ERC-721
Overview
Max Total Supply
0 PWIDENZA
Holders
352
Market
Volume (24H)
N/A
Min Price (24H)
N/A
Max Price (24H)
N/A
Other Info
Token Contract
Balance
2 PWIDENZALoading...
Loading
Loading...
Loading
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Pwidenza
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
No with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.26; import "@openzeppelin/contracts/token/ERC721/ERC721.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; contract Pwidenza is ERC721, Ownable, ReentrancyGuard { // Merkle Root Variables bytes32 public airdropMerkleRoot; // Contract Variables string private revealedBaseURI; uint public totalMinted = 0; uint256 public constant MAX_SUPPLY = 500; // Maximum number of NFTs // Events event Airdrop(address indexed to, uint256 tokenId); event OwnerMinted(address indexed to, uint256 tokenId); event Withdrawn(uint256 amount, address withdrawnTo); event BaseURIUpdated(string newBaseURI, address updatedBy); event EtherReceived(address sender, uint amount); // Constructor constructor( address initialOwner ) ERC721("Pwidenza", "PWIDENZA") Ownable(initialOwner) {} // Check if address is on Airdrop list function checkIsAirdrop( bytes32[] calldata _merkleProof ) public view returns (bool) { bytes32 leaf = keccak256(abi.encodePacked(msg.sender)); // Check against the Airdrop Merkle Root return MerkleProof.verify(_merkleProof, airdropMerkleRoot, leaf); } // Airdrop NFTs to Whitelisted Addresses function airdrop(address[] calldata toAddresses) public onlyOwner { require( totalMinted + toAddresses.length <= MAX_SUPPLY, "Minting would exceed max supply" ); for (uint256 i = 0; i < toAddresses.length; i++) { address to = toAddresses[i]; mintTokens(to, 1, MintType.Airdrop); } } // Owner Mint function ownerMint(address to, uint256 numTokens) public onlyOwner { require( totalMinted + numTokens <= MAX_SUPPLY, "Minting would exceed max supply" ); require(numTokens > 0, "Must mint at least one token"); require( numTokens <= 20, "Owner can only mint up to 20 tokens at a time" ); mintTokens(to, numTokens, MintType.Owner); } // Withdraw Function function withdraw( address payable withdrawalAddress, uint256 amount ) external onlyOwner nonReentrant { require(withdrawalAddress != address(0), "Invalid withdrawal address"); require(amount > 0, "Amount must be greater than 0"); require( address(this).balance >= amount, "Insufficient contract balance" ); (bool sent, ) = withdrawalAddress.call{value: amount}(""); require(sent, "Failed to send Ether"); emit Withdrawn(amount, withdrawalAddress); } // Override Functions function tokenURI( uint256 tokenId ) public view virtual override returns (string memory) { _requireOwned(tokenId); return string( abi.encodePacked( revealedBaseURI, Strings.toString(tokenId), ".json" ) ); } // Mint tokens enum MintType { Owner, Airdrop } function mintTokens( address to, uint256 numTokens, MintType mintType ) private { for (uint256 i = 0; i < numTokens; i++) { uint256 newTokenId = totalMinted + 1; _mint(to, newTokenId); totalMinted++; if (mintType == MintType.Owner) { emit OwnerMinted(to, newTokenId); } else if (mintType == MintType.Airdrop) { emit Airdrop(to, newTokenId); } } } //Setter Function // Setter function for baseURI function setBaseURI(string memory newBaseURI) external onlyOwner { revealedBaseURI = newBaseURI; emit BaseURIUpdated(newBaseURI, msg.sender); } // Setter function for the merkle root function setAirdropMerkleRoot(bytes32 newMerkleRoot) external onlyOwner { airdropMerkleRoot = newMerkleRoot; } // Fallback Functions fallback() external payable { emit EtherReceived(msg.sender, msg.value); } receive() external payable { emit EtherReceived(msg.sender, msg.value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/ERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "./IERC721.sol"; import {IERC721Metadata} from "./extensions/IERC721Metadata.sol"; import {ERC721Utils} from "./utils/ERC721Utils.sol"; import {Context} from "../../utils/Context.sol"; import {Strings} from "../../utils/Strings.sol"; import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol"; import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors { using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; mapping(uint256 tokenId => address) private _owners; mapping(address owner => uint256) private _balances; mapping(uint256 tokenId => address) private _tokenApprovals; mapping(address owner => mapping(address operator => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual returns (uint256) { if (owner == address(0)) { revert ERC721InvalidOwner(address(0)); } return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual returns (address) { return _requireOwned(tokenId); } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual returns (string memory) { _requireOwned(tokenId); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual { _approve(to, tokenId, _msgSender()); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual returns (address) { _requireOwned(tokenId); return _getApproved(tokenId); } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom(address from, address to, uint256 tokenId) public virtual { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here. address previousOwner = _update(to, tokenId, _msgSender()); if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual { transferFrom(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist * * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`. */ function _ownerOf(uint256 tokenId) internal view virtual returns (address) { return _owners[tokenId]; } /** * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted. */ function _getApproved(uint256 tokenId) internal view virtual returns (address) { return _tokenApprovals[tokenId]; } /** * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in * particular (ignoring whether it is owned by `owner`). * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) { return spender != address(0) && (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender); } /** * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner. * Reverts if: * - `spender` does not have approval from `owner` for `tokenId`. * - `spender` does not have approval to manage all of `owner`'s assets. * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual { if (!_isAuthorized(owner, spender, tokenId)) { if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } else { revert ERC721InsufficientApproval(spender, tokenId); } } } /** * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override. * * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that * a uint256 would ever overflow from increments when these increments are bounded to uint128 values. * * WARNING: Increasing an account's balance using this function tends to be paired with an override of the * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership * remain consistent with one another. */ function _increaseBalance(address account, uint128 value) internal virtual { unchecked { _balances[account] += value; } } /** * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update. * * The `auth` argument is optional. If the value passed is non 0, then this function will check that * `auth` is either the owner of the token, or approved to operate on the token (by the owner). * * Emits a {Transfer} event. * * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}. */ function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) { address from = _ownerOf(tokenId); // Perform (optional) operator check if (auth != address(0)) { _checkAuthorized(from, auth, tokenId); } // Execute the update if (from != address(0)) { // Clear approval. No need to re-authorize or emit the Approval event _approve(address(0), tokenId, address(0), false); unchecked { _balances[from] -= 1; } } if (to != address(0)) { unchecked { _balances[to] += 1; } } _owners[tokenId] = to; emit Transfer(from, to, tokenId); return from; } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner != address(0)) { revert ERC721InvalidSender(address(0)); } } /** * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual { _mint(to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * This is an internal function that does not check if the sender is authorized to operate on the token. