APE Price: $1.11 (+0.53%)

OnChainDNA (OCDNA)

Overview

TokenID

10655

Total Transfers

-

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Contract Source Code Verified (Exact Match)

Contract Name:
OnChainDNA

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, MIT license

Contract Source Code (Solidity)

/**
 *Submitted for verification at apescan.io on 2025-01-10
*/

// File: erc721a/contracts/IERC721A.sol


// ERC721A Contracts v4.3.0
// Creator: Chiru Labs

pragma solidity ^0.8.4;

/**
 * @dev Interface of ERC721A.
 */
interface IERC721A {
    /**
     * The caller must own the token or be an approved operator.
     */
    error ApprovalCallerNotOwnerNorApproved();

    /**
     * The token does not exist.
     */
    error ApprovalQueryForNonexistentToken();

    /**
     * Cannot query the balance for the zero address.
     */
    error BalanceQueryForZeroAddress();

    /**
     * Cannot mint to the zero address.
     */
    error MintToZeroAddress();

    /**
     * The quantity of tokens minted must be more than zero.
     */
    error MintZeroQuantity();

    /**
     * The token does not exist.
     */
    error OwnerQueryForNonexistentToken();

    /**
     * The caller must own the token or be an approved operator.
     */
    error TransferCallerNotOwnerNorApproved();

    /**
     * The token must be owned by `from`.
     */
    error TransferFromIncorrectOwner();

    /**
     * Cannot safely transfer to a contract that does not implement the
     * ERC721Receiver interface.
     */
    error TransferToNonERC721ReceiverImplementer();

    /**
     * Cannot transfer to the zero address.
     */
    error TransferToZeroAddress();

    /**
     * The token does not exist.
     */
    error URIQueryForNonexistentToken();

    /**
     * The `quantity` minted with ERC2309 exceeds the safety limit.
     */
    error MintERC2309QuantityExceedsLimit();

    /**
     * The `extraData` cannot be set on an unintialized ownership slot.
     */
    error OwnershipNotInitializedForExtraData();

    /**
     * `_sequentialUpTo()` must be greater than `_startTokenId()`.
     */
    error SequentialUpToTooSmall();

    /**
     * The `tokenId` of a sequential mint exceeds `_sequentialUpTo()`.
     */
    error SequentialMintExceedsLimit();

    /**
     * Spot minting requires a `tokenId` greater than `_sequentialUpTo()`.
     */
    error SpotMintTokenIdTooSmall();

    /**
     * Cannot mint over a token that already exists.
     */
    error TokenAlreadyExists();

    /**
     * The feature is not compatible with spot mints.
     */
    error NotCompatibleWithSpotMints();

    // =============================================================
    //                            STRUCTS
    // =============================================================

    struct TokenOwnership {
        // The address of the owner.
        address addr;
        // Stores the start time of ownership with minimal overhead for tokenomics.
        uint64 startTimestamp;
        // Whether the token has been burned.
        bool burned;
        // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
        uint24 extraData;
    }

    // =============================================================
    //                         TOKEN COUNTERS
    // =============================================================

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() external view returns (uint256);

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);

    // =============================================================
    //                            IERC721
    // =============================================================

    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables
     * (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`,
     * checking first that contract recipients are aware of the ERC721 protocol
     * to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be have been allowed to move
     * this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external payable;

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external payable;

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
     * whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external payable;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external payable;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);

    // =============================================================
    //                           IERC2309
    // =============================================================

    /**
     * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
     * (inclusive) is transferred from `from` to `to`, as defined in the
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
     *
     * See {_mintERC2309} for more details.
     */
    event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}

// File: erc721a/contracts/ERC721A.sol


// ERC721A Contracts v4.3.0
// Creator: Chiru Labs

pragma solidity ^0.8.4;


/**
 * @dev Interface of ERC721 token receiver.
 */
interface ERC721A__IERC721Receiver {
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

/**
 * @title ERC721A
 *
 * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
 * Non-Fungible Token Standard, including the Metadata extension.
 * Optimized for lower gas during batch mints.
 *
 * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
 * starting from `_startTokenId()`.
 *
 * The `_sequentialUpTo()` function can be overriden to enable spot mints
 * (i.e. non-consecutive mints) for `tokenId`s greater than `_sequentialUpTo()`.
 *
 * Assumptions:
 *
 * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
 * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
 */
contract ERC721A is IERC721A {
    // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
    struct TokenApprovalRef {
        address value;
    }

