-1;;25316:916:4:o;14:131:10:-;-1:-1:-1;;;;;;88:32:10;;78:43;;68:71;;135:1;132;125:12;150:245;208:6;261:2;249:9;240:7;236:23;232:32;229:52;;;277:1;274;267:12;229:52;316:9;303:23;335:30;359:5;335:30;:::i;592:300::-;645:3;683:5;677:12;710:6;705:3;698:19;766:6;759:4;752:5;748:16;741:4;736:3;732:14;726:47;818:1;811:4;802:6;797:3;793:16;789:27;782:38;881:4;874:2;870:7;865:2;857:6;853:15;849:29;844:3;840:39;836:50;829:57;;;592:300;;;;:::o;897:231::-;1046:2;1035:9;1028:21;1009:4;1066:56;1118:2;1107:9;1103:18;1095:6;1066:56;:::i;1133:226::-;1192:6;1245:2;1233:9;1224:7;1220:23;1216:32;1213:52;;;1261:1;1258;1251:12;1213:52;-1:-1:-1;1306:23:10;;1133:226;-1:-1:-1;1133:226:10:o;1572:173::-;1640:20;;-1:-1:-1;;;;;1689:31:10;;1679:42;;1669:70;;1735:1;1732;1725:12;1750:300;1818:6;1826;1879:2;1867:9;1858:7;1854:23;1850:32;1847:52;;;1895:1;1892;1885:12;1847:52;1918:29;1937:9;1918:29;:::i;:::-;1908:39;2016:2;2001:18;;;;1988:32;;-1:-1:-1;;;1750:300:10:o;2237:374::-;2314:6;2322;2330;2383:2;2371:9;2362:7;2358:23;2354:32;2351:52;;;2399:1;2396;2389:12;2351:52;2422:29;2441:9;2422:29;:::i;:::-;2412:39;;2470:38;2504:2;2493:9;2489:18;2470:38;:::i;:::-;2237:374;;2460:48;;-1:-1:-1;;;2577:2:10;2562:18;;;;2549:32;;2237:374::o;2616:127::-;2677:10;2672:3;2668:20;2665:1;2658:31;2708:4;2705:1;2698:15;2732:4;2729:1;2722:15;2748:716;2813:5;2845:1;2869:18;2861:6;2858:30;2855:56;;;2891:18;;:::i;:::-;-1:-1:-1;3046:2:10;3040:9;-1:-1:-1;;2959:2:10;2938:15;;2934:29;;3104:2;3092:15;3088:29;3076:42;;3169:22;;;3148:18;3133:34;;3130:62;3127:88;;;3195:18;;:::i;:::-;3231:2;3224:22;3279;;;3264:6;-1:-1:-1;3264:6:10;3316:16;;;3313:25;-1:-1:-1;3310:45:10;;;3351:1;3348;3341:12;3310:45;3401:6;3396:3;3389:4;3381:6;3377:17;3364:44;3456:1;3449:4;3440:6;3432;3428:19;3424:30;3417:41;;2748:716;;;;;:::o;3469:451::-;3538:6;3591:2;3579:9;3570:7;3566:23;3562:32;3559:52;;;3607:1;3604;3597:12;3559:52;3647:9;3634:23;3680:18;3672:6;3669:30;3666:50;;;3712:1;3709;3702:12;3666:50;3735:22;;3788:4;3780:13;;3776:27;-1:-1:-1;3766:55:10;;3817:1;3814;3807:12;3766:55;3840:74;3906:7;3901:2;3888:16;3883:2;3879;3875:11;3840:74;:::i;3925:186::-;3984:6;4037:2;4025:9;4016:7;4012:23;4008:32;4005:52;;;4053:1;4050;4043:12;4005:52;4076:29;4095:9;4076:29;:::i;4116:347::-;4181:6;4189;4242:2;4230:9;4221:7;4217:23;4213:32;4210:52;;;4258:1;4255;4248:12;4210:52;4281:29;4300:9;4281:29;:::i;:::-;4271:39;;4360:2;4349:9;4345:18;4332:32;4407:5;4400:13;4393:21;4386:5;4383:32;4373:60;;4429:1;4426;4419:12;4373:60;4452:5;4442:15;;;4116:347;;;;;:::o;4468:713::-;4563:6;4571;4579;4587;4640:3;4628:9;4619:7;4615:23;4611:33;4608:53;;;4657:1;4654;4647:12;4608:53;4680:29;4699:9;4680:29;:::i;:::-;4670:39;;4728:38;4762:2;4751:9;4747:18;4728:38;:::i;:::-;4718:48;-1:-1:-1;4835:2:10;4820:18;;4807:32;;-1:-1:-1;4914:2:10;4899:18;;4886:32;4941:18;4930:30;;4927:50;;;4973:1;4970;4963:12;4927:50;4996:22;;5049:4;5041:13;;5037:27;-1:-1:-1;5027:55:10