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal { address previousOwner = _update(address(0), tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } else if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients * are aware of the ERC-721 standard to prevent tokens from being forever locked. * * `data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is like {safeTransferFrom} in the sense that it invokes * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `tokenId` token must exist and be owned by `from`. * - `to` cannot be the zero address. * - `from` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId) internal { _safeTransfer(from, to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual { _transfer(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Approve `to` to operate on `tokenId` * * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is * either the owner of the token, or approved to operate on all tokens held by this owner. * * Emits an {Approval} event. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address to, uint256 tokenId, address auth) internal { _approve(to, tokenId, auth, true); } /** * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not * emitted in the context of transfers. */ function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual { // Avoid reading the owner unless necessary if (emitEvent || auth != address(0)) { address owner = _requireOwned(tokenId); // We do not use _isAuthorized because single-token approvals should not be able to call approve if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) { revert ERC721InvalidApprover(auth); } if (emitEvent) { emit Approval(owner, to, tokenId); } } _tokenApprovals[tokenId] = to; } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Requirements: * - operator can't be the address zero. * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll(address owner, address operator, bool approved) internal virtual { if (operator == address(0)) { revert ERC721InvalidOperator(operator); } _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned). * Returns the owner. * * Overrides to ownership logic should be done to {_ownerOf}. */ function _requireOwned(uint256 tokenId) internal view returns (address) { address owner = _ownerOf(tokenId); if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } return owner; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.20; /** * @title ERC-721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC-721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be * reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/utils/ERC721Utils.sol) pragma solidity ^0.8.20; import {IERC721Receiver} from "../IERC721Receiver.sol"; import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol"; /** * @dev Library that provide common ERC-721 utility functions. * * See https://eips.ethereum.org/EIPS/eip-721[ERC-721]. * * _Available since v5.1._ */ library ERC721Utils { /** * @dev Performs an acceptance check for the provided `operator` by calling {IERC721-onERC721Received} * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`). * * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA). * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept * the transfer. */ function checkOnERC721Received( address operator, address from, address to, uint256 tokenId, bytes memory data ) internal { if (to.code.length > 0) { try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) { if (retval != IERC721Receiver.onERC721Received.selector) { // Token rejected revert IERC721Errors.ERC721InvalidReceiver(to); } } catch (bytes memory reason) { if (reason.length == 0) { // non-IERC721Receiver implementer revert IERC721Errors.ERC721InvalidReceiver(to); } else { assembly ("memory-safe") { revert(add(32, reason), mload(reason)) } } } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol) pragma solidity ^0.8.20; /** * @dev Library of standard hash functions. * * _Available since v5.1._ */ library Hashes { /** * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs. * * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. */ function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) { return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a); } /** * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory. */ function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) { assembly ("memory-safe") { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol) // This file was procedurally generated from scripts/generate/templates/MerkleProof.js. pragma solidity ^0.8.20; import {Hashes} from "./Hashes.sol"; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the Merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates Merkle trees that are safe * against this attack out of the box. * * IMPORTANT: Consider memory side-effects when using custom hashing functions * that access memory in an unsafe way. * * NOTE: This library supports proof verification for merkle trees built using * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving * leaf inclusion in trees built using non-commutative hashing functions requires * additional logic that is not supported by this library. */ library MerkleProof { /** *@dev The multiproof provided is not valid. */ error MerkleProofInvalidMultiproof(); /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in memory with the default hashing function. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in memory with the default hashing function. */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in memory with a custom hashing function. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processProof(proof, leaf, hasher) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in memory with a custom hashing function. */ function processProof( bytes32[] memory proof, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = hasher(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in calldata with the default hashing function. */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in calldata with the default hashing function. */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in calldata with a custom hashing function. */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processProofCalldata(proof, leaf, hasher) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in calldata with a custom hashing function. */ function processProofCalldata( bytes32[] calldata proof, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = hasher(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in memory with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProof}. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in memory with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = Hashes.commutativeKeccak256(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in memory with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProof}. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processMultiProof(proof, proofFlags, leaves, hasher) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in memory with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = hasher(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in calldata with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProofCalldata}. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in calldata with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = Hashes.commutativeKeccak256(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in calldata with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProofCalldata}. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in calldata with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = hasher(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } }
{ "evmVersion": "paris", "optimizer": { "enabled": false, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"initialOwner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721IncorrectOwner","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721InsufficientApproval","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC721InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC721InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721InvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC721InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC721InvalidSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721NonexistentToken","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Airdrop","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"newBaseURI","type":"string"},{"indexed":false,"internalType":"address","name":"updatedBy","type":"address"}],"name":"BaseURIUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EtherReceived","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"OwnerMinted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"withdrawnTo","type":"address"}],"name":"Withdrawn","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"MAX_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"toAddresses","type":"address[]"}],"name":"airdrop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"airdropMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"}],"name":"checkIsAirdrop","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"numTokens","type":"uint256"}],"name":"ownerMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"newMerkleRoot","type":"bytes32"}],"name":"setAirdropMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"newBaseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawalAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60806040526000600a5534801561001557600080fd5b50604051613bf4380380613bf48339818101604052810190610037919061027f565b806040518060400160405280600881526020017f50776964656e7a610000000000000000000000000000000000000000000000008152506040518060400160405280600881526020017f50574944454e5a4100000000000000000000000000000000000000000000000081525081600090816100b391906104fc565b5080600190816100c391906104fc565b505050600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036101385760006040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161012f91906105dd565b60405180910390fd5b6101478161015660201b60201c565b506001600781905550506105f8565b6000600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905081600660006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b600080fd5b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b600061024c82610221565b9050919050565b61025c81610241565b811461026757600080fd5b50565b60008151905061027981610253565b92915050565b6000602082840312156102955761029461021c565b5b60006102a38482850161026a565b91505092915050565b600081519050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b6000600282049050600182168061032d57607f821691505b6020821081036103405761033f6102e6565b5b50919050565b60008190508160005260206000209050919050565b60006020601f8301049050919050565b600082821b905092915050565b6000600883026103a87fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8261036b565b6103b2868361036b565b95508019841693508086168417925050509392505050565b6000819050919050565b6000819050919050565b60006103f96103f46103ef846103ca565b6103d4565b6103ca565b9050919050565b6000819050919050565b610413836103de565b61042761041f82610400565b848454610378565b825550505050565b600090565b61043c61042f565b61044781848461040a565b505050565b5b8181101561046b57610460600082610434565b60018101905061044d565b5050565b601f8211156104b05761048181610346565b61048a8461035b565b81016020851015610499578190505b6104ad6104a58561035b565b83018261044c565b50505b505050565b600082821c905092915050565b60006104d3600019846008026104b5565b1980831691505092915050565b60006104ec83836104c2565b9150826002028217905092915050565b610505826102ac565b67ffffffffffffffff81111561051e5761051d6102b7565b5b6105288254610315565b61053382828561046f565b600060209050601f8311600181146105665760008415610554578287015190505b61055e85826104e0565b8655506105c6565b601f19841661057486610346565b60005b8281101561059c57848901518255600182019150602085019450602081019050610577565b868310156105b957848901516105b5601f8916826104c2565b8355505b6001600288020188555050505b505050505050565b6105d781610241565b82525050565b60006020820190506105f260008301846105ce565b92915050565b6135ed806106076000396000f3fe60806040526004361061016a5760003560e01c8063715018a6116100d1578063a5ce30d21161008a578063e985e9c511610064578063e985e9c5146105b4578063f2fde38b146105f1578063f3fef3a31461061a578063fb4bcd4f14610643576101aa565b8063a5ce30d214610523578063b88d4fde1461054e578063c87b56dd14610577576101aa565b8063715018a614610439578063729ad39e146104505780638da5cb5b1461047957806395d89b41146104a4578063a22cb465146104cf578063a2309ff8146104f8576101aa565b806332cb6b0c1161012357806332cb6b0c1461031957806342842e0e14610344578063484b973c1461036d57806355f804b3146103965780636352211e146103bf57806370a08231146103fc576101aa565b806301ffc9a7146101e557806306fdde0314610222578063081812fc1461024d578063095ea7b31461028a5780631c03b431146102b357806323b872dd146102f0576101aa565b366101aa577f1e57e3bb474320be3d2c77138f75b7c3941292d647f5f9634e33a8e94e0e069b33346040516101a092919061220e565b60405180910390a1005b7f1e57e3bb474320be3d2c77138f75b7c3941292d647f5f9634e33a8e94e0e069b33346040516101db92919061220e565b60405180910390a1005b3480156101f157600080fd5b5061020c600480360381019061020791906122a3565b61066c565b60405161021991906122eb565b60405180910390f35b34801561022e57600080fd5b5061023761074e565b6040516102449190612396565b60405180910390f35b34801561025957600080fd5b50610274600480360381019061026f91906123e4565b6107e0565b6040516102819190612411565b60405180910390f35b34801561029657600080fd5b506102b160048036038101906102ac9190612458565b6107fc565b005b3480156102bf57600080fd5b506102da60048036038101906102d591906124fd565b610812565b6040516102e791906122eb565b60405180910390f35b3480156102fc57600080fd5b506103176004803603810190610312919061254a565b610895565b005b34801561032557600080fd5b5061032e610997565b60405161033b919061259d565b60405180910390f35b34801561035057600080fd5b5061036b6004803603810190610366919061254a565b61099d565b005b34801561037957600080fd5b50610394600480360381019061038f9190612458565b6109bd565b005b3480156103a257600080fd5b506103bd60048036038101906103b891906126e8565b610aae565b005b3480156103cb57600080fd5b506103e660048036038101906103e191906123e4565b610b02565b6040516103f39190612411565b60405180910390f35b34801561040857600080fd5b50610423600480360381019061041e9190612731565b610b14565b604051610430919061259d565b60405180910390f35b34801561044557600080fd5b5061044e610bce565b005b34801561045c57600080fd5b50610477600480360381019061047291906127b4565b610be2565b005b34801561048557600080fd5b5061048e610c98565b60405161049b9190612411565b60405180910390f35b3480156104b057600080fd5b506104b9610cc2565b6040516104c69190612396565b60405180910390f35b3480156104db57600080fd5b506104f660048036038101906104f1919061282d565b610d54565b005b34801561050457600080fd5b5061050d610d6a565b60405161051a919061259d565b60405180910390f35b34801561052f57600080fd5b50610538610d70565b6040516105459190612886565b60405180910390f35b34801561055a57600080fd5b5061057560048036038101906105709190612942565b610d76565b005b34801561058357600080fd5b5061059e600480360381019061059991906123e4565b610d9b565b6040516105ab9190612396565b60405180910390f35b3480156105c057600080fd5b506105db60048036038101906105d691906129c5565b610dd9565b6040516105e891906122eb565b60405180910390f35b3480156105fd57600080fd5b5061061860048036038101906106139190612731565b610e6d565b005b34801561062657600080fd5b50610641600480360381019061063c9190612a43565b610ef3565b005b34801561064f57600080fd5b5061066a60048036038101906106659190612aaf565b6110ea565b005b60007f80ac58cd000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916148061073757507f5b5e139f000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916145b806107475750610746826110fc565b5b9050919050565b60606000805461075d90612b0b565b80601f016020809104026020016040519081016040528092919081815260200182805461078990612b0b565b80156107d65780601f106107ab576101008083540402835291602001916107d6565b820191906000526020600020905b8154815290600101906020018083116107b957829003601f168201915b5050505050905090565b60006107eb82611166565b506107f5826111ee565b9050919050565b61080e828261080961122b565b611233565b5050565b600080336040516020016108269190612b84565b60405160208183030381529060405280519060200120905061088c848480806020026020016040519081016040528093929190818152602001838360200280828437600081840152601f19601f8201169050808301925050505050505060085483611245565b91505092915050565b600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036109075760006040517f64a0ae920000000000000000000000000000000000000000000000000000000081526004016108fe9190612411565b60405180910390fd5b600061091b838361091661122b565b61125c565b90508373ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610991578382826040517f64283d7b00000000000000000000000000000000000000000000000000000000815260040161098893929190612b9f565b60405180910390fd5b50505050565b6101f481565b6109b883838360405180602001604052806000815250610d76565b505050565b6109c5611476565b6101f481600a546109d69190612c05565b1115610a17576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a0e90612c85565b60405180910390fd5b60008111610a5a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a5190612cf1565b60405180910390fd5b6014811115610a9e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a9590612d83565b60405180910390fd5b610aaa828260006114fd565b5050565b610ab6611476565b8060099081610ac59190612f4f565b507f287fb35d24416ff0dd04e0934f29883f30a8ed9a5a8aef3bf65d165b01aa0e428133604051610af7929190613021565b60405180910390a150565b6000610b0d82611166565b9050919050565b60008073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610b875760006040517f89c62b64000000000000000000000000000000000000000000000000000000008152600401610b7e9190612411565b60405180910390fd5b600360008373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020549050919050565b610bd6611476565b610be0600061164b565b565b610bea611476565b6101f482829050600a54610bfe9190612c05565b1115610c3f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c3690612c85565b60405180910390fd5b60005b82829050811015610c93576000