    // =============================================================
    //                           CONSTANTS
    // =============================================================

    // Mask of an entry in packed address data.
    uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;

    // The bit position of `numberMinted` in packed address data.
    uint256 private constant _BITPOS_NUMBER_MINTED = 64;

    // The bit position of `numberBurned` in packed address data.
    uint256 private constant _BITPOS_NUMBER_BURNED = 128;

    // The bit position of `aux` in packed address data.
    uint256 private constant _BITPOS_AUX = 192;

    // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
    uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;

    // The bit position of `startTimestamp` in packed ownership.
    uint256 private constant _BITPOS_START_TIMESTAMP = 160;

    // The bit mask of the `burned` bit in packed ownership.
    uint256 private constant _BITMASK_BURNED = 1 << 224;

    // The bit position of the `nextInitialized` bit in packed ownership.
    uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;

    // The bit mask of the `nextInitialized` bit in packed ownership.
    uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;

    // The bit position of `extraData` in packed ownership.
    uint256 private constant _BITPOS_EXTRA_DATA = 232;

    // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
    uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;

    // The mask of the lower 160 bits for addresses.
    uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

    // The maximum `quantity` that can be minted with {_mintERC2309}.
    // This limit is to prevent overflows on the address data entries.
    // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
    // is required to cause an overflow, which is unrealistic.
    uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;

    // The `Transfer` event signature is given by:
    // `keccak256(bytes("Transfer(address,address,uint256)"))`.
    bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    // =============================================================
    //                            STORAGE
    // =============================================================

    // The next token ID to be minted.
    uint256 private _currentIndex;

    // The number of tokens burned.
    uint256 private _burnCounter;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    // Mapping from token ID to ownership details
    // An empty struct value does not necessarily mean the token is unowned.
    // See {_packedOwnershipOf} implementation for details.
    //
    // Bits Layout:
    // - [0..159]   `addr`
    // - [160..223] `startTimestamp`
    // - [224]      `burned`
    // - [225]      `nextInitialized`
    // - [232..255] `extraData`
    mapping(uint256 => uint256) private _packedOwnerships;

    // Mapping owner address to address data.
    //
    // Bits Layout:
    // - [0..63]    `balance`
    // - [64..127]  `numberMinted`
    // - [128..191] `numberBurned`
    // - [192..255] `aux`
    mapping(address => uint256) private _packedAddressData;

    // Mapping from token ID to approved address.
    mapping(uint256 => TokenApprovalRef) private _tokenApprovals;

    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private _operatorApprovals;

    // The amount of tokens minted above `_sequentialUpTo()`.
    // We call these spot mints (i.e. non-sequential mints).
    uint256 private _spotMinted;

    // =============================================================
    //                          CONSTRUCTOR
    // =============================================================

    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _currentIndex = _startTokenId();

        if (_sequentialUpTo() < _startTokenId()) _revert(SequentialUpToTooSmall.selector);
    }

    // =============================================================
    //                   TOKEN COUNTING OPERATIONS
    // =============================================================

    /**
     * @dev Returns the starting token ID for sequential mints.
     *
     * Override this function to change the starting token ID for sequential mints.
     *
     * Note: The value returned must never change after any tokens have been minted.
     */
    function _startTokenId() internal view virtual returns (uint256) {
        return 0;
    }

    /**
     * @dev Returns the maximum token ID (inclusive) for sequential mints.
     *
     * Override this function to return a value less than 2**256 - 1,
     * but greater than `_startTokenId()`, to enable spot (non-sequential) mints.
     *
     * Note: The value returned must never change after any tokens have been minted.
     */
    function _sequentialUpTo() internal view virtual returns (uint256) {
        return type(uint256).max;
    }

    /**
     * @dev Returns the next token ID to be minted.
     */
    function _nextTokenId() internal view virtual returns (uint256) {
        return _currentIndex;
    }

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() public view virtual override returns (uint256 result) {
        // Counter underflow is impossible as `_burnCounter` cannot be incremented
        // more than `_currentIndex + _spotMinted - _startTokenId()` times.
        unchecked {
            // With spot minting, the intermediate `result` can be temporarily negative,
            // and the computation must be unchecked.
            result = _currentIndex - _burnCounter - _startTokenId();
            if (_sequentialUpTo() != type(uint256).max) result += _spotMinted;
        }
    }