;;5078:1;5075;5068:12;5027:55;5101:74;5167:7;5162:2;5149:16;5144:2;5140;5136:11;5101:74;:::i;:::-;5091:84;;;4468:713;;;;;;;:::o;5186:260::-;5254:6;5262;5315:2;5303:9;5294:7;5290:23;5286:32;5283:52;;;5331:1;5328;5321:12;5283:52;5354:29;5373:9;5354:29;:::i;:::-;5344:39;;5402:38;5436:2;5425:9;5421:18;5402:38;:::i;:::-;5392:48;;5186:260;;;;;:::o;5451:380::-;5530:1;5526:12;;;;5573;;;5594:61;;5648:4;5640:6;5636:17;5626:27;;5594:61;5701:2;5693:6;5690:14;5670:18;5667:38;5664:161;;5747:10;5742:3;5738:20;5735:1;5728:31;5782:4;5779:1;5772:15;5810:4;5807:1;5800:15;5664:161;;5451:380;;;:::o;6516:518::-;6618:2;6613:3;6610:11;6607:421;;;6654:5;6651:1;6644:16;6698:4;6695:1;6685:18;6768:2;6756:10;6752:19;6749:1;6745:27;6739:4;6735:38;6804:4;6792:10;6789:20;6786:47;;;-1:-1:-1;6827:4:10;6786:47;6882:2;6877:3;6873:12;6870:1;6866:20;6860:4;6856:31;6846:41;;6937:81;6955:2;6948:5;6945:13;6937:81;;;7014:1;7000:16;;6981:1;6970:13;6937:81;;;6941:3;;6516:518;;;:::o;7210:1299::-;7336:3;7330:10;7363:18;7355:6;7352:30;7349:56;;;7385:18;;:::i;:::-;7414:97;7504:6;7464:38;7496:4;7490:11;7464:38;:::i;:::-;7458:4;7414:97;:::i;:::-;7560:4;7591:2;7580:14;;7608:1;7603:649;;;;8296:1;8313:6;8310:89;;;-1:-1:-1;8365:19:10;;;8359:26;8310:89;-1:-1:-1;;7167:1:10;7163:11;;;7159:24;7155:29;7145:40;7191:1;7187:11;;;7142:57;8412:81;;7573:930;;7603:649;6463:1;6456:14;;;6500:4;6487:18;;-1:-1:-1;;7639:20:10;;;7757:222;7771:7;7768:1;7765:14;7757:222;;;7853:19;;;7847:26;7832:42;;7960:4;7945:20;;;;7913:1;7901:14;;;;7787:12;7757:222;;;7761:3;8007:6;7998:7;7995:19;7992:201;;;8068:19;;;8062:26;-1:-1:-1;;8151:1:10;8147:14;;;8163:3;8143:24;8139:37;8135:42;8120:58;8105:74;;7992:201;-1:-1:-1;;;;8239:1:10;8223:14;;;8219:22;8206:36;;-1:-1:-1;7210:1299:10:o;9359:127::-;9420:10;9415:3;9411:20;9408:1;9401:31;9451:4;9448:1;9441:15;9475:4;9472:1;9465:15;9491:125;9556:9;;;9577:10;;;9574:36;;;9590:18;;:::i;10319:168::-;10392:9;;;10423;;10440:15;;;10434:22;;10420:37;10410:71;;10461:18;;:::i;10841:212::-;10883:3;10921:5;10915:12;10965:6;10958:4;10951:5;10947:16;10942:3;10936:36;11027:1;10991:16;;11016:13;;;-1:-1:-1;10991:16:10;;10841:212;-1:-1:-1;10841:212:10:o;11058:267::-;11237:3;11262:57;11288:30;11314:3;11306:6;11288:30;:::i;:::-;11280:6;11262:57;:::i;11330:136::-;11369:3;11397:5;11387:39;;11406:18;;:::i;:::-;-1:-1:-1;;;11442:18:10;;11330:136::o;11471:496::-;-1:-1:-1;;;;;11702:32:10;;;11684:51;;11771:32;;11766:2;11751:18;;11744:60;11835:2;11820:18;;11813:34;;;11883:3;11878:2;11863:18;;11856:31;;;-1:-1:-1;;11904:57:10;;11941:19;;11933:6;11904:57;:::i;:::-;11896:65;11471:496;-1:-1:-1;;;;;;11471:496:10:o;11972:249::-;12041:6;12094:2;12082:9;12073:7;12069:23;12065:32;12062:52;;;12110:1;12107;12100:12;12062:52;12142:9;12136:16;12161:30;12185:5;12161:30;:::i
Swarm Source
ipfs://ca7440e7f96636b6f42cae756080f7769c05f9d74b0e5b7899dfa2bb4849e3af
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.