838383818110610c6257610c61613051565b5b9050602002016020810190610c779190612731565b9050610c85816001806114fd565b508080600101915050610c42565b505050565b6000600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b606060018054610cd190612b0b565b80601f0160208091040260200160405190810160405280929190818152602001828054610cfd90612b0b565b8015610d4a5780601f10610d1f57610100808354040283529160200191610d4a565b820191906000526020600020905b815481529060010190602001808311610d2d57829003601f168201915b5050505050905090565b610d66610d5f61122b565b8383611711565b5050565b600a5481565b60085481565b610d81848484610895565b610d95610d8c61122b565b85858585611880565b50505050565b6060610da682611166565b506009610db283611a31565b604051602001610dc392919061318b565b6040516020818303038152906040529050919050565b6000600560008473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060008373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff16905092915050565b610e75611476565b600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610ee75760006040517f1e4fbdf7000000000000000000000000000000000000000000000000000000008152600401610ede9190612411565b60405180910390fd5b610ef08161164b565b50565b610efb611476565b610f03611aff565b600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f72576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f6990613206565b60405180910390fd5b60008111610fb5576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fac90613272565b60405180910390fd5b80471015610ff8576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fef906132de565b60405180910390fd5b60008273ffffffffffffffffffffffffffffffffffffffff168260405161101e9061332f565b60006040518083038185875af1925050503d806000811461105b576040519150601f19603f3d011682016040523d82523d6000602084013e611060565b606091505b50509050806110a4576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161109b90613390565b60405180910390fd5b7f8c7cdad0d12a8db3e23561b42da6f10c8137914c97beff202213a410e1f520a382846040516110d5929190613405565b60405180910390a1506110e6611b45565b5050565b6110f2611476565b8060088190555050565b60007f01ffc9a7000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916149050919050565b60008061117283611b4f565b9050600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036111e557826040517f7e2732890000000000000000000000000000000000000000000000000000000081526004016111dc919061259d565b60405180910390fd5b80915050919050565b60006004600083815260200190815260200160002060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050919050565b600033905090565b6112408383836001611b8c565b505050565b6000826112528584611d51565b1490509392505050565b60008061126884611b4f565b9050600073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16146112aa576112a9818486611da1565b5b600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff161461133b576112ec600085600080611b8c565b6001600360008373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020600082825403925050819055505b600073ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff16146113be576001600360008773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020600082825401925050819055505b846002600086815260200190815260200160002060006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550838573ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60405160405180910390a4809150509392505050565b61147e61122b565b73ffffffffffffffffffffffffffffffffffffffff1661149c610c98565b73ffffffffffffffffffffffffffffffffffffffff16146114fb576114bf61122b565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016114f29190612411565b60405180910390fd5b565b60005b828110156116455760006001600a546115199190612c05565b90506115258582611e65565b600a60008154809291906115389061342e565b91905055506000600181111561155157611550613476565b5b83600181111561156457611563613476565b5b036115bc578473ffffffffffffffffffffffffffffffffffffffff167fb50eb0c1f59aa2c3398e720d868b9224179e36125bff674d6df4bae98b2591a5826040516115af919061259d565b60405180910390a2611637565b6001808111156115cf576115ce613476565b5b8360018111156115e2576115e1613476565b5b03611636578473ffffffffffffffffffffffffffffffffffffffff167f8c32c568416fcf97be35ce5b27844cfddcd63a67a1a602c3595ba5dac38f303a8260405161162d919061259d565b60405180910390a25b5b508080600101915050611500565b50505050565b6000600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905081600660006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361178257816040517f5b08ba180000000000000000000000000000000000000000000000000000000081526004016117799190612411565b60405180910390fd5b80600560008573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060008473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c318360405161187391906122eb565b60405180910390a3505050565b60008373ffffffffffffffffffffffffffffffffffffffff163b1115611a2a578273ffffffffffffffffffffffffffffffffffffffff1663150b7a02868685856040518563ffffffff1660e01b81526004016118df94939291906134fa565b6020604051808303816000875af192505050801561191b57506040513d601f19601f82011682018060405250810190611918919061355b565b60015b61199f573d806000811461194b576040519150601f19603f3d011682016040523d82523d6000602084013e611950565b606091505b50600081510361199757836040517f64a0ae9200000000000000000000000000000000000000000000000000000000815260040161198e9190612411565b60405180910390fd5b805181602001fd5b63150b7a0260e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916817bffffffffffffffffffffffffffffffffffffffffffffffffffffffff191614611a2857836040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600401611a1f9190612411565b60405180910390fd5b505b5050505050565b606060006001611a4084611f5e565b01905060008167ffffffffffffffff811115611a5f57611a5e6125bd565b5b6040519080825280601f01601f191660200182016040528015611a915781602001600182028036833780820191505090505b509050600082602001820190505b600115611af4578080600190039150507f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8581611ae857611ae7613588565b5b04945060008503611a9f575b819350505050919050565b600260075403611b3b576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600781905550565b6001600781905550565b60006002600083815260200190815260200160002060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050919050565b8080611bc55750600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b15611cf9576000611bd584611166565b9050600073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1614158015611c4057508273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614155b8015611c535750611c518184610dd9565b155b15611c9557826040517fa9fbf51f000000000000000000000000000000000000000000000000000000008152600401611c8c9190612411565b60405180910390fd5b8115611cf757838573ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b836004600085815260200190815260200160002060006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050505050565b60008082905060005b8451811015611d9657611d8782868381518110611d7a57611d79613051565b5b60200260200101516120b1565b91508080600101915050611d5a565b508091505092915050565b611dac8383836120dc565b611e6057600073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611e2157806040517f7e273289000000000000000000000000000000000000000000000000000000008152600401611e18919061259d565b60405180910390fd5b81816040517f177e802f000000000000000000000000000000000000000000000000000000008152600401611e5792919061220e565b60405180910390fd5b505050565b600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611ed75760006040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600401611ece9190612411565b60405180910390fd5b6000611ee58383600061125c565b9050600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614611f595760006040517f73c6ac6e000000000000000000000000000000000000000000000000000000008152600401611f509190612411565b60405180910390fd5b505050565b600080600090507a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310611fbc577a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008381611fb257611fb1613588565b5b0492506040810190505b6d04ee2d6d415b85acef81000000008310611ff9576d04ee2d6d415b85acef81000000008381611fef57611fee613588565b5b0492506020810190505b662386f26fc10000831061202857662386f26fc10000838161201e5761201d613588565b5b0492506010810190505b6305f5e1008310612051576305f5e100838161204757612046613588565b5b0492506008810190505b612710831061207657612710838161206c5761206b613588565b5b0492506004810190505b60648310612099576064838161208f5761208e613588565b5b0492506002810190505b600a83106120a8576001810190505b80915050919050565b60008183106120c9576120c4828461219d565b6120d4565b6120d3838361219d565b5b905092915050565b60008073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff161415801561219457508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16148061215557506121548484610dd9565b5b8061219357508273ffffffffffffffffffffffffffffffffffffffff1661217b836111ee565b73ffffffffffffffffffffffffffffffffffffffff16145b5b90509392505050565b600082600052816020526040600020905092915050565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