    /**
     * @dev Returns the total amount of tokens minted in the contract.
     */
    function _totalMinted() internal view virtual returns (uint256 result) {
        // Counter underflow is impossible as `_currentIndex` does not decrement,
        // and it is initialized to `_startTokenId()`.
        unchecked {
            result = _currentIndex - _startTokenId();
            if (_sequentialUpTo() != type(uint256).max) result += _spotMinted;
        }
    }

    /**
     * @dev Returns the total number of tokens burned.
     */
    function _totalBurned() internal view virtual returns (uint256) {
        return _burnCounter;
    }

    /**
     * @dev Returns the total number of tokens that are spot-minted.
     */
    function _totalSpotMinted() internal view virtual returns (uint256) {
        return _spotMinted;
    }

    // =============================================================
    //                    ADDRESS DATA OPERATIONS
    // =============================================================

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector);
        return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the number of tokens minted by `owner`.
     */
    function _numberMinted(address owner) internal view returns (uint256) {
        return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the number of tokens burned by or on behalf of `owner`.
     */
    function _numberBurned(address owner) internal view returns (uint256) {
        return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
     */
    function _getAux(address owner) internal view returns (uint64) {
        return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
    }

    /**
     * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
     * If there are multiple variables, please pack them into a uint64.
     */
    function _setAux(address owner, uint64 aux) internal virtual {
        uint256 packed = _packedAddressData[owner];
        uint256 auxCasted;
        // Cast `aux` with assembly to avoid redundant masking.
        assembly {
            auxCasted := aux
        }
        packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
        _packedAddressData[owner] = packed;
    }

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        // The interface IDs are constants representing the first 4 bytes
        // of the XOR of all function selectors in the interface.
        // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
        // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
        return
            interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
            interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
            interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
    }

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, it can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return '';
    }

    // =============================================================
    //                     OWNERSHIPS OPERATIONS
    // =============================================================

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        return address(uint160(_packedOwnershipOf(tokenId)));
    }

    /**
     * @dev Gas spent here starts off proportional to the maximum mint batch size.
     * It gradually moves to O(1) as tokens get transferred around over time.
     */
    function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
        return _unpackedOwnership(_packedOwnershipOf(tokenId));
    }

    /**
     * @dev Returns the unpacked `TokenOwnership` struct at `index`.
     */
    function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
        return _unpackedOwnership(_packedOwnerships[index]);
    }

    /**
     * @dev Returns whether the ownership slot at `index` is initialized.
     * An uninitialized slot does not necessarily mean that the slot has no owner.
     */
    function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) {
        return _packedOwnerships[index] != 0;
    }

    /**
     * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
     */
    function _initializeOwnershipAt(uint256 index) internal virtual {
        if (_packedOwnerships[index] == 0) {
            _packedOwnerships[index] = _packedOwnershipOf(index);
        }
    }

    /**
     * @dev Returns the packed ownership data of `tokenId`.
     */
    function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) {
        if (_startTokenId() <= tokenId) {
            packed = _packedOwnerships[tokenId];

            if (tokenId > _sequentialUpTo()) {
                if (_packedOwnershipExists(packed)) return packed;
                _revert(OwnerQueryForNonexistentToken.selector);
            }

            // If the data at the starting slot does not exist, start the scan.
            if (packed == 0) {
                if (tokenId >= _currentIndex) _revert(OwnerQueryForNonexistentToken.selector);
                // Invariant:
                // There will always be an initialized ownership slot
                // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                // before an unintialized ownership slot
                // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                // Hence, `tokenId` will not underflow.
                //
                // We can directly compare the packed value.
                // If the address is zero, packed will be zero.
                for (;;) {
                    unchecked {
                        packed = _packedOwnerships[--tokenId];
                    }
                    if (packed == 0) continue;
                    if (packed & _BITMASK_BURNED == 0) return packed;
                    // Otherwise, the token is burned, and we must revert.
                    // This handles the case of batch burned tokens, where only the burned bit
                    // of the starting slot is set, and remaining slots are left uninitialized.
                    _revert(OwnerQueryForNonexistentToken.selector);
                }
            }
            // Otherwise, the data exists and we can skip the scan.
            // This is possible because we have already achieved the target condition.
            // This saves 2143 gas on transfers of initialized tokens.
            // If the token is not burned, return `packed`. Otherwise, revert.
            if (packed & _BITMASK_BURNED == 0) return packed;
        }
        _revert(OwnerQueryForNonexistentToken.selector);
    }