b60006121df826121b4565b9050919050565b6121ef816121d4565b82525050565b6000819050919050565b612208816121f5565b82525050565b600060408201905061222360008301856121e6565b61223060208301846121ff565b9392505050565b6000604051905090565b600080fd5b600080fd5b60007fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b6122808161224b565b811461228b57600080fd5b50565b60008135905061229d81612277565b92915050565b6000602082840312156122b9576122b8612241565b5b60006122c78482850161228e565b91505092915050565b60008115159050919050565b6122e5816122d0565b82525050565b600060208201905061230060008301846122dc565b92915050565b600081519050919050565b600082825260208201905092915050565b60005b83811015612340578082015181840152602081019050612325565b60008484015250505050565b6000601f19601f8301169050919050565b600061236882612306565b6123728185612311565b9350612382818560208601612322565b61238b8161234c565b840191505092915050565b600060208201905081810360008301526123b0818461235d565b905092915050565b6123c1816121f5565b81146123cc57600080fd5b50565b6000813590506123de816123b8565b92915050565b6000602082840312156123fa576123f9612241565b5b6000612408848285016123cf565b91505092915050565b600060208201905061242660008301846121e6565b92915050565b612435816121d4565b811461244057600080fd5b50565b6000813590506124528161242c565b92915050565b6000806040838503121561246f5761246e612241565b5b600061247d85828601612443565b925050602061248e858286016123cf565b9150509250929050565b600080fd5b600080fd5b600080fd5b60008083601f8401126124bd576124bc612498565b5b8235905067ffffffffffffffff8111156124da576124d961249d565b5b6020830191508360208202830111156124f6576124f56124a2565b5b9250929050565b6000806020838503121561251457612513612241565b5b600083013567ffffffffffffffff81111561253257612531612246565b5b61253e858286016124a7565b92509250509250929050565b60008060006060848603121561256357612562612241565b5b600061257186828701612443565b935050602061258286828701612443565b9250506040612593868287016123cf565b9150509250925092565b60006020820190506125b260008301846121ff565b92915050565b600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6125f58261234c565b810181811067ffffffffffffffff82111715612614576126136125bd565b5b80604052505050565b6000612627612237565b905061263382826125ec565b919050565b600067ffffffffffffffff821115612653576126526125bd565b5b61265c8261234c565b9050602081019050919050565b82818337600083830152505050565b600061268b61268684612638565b61261d565b9050828152602081018484840111156126a7576126a66125b8565b5b6126b2848285612669565b509392505050565b600082601f8301126126cf576126ce612498565b5b81356126df848260208601612678565b91505092915050565b6000602082840312156126fe576126fd612241565b5b600082013567ffffffffffffffff81111561271c5761271b612246565b5b612728848285016126ba565b91505092915050565b60006020828403121561274757612746612241565b5b600061275584828501612443565b91505092915050565b60008083601f84011261277457612773612498565b5b8235905067ffffffffffffffff8111156127915761279061249d565b5b6020830191508360208202830111156127ad576127ac6124a2565b5b9250929050565b600080602083850312156127cb576127ca612241565b5b600083013567ffffffffffffffff8111156127e9576127e8612246565b5b6127f58582860161275e565b92509250509250929050565b61280a816122d0565b811461281557600080fd5b50565b60008135905061282781612801565b92915050565b6000806040838503121561284457612843612241565b5b600061285285828601612443565b925050602061286385828601612818565b9150509250929050565b6000819050919050565b6128808161286d565b82525050565b600060208201905061289b6000830184612877565b92915050565b600067ffffffffffffffff8211156128bc576128bb6125bd565b5b6128c58261234c565b9050602081019050919050565b60006128e56128e0846128a1565b61261d565b905082815260208101848484011115612901576129006125b8565b5b61290c848285612669565b509392505050565b600082601f83011261292957612928612498565b5b81356129398482602086016128d2565b91505092915050565b6000806000806080858703121561295c5761295b612241565b5b600061296a87828801612443565b945050602061297b87828801612443565b935050604061298c878288016123cf565b925050606085013567ffffffffffffffff8111156129ad576129ac612246565b5b6129b987828801612914565b91505092959194509250565b600080604083850312156129dc576129db612241565b5b60006129ea85828601612443565b92505060206129fb85828601612443565b9150509250929050565b6000612a10826121b4565b9050919050565b612a2081612a05565b8114612a2b57600080fd5b50565b600081359050612a3d81612a17565b92915050565b60008060408385031215612a5a57612a59612241565b5b6000612a6885828601612a2e565b9250506020612a79858286016123cf565b9150509250929050565b612a8c8161286d565b8114612a9757600080fd5b50565b600081359050612aa981612a83565b92915050565b600060208284031215612ac557612ac4612241565b5b6000612ad384828501612a9a565b91505092915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b60006002820490506001821680612b2357607f821691505b602082108103612b3657612b35612adc565b5b50919050565b60008160601b9050919050565b6000612b5482612b3c565b9050919050565b6000612b6682612b49565b9050919050565b612b7e612b79826121d4565b612b5b565b82525050565b6000612b908284612b6d565b60148201915081905092915050565b6000606082019050612bb460008301866121e6565b612bc160208301856121ff565b612bce60408301846121e6565b949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000612c10826121f5565b9150612c1b836121f5565b9250828201905080821115612c3357612c32612bd6565b5b92915050565b7f4d696e74696e6720776f756c6420657863656564206d617820737570706c7900600082015250565b6000612c6f601f83612311565b9150612c7a82612c39565b602082019050919050565b60006020820190508181036000830152612c9e81612c62565b9050919050565b7f4d757374206d696e74206174206c65617374206f6e6520746f6b656e00000000600082015250565b6000612cdb601c83612311565b9150612ce682612ca5565b602082019050919050565b60006020820190508181036000830152612d0a81612cce565b9050919050565b7f4f776e65722063616e206f6e6c79206d696e7420757020746f20323020746f6b60008201527f656e7320617420612074696d6500000000000000000000000000000000000000602082015250565b6000612d6d602d83612311565b9150612d7882612d11565b604082019050919050565b60006020820190508181036000830152612d9c81612d60565b9050919050565b60008190508160005260206000209050919050565b60006020601f8301049050919050565b600082821b905092915050565b600060088302612e057fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82612dc8565b612e0f8683612dc8565b95508019841693508086168417925050509392505050565b6000819050919050565b6000612e4c612e47612e42846121f5565b612e27565b6121f5565b9050919050565b6000819050919050565b612e6683612e31565b612e7a612e7282612e53565b848454612dd5565b825550505050565b600090565b612e8f612e82565b612e9a818484612e5d565b505050565b5b81811015612ebe57612eb3600082612e87565b600181019050612ea0565b5050565b601f821115612f0357612ed481612da3565b612edd84612db8565b81016020851015612eec578190505b612f00612ef885612db8565b830182612e9f565b50505b505050565b600082821c905092915050565b6000612f2660001984600802612f08565b1980831691505092915050565b6000612f3f8383612f15565b9150826002028217905092915050565b612f5882612306565b67ffffffffffffffff811115612f7157612f706125bd565b5b612f7b8254612b0b565b612f86828285612ec2565b600060209050601f831160018114612fb95760008415612fa7578287015190505b612fb18582612f33565b865550613019565b601f198416612fc786612da3565b60005b82811015612fef57848901518255600182019150602085019450602081019050612fca565b8683101561300c5784890151613008601f891682612f15565b8355505b6001600288020188555050505b505050505050565b6000604082019050818103600083015261303b818561235d565b905061304a60208301846121e6565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b600081905092915050565b6000815461309881612b0b565b6130a28186613080565b945060018216600081146130bd57600181146130d257613105565b60ff1983168652811515820286019350613105565b6130db85612da3565b60005b838110156130fd578154818901526001820191506020810190506130de565b838801955050505b50505092915050565b600061311982612306565b6131238185613080565b9350613133818560208601612322565b80840191505092915050565b7f2e6a736f6e000000000000000000000000000000000000000000000000000000600082015250565b6000613175600583613080565b91506131808261313f565b600582019050919050565b6000613197828561308b565b91506131a3828461310e565b91506131ae82613168565b91508190509392505050565b7f496e76616c6964207769746864726177616c2061646472657373000000000000600082015250565b60006131f0601a83612311565b91506131fb826131ba565b602082019050919050565b6000602082019050818103600083015261321f816131e3565b9050919050565b7f416d6f756e74206d7573742062652067726561746572207468616e2030000000600082015250565b600061325c601d83612311565b915061326782613226565b602082019050919050565b6000602082019050818103600083015261328b8161324f565b9050919050565b7f496e73756666696369656e7420636f6e74726163742062616c616e6365000000600082015250565b60006132c8601d83612311565b91506132d382613292565b602082019050919050565b600060208201905081810360008301526132f7816132bb565b9050919050565b600081905092915050565b50565b60006133196000836132fe565b915061332482613309565b600082019050919050565b600061333a8261330c565b9150819050919050565b7f4661696c656420746f2073656e64204574686572000000000000000000000000600082015250565b600061337a601483612311565b915061338582613344565b602082019050919050565b600060208201905081810360008301526133a98161336d565b9050919050565b60006133cb6133c66133c1846121b4565b612e27565b6121b4565b9050919050565b60006133dd826133b0565b9050919050565b60006133ef826133d2565b9050919050565b6133ff816133e4565b82525050565b600060408201905061341a60008301856121ff565b61342760208301846133f6565b9392505050565b6000613439826121f5565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff820361346b5761346a612bd6565b5b600182019050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600081519050919050565b600082825260208201905092915050565b60006134cc826134a5565b6134d681856134b0565b93506134e6818560208601612322565b6134ef8161234c565b840191505092915050565b600060808201905061350f60008301876121e6565b61351c60208301866121e6565b61352960408301856121ff565b818103606083015261353b81846134c1565b905095945050505050565b60008151905061355581612277565b92915050565b60006020828403121561357157613570612241565b5b600061357f84828501613546565b91505092915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fdfea26469706673582212200c89d74ba3bcd7863dfc6661dab433969776b7b5c437b7446d441b8f08fe34e964736f6c634300081a00330000000000000000000000007ce4fa787582c9e5c9fee9f1b6803fd794359a69
Deployed Bytecode
0x60806040526004361061016a5760003560e01c8063715018a6116100d1578063a5ce30d21161008a578063e985e9c511610064578063e985e9c5146105b4578063f2fde38b146105f1578063f3fef3a31461061a578063fb4bcd4f14610643576101aa565b8063a5ce30d214610523578063b88d4fde1461054e578063c87b56dd14610577576101aa565b8063715018a614610439578063729ad39e146104505780638da5cb5b1461047957806395d89b41146104a4578063a22cb465146104cf578063a2309ff8146104f8576101aa565b806332cb6b0c1161012357806332cb6b0c1461031957806342842e0e14610344578063484b973c1461036d57806355f804b3146103965780636352211e146103bf57806370a08231146103fc576101aa565b806301ffc9a7146101e557806306fdde0314610222578063081812fc1461024d578063095ea7b31461028a5780631c03b431146102b357806323b872dd146102f0576101aa565b366101aa577f1e57e3bb474320be3d2c77138f75b7c3941292d647f5f9634e33a8e94e0e069b33346040516101a092919061220e565b60405180910390a1005b7f1e57e3bb474320be3d2c77138f75b7c3941292d647f5f9634e33a8e94e0e069b33346040516101db92919061220e565b60405180910390a1005b3480156101f157600080fd5b5061020c600480360381019061020791906122a3565b61066c565b60405161021991906122eb565b60405180910390f35b34801561022e57600080fd5b5061023761074e565b6040516102449190612396565b60405180910390f35b34801561025957600080fd5b50610274600480360381019061026f91906123e4565b6107e0565b6040516102819190612411565b60405180910390f35b34801561029657600080fd5b506102b160048036038101906102ac9190612458565b6107fc565b005b3480156102bf57600080fd5b506102da60048036038101906102d591906124fd565b610812565b6040516102e791906122eb565b60405180910390f35b3480156102fc57600080fd5b506103176004803603810190610312919061254a565b610895565b005b34801561032557600080fd5b5061032e610997565b60405161033b919061259d565b60405180910390f35b34801561035057600080fd5b5061036b6004803603810190610366919061254a565b61099d565b005b34801561037957600080fd5b50610394600480360381019061038f9190612458565b6109bd565b005b3480156103a257600080fd5b506103bd60048036038101906103b891906126e8565b610aae565b005b3480156103cb57600080fd5b506103e660048036038101906103e191906123e4565b610b02565b6040516103f39190612411565b60405180910390f35b34801561040857600080fd5b50610423600480360381019061041e9190612731565b610b14565b604051610430919061259d565b60405180910390f35b34801561044557600080fd5b5061044e610bce565b005b34801561045c57600080fd5b50610477600480360381019061047291906127b4565b610be2565b005b34801561048557600080fd5b5061048e610c98565b60405161049b9190612411565b60405180910390f35b3480156104b057600080fd5b506104b9610cc2565b6040516104c69190612396565b60405180910390f35b3480156104db57600080fd5b506104f660048036038101906104f1919061282d565b610d54565b005b34801561050457600080fd5b5061050d610d6a565b60405161051a919061259d565b60405180910390f35b34801561052f57600080fd5b50610538610d70565b6040516105459190612886565b60405180910390f35b34801561055a57600080fd5b5061057560048036038101906105709190612942565b610d76565b005b34801561058357600080fd5b5061059e600480360381019061059991906123e4565b610d9b565b6040516105ab9190612396565b60405180910390f35b3480156105c057600080fd5b506105db60048036038101906105d691906129c5565b610dd9565b6040516105e891906122eb565b60405180910390f35b3480156105fd57600080fd5b5061061860048036038101906106139190612731565b610e6d565b005b34801561062657600080fd5b50610641600480360381019061063c9190612a43565b610ef3565b005b34801561064f57600080fd5b5061066a60048036038101906106659190612aaf565b6110ea565b005b60007f80ac58cd000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916148061073757507f5b5e139f000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916145b806107475750610746826110fc565b5b9050919050565b60606000805461075d90612b0b565b80601f016020809104026020016040519081016040528092919081815260200182805461078990612b0b565b80156107d65780601f106107ab576101008083540402835291602001916107d6565b820191906000526020600020905b8154815290600101906020018083116107b957829003601f168201915b5050505050905090565b60006107eb82611166565b506107f5826111ee565b9050919050565b61080e828261080961122b565b611233565b5050565b600080336040516020016108269190612b84565b60405160208183030381529060405280519060200120905061088c848480806020026020016040519081016040528093929190818152602001838360200280828437600081840152601f19601f8201169050808301925050505050505060085483611245565b91505092915050565b600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036109075760006040517f64a0ae920000000000000000000000000000000000000000000000000000000081526004016108fe9190612411565b60405180910390fd5b600061091b838361091661122b565b61125c565b90508373ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614610991578382826040517f64283d7b00000000000000000000000000000000000000000000000000000000815260040161098893929190612b9f565b60405180910390fd5b50505050565b6101f481565b6109b883838360405180602001604052806000815250610d76565b505050565b6109c5611476565b6101f481600a546109d69190612c05565b1115610a17576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a0e90612c85565b60405180910390fd5b60008111610a5a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a5190612cf1565b60405180910390fd5b6014811115610a9e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a9590612d83565b60405180910390fd5b610aaa828260006114fd565b5050565b610ab6611476565b8060099081610ac59190612f4f565b507f287fb35d24416ff0dd04e0934f29883f30a8ed9a5a8aef3bf65d165b01aa0e428133604051610af7929190613021565b60405180910390a150565b6000610b0d82611166565b9050919050565b60008073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610b875760006040517f89c62b64000000000000000000000000000000000000000000000000000000008152600401610b7e9190612411565b60405180910390fd5b600360008373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020549050919050565b610bd6611476565b610be0600061164b565b565b610bea611476565b6101f482829050600a54610bfe9190612c05565b1115610c3f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c3690612c85565b60405180910390fd5b60005b82829050811015610c93576000838383818110610c6257610c61613051565b5b9050602002016020810190610c779190612731565b9050610c85816001806114fd565b508080600101915050610c42565b505050565b6000600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b606060018054610cd190612b0b565b80601f0160208091040260200160405190810160405280929190818152602001828054610cfd90612b0b565b8015610d4a5780601f10610d1f57610100808354040283529160200191610d4a565b820191906000526020600020905b815481529060010190602001808311610d2d57829003601f168201915b5050505050905090565b610d66610d5f61122b565b8383611711565b5050565b600a5481565b60085481565b610d81848484610895565b610d95610d8c61122b565b85858585611880565b50505050565b6060610da682611166565b506009610db283611a31565b604051602001610dc392919061318b565b6040516020818303038152906040529050919050565b6000600560008473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060008373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff16905092915050565b610e75611476565b600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610ee75760006040517f1e4fbdf7000000000000000000000000000000000000000000000000000000008152600401610ede9190612411565b60405180910390fd5b610ef08161164b565b50565b610efb611476565b610f03611aff565b600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f72576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f6990613206565b60405180910390fd5b60008111610fb5576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fac90613272565b60405180910390fd5b80471015610ff8576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fef906132de565b60405180910390fd5b60008273ffffffffffffffffffffffffffffffffffffffff168260405161101e9061332f565b60006040518083038185875af1925050503d806000811461105b576040519150