    /**
     * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
     */
    function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
        ownership.addr = address(uint160(packed));
        ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
        ownership.burned = packed & _BITMASK_BURNED != 0;
        ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
    }

    /**
     * @dev Packs ownership data into a single uint256.
     */
    function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
        assembly {
            // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
            owner := and(owner, _BITMASK_ADDRESS)
            // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
            result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
        }
    }

    /**
     * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
     */
    function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
        // For branchless setting of the `nextInitialized` flag.
        assembly {
            // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
            result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
        }
    }

    // =============================================================
    //                      APPROVAL OPERATIONS
    // =============================================================

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     */
    function approve(address to, uint256 tokenId) public payable virtual override {
        _approve(to, tokenId, true);
    }

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        if (!_exists(tokenId)) _revert(ApprovalQueryForNonexistentToken.selector);

        return _tokenApprovals[tokenId].value;
    }

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        _operatorApprovals[_msgSenderERC721A()][operator] = approved;
        emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
    }

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted. See {_mint}.
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool result) {
        if (_startTokenId() <= tokenId) {
            if (tokenId > _sequentialUpTo()) return _packedOwnershipExists(_packedOwnerships[tokenId]);

            if (tokenId < _currentIndex) {
                uint256 packed;
                while ((packed = _packedOwnerships[tokenId]) == 0) --tokenId;
                result = packed & _BITMASK_BURNED == 0;
            }
        }
    }

    /**
     * @dev Returns whether `packed` represents a token that exists.
     */
    function _packedOwnershipExists(uint256 packed) private pure returns (bool result) {
        assembly {
            // The following is equivalent to `owner != address(0) && burned == false`.
            // Symbolically tested.
            result := gt(and(packed, _BITMASK_ADDRESS), and(packed, _BITMASK_BURNED))
        }
    }

    /**
     * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
     */
    function _isSenderApprovedOrOwner(
        address approvedAddress,
        address owner,
        address msgSender
    ) private pure returns (bool result) {
        assembly {
            // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
            owner := and(owner, _BITMASK_ADDRESS)
            // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
            msgSender := and(msgSender, _BITMASK_ADDRESS)
            // `msgSender == owner || msgSender == approvedAddress`.
            result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
        }
    }

    /**
     * @dev Returns the storage slot and value for the approved address of `tokenId`.
     */
    function _getApprovedSlotAndAddress(uint256 tokenId)
        private
        view
        returns (uint256 approvedAddressSlot, address approvedAddress)
    {
        TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
        // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
        assembly {
            approvedAddressSlot := tokenApproval.slot
            approvedAddress := sload(approvedAddressSlot)
        }
    }

    // =============================================================
    //                      TRANSFER OPERATIONS
    // =============================================================

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable virtual override {
        uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

        // Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean.
        from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS));

        if (address(uint160(prevOwnershipPacked)) != from) _revert(TransferFromIncorrectOwner.selector);

        (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);

        // The nested ifs save around 20+ gas over a compound boolean condition.
        if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
            if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);

        _beforeTokenTransfers(from, to, tokenId, 1);

        // Clear approvals from the previous owner.
        assembly {
            if approvedAddress {
                // This is equivalent to `delete _tokenApprovals[tokenId]`.
                sstore(approvedAddressSlot, 0)
            }
        }

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
        unchecked {
            // We can directly increment and decrement the balances.
            --_packedAddressData[from]; // Updates: `balance -= 1`.
            ++_packedAddressData[to]; // Updates: `balance += 1`.