601f19603f3d011682016040523d82523d6000602084013e611060565b606091505b50509050806110a4576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161109b90613390565b60405180910390fd5b7f8c7cdad0d12a8db3e23561b42da6f10c8137914c97beff202213a410e1f520a382846040516110d5929190613405565b60405180910390a1506110e6611b45565b5050565b6110f2611476565b8060088190555050565b60007f01ffc9a7000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916827bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916149050919050565b60008061117283611b4f565b9050600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036111e557826040517f7e2732890000000000000000000000000000000000000000000000000000000081526004016111dc919061259d565b60405180910390fd5b80915050919050565b60006004600083815260200190815260200160002060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050919050565b600033905090565b6112408383836001611b8c565b505050565b6000826112528584611d51565b1490509392505050565b60008061126884611b4f565b9050600073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16146112aa576112a9818486611da1565b5b600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff161461133b576112ec600085600080611b8c565b6001600360008373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020600082825403925050819055505b600073ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff16146113be576001600360008773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001908152602001600020600082825401925050819055505b846002600086815260200190815260200160002060006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550838573ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60405160405180910390a4809150509392505050565b61147e61122b565b73ffffffffffffffffffffffffffffffffffffffff1661149c610c98565b73ffffffffffffffffffffffffffffffffffffffff16146114fb576114bf61122b565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016114f29190612411565b60405180910390fd5b565b60005b828110156116455760006001600a546115199190612c05565b90506115258582611e65565b600a60008154809291906115389061342e565b91905055506000600181111561155157611550613476565b5b83600181111561156457611563613476565b5b036115bc578473ffffffffffffffffffffffffffffffffffffffff167fb50eb0c1f59aa2c3398e720d868b9224179e36125bff674d6df4bae98b2591a5826040516115af919061259d565b60405180910390a2611637565b6001808111156115cf576115ce613476565b5b8360018111156115e2576115e1613476565b5b03611636578473ffffffffffffffffffffffffffffffffffffffff167f8c32c568416fcf97be35ce5b27844cfddcd63a67a1a602c3595ba5dac38f303a8260405161162d919061259d565b60405180910390a25b5b508080600101915050611500565b50505050565b6000600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905081600660006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361178257816040517f5b08ba180000000000000000000000000000000000000000000000000000000081526004016117799190612411565b60405180910390fd5b80600560008573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060008473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c318360405161187391906122eb565b60405180910390a3505050565b60008373ffffffffffffffffffffffffffffffffffffffff163b1115611a2a578273ffffffffffffffffffffffffffffffffffffffff1663150b7a02868685856040518563ffffffff1660e01b81526004016118df94939291906134fa565b6020604051808303816000875af192505050801561191b57506040513d601f19601f82011682018060405250810190611918919061355b565b60015b61199f573d806000811461194b576040519150601f19603f3d011682016040523d82523d6000602084013e611950565b606091505b50600081510361199757836040517f64a0ae9200000000000000000000000000000000000000000000000000000000815260040161198e9190612411565b60405180910390fd5b805181602001fd5b63150b7a0260e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916817bffffffffffffffffffffffffffffffffffffffffffffffffffffffff191614611a2857836040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600401611a1f9190612411565b60405180910390fd5b505b5050505050565b606060006001611a4084611f5e565b01905060008167ffffffffffffffff811115611a5f57611a5e6125bd565b5b6040519080825280601f01601f191660200182016040528015611a915781602001600182028036833780820191505090505b509050600082602001820190505b600115611af4578080600190039150507f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8581611ae857611ae7613588565b5b04945060008503611a9f575b819350505050919050565b600260075403611b3b576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600781905550565b6001600781905550565b60006002600083815260200190815260200160002060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050919050565b8080611bc55750600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b15611cf9576000611bd584611166565b9050600073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1614158015611c4057508273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614155b8015611c535750611c518184610dd9565b155b15611c9557826040517fa9fbf51f000000000000000000000000000000000000000000000000000000008152600401611c8c9190612411565b60405180910390fd5b8115611cf757838573ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b836004600085815260200190815260200160002060006101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050505050565b60008082905060005b8451811015611d9657611d8782868381518110611d7a57611d79613051565b5b60200260200101516120b1565b91508080600101915050611d5a565b508091505092915050565b611dac8383836120dc565b611e6057600073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611e2157806040517f7e273289000000000000000000000000000000000000000000000000000000008152600401611e18919061259d565b60405180910390fd5b81816040517f177e802f000000000000000000000000000000000000000000000000000000008152600401611e5792919061220e565b60405180910390fd5b505050565b600073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611ed75760006040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600401611ece9190612411565b60405180910390fd5b6000611ee58383600061125c565b9050600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1614611f595760006040517f73c6ac6e000000000000000000000000000000000000000000000000000000008152600401611f509190612411565b60405180910390fd5b505050565b600080600090507a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310611fbc577a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008381611fb257611fb1613588565b5b0492506040810190505b6d04ee2d6d415b85acef81000000008310611ff9576d04ee2d6d415b85acef81000000008381611fef57611fee613588565b5b0492506020810190505b662386f26fc10000831061202857662386f26fc10000838161201e5761201d613588565b5b0492506010810190505b6305f5e1008310612051576305f5e100838161204757612046613588565b5b0492506008810190505b612710831061207657612710838161206c5761206b613588565b5b0492506004810190505b60648310612099576064838161208f5761208e613588565b5b0492506002810190505b600a83106120a8576001810190505b80915050919050565b60008183106120c9576120c4828461219d565b6120d4565b6120d3838361219d565b5b905092915050565b60008073ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff161415801561219457508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16148061215557506121548484610dd9565b5b8061219357508273ffffffffffffffffffffffffffffffffffffffff1661217b836111ee565b73ffffffffffffffffffffffffffffffffffffffff16145b5b90509392505050565b600082600052816020526040600020905092915050565b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b60006121df826121b4565b9050919050565b6121ef816121d4565b82525050565b6000819050919050565b612208816121f5565b82525050565b600060408201905061222360008301856121e6565b61223060208301846121ff565b9392505050565b6000604051905090565b600080fd5b600080fd5b60007fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b6122808161224b565b811461228b57600080fd5b50565b60008135905061229d81612277565b92915050565b6000602082840312156122b9576122b8612241565b5b60006122c78482850161228e565b91505092915050565b60008115159050919050565b6122e5816122d0565b82525050565b600060208201905061230060008301846122dc565b92915050565b600081519050919050565b600082825260208201905092915050565b60005b83811015612340578082015181840152602081019050612325565b60008484015250505050565b6000601f19601f8301169050919050565b600061236882612306565b6123728185612311565b9350612382818560208601612322565b61238b8161234c565b840191505092915050565b600060208201905081810360008301526123b0818461235d565b905092915050565b6123c1816121f5565b81146123cc57600080fd5b50565b6000813590506123de816123b8565b92915050565b6000602082840312156123fa576123f9612241565b5b6000612408848285016123cf565b91505092915050565b600060208201905061242660008301846121e6565b92915050565b612435816121d4565b811461244057600080fd5b50565b6000813590506124528161242c565b92915050565b6000806040838503121561246f5761246e612241565b5b600061247d85828601612443565b925050602061248e858286016123cf565b9150509250929050565b600080fd5b600080fd5b600080fd5b60008083601f8401126124bd576124bc612498565b5b8235905067ffffffffffffffff8111156124da576124d961249d565b5b6020830191508360208202830111156124f6576124f56124a2565b5b9250929050565b6000806020838503121561251457612513612241565b5b600083013567ffffffffffffffff81111561253257612531612246565b5b61253e858286016124a7565b92509250509250929050565b60008060006060848603121561256357612562612241565b5b600061257186828701612443565b935050602061258286828701612443565b9250506040612593868287016123cf565b9150509250925092565b60006020820190506125b260008301846121ff565b92915050565b600080fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6125f58261234c565b810181811067ffffffffffffffff82111715612614576126136125bd565b5b80604052505050565b6000612627612237565b905061263382826125ec565b919050565b600067ffffffffffffffff821115612653576126526125bd565b5b61265c8261234c565b9050602081019050919050565b82818337600083830152505050565b600061268b61268684612638565b61261d565b9050828152602081018484840111156126a7576126a66125b8565b5b6126b2848285612669565b509392505050565b600082601f8301126126cf576126ce612498565b5b81356126df848260208601612678565b91505092915050565b6000602082840312156126fe576126fd612241565b5b600082013567ffffffffffffffff81111561271c5761271b612246565b5b612728848285016126ba565b91505092915050565b60006020828403121561274757612746612241565b5b600061275584828501612443565b91505092915050565b60008083601f84011261277457612773612498565b5b8235905067ffffffffffffffff8111156127915761279061249d565b5b6020830191508360208202830111156127ad576127ac6124a2565b5b9250929050565b600080602083850312156127cb576127ca612241565b5b600083013567ffffffffffffffff8111156127e9576127e8612246565b5b6127f58582860161275e565b92509250509250929050565b61280a816122d0565b811461281557600080fd5b50565b60008135905061282781612801565b92915050565b6000806040838503121561284457612843612241565b5b600061285285828601612443565b925050602061286385828601612818565b9150509250929050565b6000819050919050565b6128808161286d565b82525050565b600060208201905061289b6000830184612877565b92915050565b600067ffffffffffffffff8211156128bc576128bb6125bd565b5b6128c58261234c565b9050602081019050919050565b60006128e56128e0846128a1565b61261d565b905082815260208101848484011115612901576129006125b8565b5b61290c848285612669565b509392505050565b600082601f83011261292957612928612498565b5b81356129398482602086016128d2565b91505092915050565b6000806000806080858703121561295c5761295b612241565b5b600061296a87828801612443565b945050602061297b87828801612443565b935050604061298c878288016123cf565b925050606085013567ffffffffffffffff8111156129ad576129ac612246565b5b6129b987828801612914565b91505092959194509250565b600080604083850312156129dc576129db612241565b5b60006129ea85828601612443565b92505060206129fb85828601612443565b9150509250929050565b6000612a10826121b4565b9050919050565b612a2081612a05565b8114612a2b57600080fd5b50565b600081359050612a3d81612a17565b92915050565b60008060408385031215612a5a57612a59612241565b5b6000612a6885828601612a2e565b9250506020612a79858286016123cf565b9150509250929050565b612a8c8161286d565b8114612a9757600080fd5b50565b600081359050612aa981612a83565b92915050565b600060208284031215612ac557612ac4612241565b5b6000612ad384828501612a9a565b91505092915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b60006002820490506001821680612b2357607f821691505b602082108103612b3657612b35612adc565b5b50919050565b60008160601b9050919050565b6000612b5482612b3c565b9050919050565b6000612b6682612b49565b9050919050565b612b7e612b79826121d4565b612b5b565b82525050565b6000612b908284612b6d565b60148201915081905092915050565b6000606082019050612bb460008301866121e6565b612bc160208301856121ff565b612bce60408301846121e6565b949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000612c10826121f5565b9150612c1b836121f5565b9250828201905080821115612c3357612c32612bd6565b5b92915050565b7f4d696e74696e6720776f756c6420657863656564206d617820737570706c7900600082015250565b6000612c6f601f83612311565b9150612c7a82612c39565b602082019050919050565b60006020820190508181036000830152612c9e81612c62565b9050919050565b7f4d757374206d696e74206174206c65617374206f6e6520746f6b656e00000000600082015250565b6000612cdb601c83612311565b9150612ce682612ca5565b602082019050919050565b60006020820190508181036000830152612d0a81612cce565b9050919050565b7f4f776e65722063616e206f6e6c79206d696e7420757020746f20323020746f6b60008201527f656e7320617420612074696d6500000000000000000000000000000000000000602082015250565b6000612d6d602d83612311565b9150612d7882612d11565b604082019050919050565b60006020820190508181036000830152612d9c81612d60565b9050919050565b60008190508160005260206000209050919050565b60006020601f8301049050919050565b600082821b905092915050565b600060088302612e057fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82612dc8565b612e0f8683612dc8565b95508019841693508086168417925050509392505050565b6000819050919050565b6000612e4c612e47612e42846121f5565b612e27565b6121f5565b9050919050565b6000819050919050565b612e6683612e31565b612e7a612e7282612e53565b848454612dd5565b825550505050565b600090565b612e8f612e82565b612e9a818484612e5d565b505050565b5b81811015612ebe57612eb3600082612e87565b600181019050612ea0565b5050565b601f821115612f0357612ed481612da3565b612edd84612db8565b81016020851015612eec578190505b612f00612ef885612db8565b830182612e9f565b50505b505050565b600082821c905092915050565b6000612f2660001984600802612f08565b1980831691505092915050565b6000612f3f8383612f15565b9150826002028217905092915050565b612f5882612306565b67ffffffffffffffff811115612f7157612f706125bd565b5b612f7b8254612b0b565b612f86828285612ec2565b600060209050601f831160018114612fb95760008415612fa7578287015190505b612fb18582612f33565b865550613019565b601f198416612fc786612da3565b60005b82811015612fef57848901518255600182019150602085019450602081019050612fca565b8683101561300c5784890151613008601f891682612f15565b8355505b6001600288020188555050505b505050505050565b6000604082019050818103600083015261303b818561235d565b905061304a60208301846121e6565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b600081905092915050565b6000815461309881612b0b565b6130a28186613080565b945060018216600081146130bd57600181146130d257613105565b60ff1983168652811515820286019350613105565b6130db85612da3565b60005b838110156130fd578154818901526001820191506020810190506130de565b838801955050505b50505092915050565b600061311982612306565b6131238185613080565b9350613133818560208601612322565b80840191505092915050565b7f2e6a736f6e000000000000000000000000000000000000000000000000000000600082015250565b6000613175600583613080565b91506131808261313f565b600582019050919050565b6000613197828561308b565b91506131a3828461310e565b91506131ae82613168565b91508190509392505050565b7f496e76616c6964207769746864726177616c2061646472657373000000000000600082015250565b60006131f0601a83612311565b91506131fb826131ba565b602082019050919050565b6000602082019050818103600083015261321f816131e3565b9050919050565b7f416d6f756e74206d7573742062652067726561746572207468616e2030000000600082015250565b600061325c601d83612311565b915061326782613226565b602082019050919050565b6000602082019050818103600083015261328b8161324f565b9050919050565b7f496e73756666696369656e7420636f6e74726163742062616c616e6365000000600082015250565b60006132c8601d83612311565b91506132d382613292565b602082019050919050565b600060208201905081810360008301526132f7816132bb565b9050919050565b600081905092915050565b50565b60006133196000836132fe565b915061332482613309565b600082019050919050565b600061333a8261330c565b9150819050919050565b7f4661696c656420746f2073656e64204574686572000000000000000000000000600082015250565b600061337a601483612311565b915061338582613344565b602082019050919050565b600060208201905081810360008301526133a98161336d565b9050919050565b60006133cb6133c66133c1846121b4565b612e27565b6121b4565b9050919050565b60006133dd826133b0565b9050919050565b60006133ef826133d2565b9050919050565b6133ff816133e4565b82525050565b600060408201905061341a60008301856121ff565b61342760208301846133f6565b9392505050565b6000613439826121f5565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff820361346b5761346a612bd6565b5b600182019050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600081519050919050565b600082825260208201905092915050565b60006134cc826134a5565b6134d681856134b0565b93506134e6818560208601612322565b6134ef8161234c565b840191505092915050565b600060808201905061350f60008301876121e6565b61351c60208301866121e6565b61352960408301856121ff565b818103606083015261353b81846134c1565b905095945050505050565b60008151905061355581612277565b92915050565b60006020828403121561357157613570612241565b5b600061357f84828501613546565b91505092915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fdfea26469706673582212200c89d74ba3bcd7863dfc6661dab433969776b7b5c437b7446d441b8f08fe34e964736f6c634300081a0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000007ce4fa787582c9e5c9fee9f1b6803fd794359a69
-----Decoded View---------------
Arg [0] : initialOwner (address): 0x7CE4FA787582C9e5c9fEe9F1B6803Fd794359A69
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000007ce4fa787582c9e5c9fee9f1b6803fd794359a69
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.