            // Updates:
            // - `address` to the next owner.
            // - `startTimestamp` to the timestamp of transfering.
            // - `burned` to `false`.
            // - `nextInitialized` to `true`.
            _packedOwnerships[tokenId] = _packOwnershipData(
                to,
                _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
            );

            // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
            if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                uint256 nextTokenId = tokenId + 1;
                // If the next slot's address is zero and not burned (i.e. packed value is zero).
                if (_packedOwnerships[nextTokenId] == 0) {
                    // If the next slot is within bounds.
                    if (nextTokenId != _currentIndex) {
                        // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                        _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                    }
                }
            }
        }

        // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
        uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
        assembly {
            // Emit the `Transfer` event.
            log4(
                0, // Start of data (0, since no data).
                0, // End of data (0, since no data).
                _TRANSFER_EVENT_SIGNATURE, // Signature.
                from, // `from`.
                toMasked, // `to`.
                tokenId // `tokenId`.
            )
        }
        if (toMasked == 0) _revert(TransferToZeroAddress.selector);

        _afterTokenTransfers(from, to, tokenId, 1);
    }

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable virtual override {
        safeTransferFrom(from, to, tokenId, '');
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) public payable virtual override {
        transferFrom(from, to, tokenId);
        if (to.code.length != 0)
            if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                _revert(TransferToNonERC721ReceiverImplementer.selector);
            }
    }

    /**
     * @dev Hook that is called before a set of serially-ordered token IDs
     * are about to be transferred. This includes minting.
     * And also called before burning one token.
     *
     * `startTokenId` - the first token ID to be transferred.
     * `quantity` - the amount to be transferred.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _beforeTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}

    /**
     * @dev Hook that is called after a set of serially-ordered token IDs
     * have been transferred. This includes minting.
     * And also called after one token has been burned.
     *
     * `startTokenId` - the first token ID to be transferred.
     * `quantity` - the amount to be transferred.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
     * transferred to `to`.
     * - When `from` is zero, `tokenId` has been minted for `to`.
     * - When `to` is zero, `tokenId` has been burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _afterTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}

    /**
     * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
     *
     * `from` - Previous owner of the given token ID.
     * `to` - Target address that will receive the token.
     * `tokenId` - Token ID to be transferred.
     * `_data` - Optional data to send along with the call.
     *
     * Returns whether the call correctly returned the expected magic value.
     */
    function _checkContractOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) private returns (bool) {
        try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
            bytes4 retval
        ) {
            return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
        } catch (bytes memory reason) {
            if (reason.length == 0) {
                _revert(TransferToNonERC721ReceiverImplementer.selector);
            }
            assembly {
                revert(add(32, reason), mload(reason))
            }
        }
    }

    // =============================================================
    //                        MINT OPERATIONS
    // =============================================================

    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _mint(address to, uint256 quantity) internal virtual {
        uint256 startTokenId = _currentIndex;
        if (quantity == 0) _revert(MintZeroQuantity.selector);

        _beforeTokenTransfers(address(0), to, startTokenId, quantity);

        // Overflows are incredibly unrealistic.
        // `balance` and `numberMinted` have a maximum limit of 2**64.
        // `tokenId` has a maximum limit of 2**256.
        unchecked {
            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `quantity == 1`.
            _packedOwnerships[startTokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
            );

            // Updates:
            // - `balance += quantity`.
            // - `numberMinted += quantity`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

            // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
            uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;

            if (toMasked == 0) _revert(MintToZeroAddress.selector);

            uint256 end = startTokenId + quantity;
            uint256 tokenId = startTokenId;

            if (end - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);

            do {
                assembly {
                    // Emit the `Transfer` event.
                    log4(
                        0, // Start of data (0, since no data).
                        0, // End of data (0, since no data).
                        _TRANSFER_EVENT_SIGNATURE, // Signature.
                        0, // `address(0)`.
                        toMasked, // `to`.
                        tokenId // `tokenId`.
                    )
                }
                // The `!=` check ensures that large values of `quantity`
                // that overflows uint256 will make the loop run out of gas.
            } while (++tokenId != end);

            _currentIndex = end;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }

    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * This function is intended for efficient minting only during contract creation.
     *
     * It emits only one {ConsecutiveTransfer} as defined in
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
     * instead of a sequence of {Transfer} event(s).
     *
     * Calling this function outside of contract creation WILL make your contract
     * non-compliant with the ERC721 standard.
     * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
     * {ConsecutiveTransfer} event is only permissible during contract creation.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {ConsecutiveTransfer} event.
     */
    function _mintERC2309(address to, uint256 quantity) internal virtual {
        uint256 startTokenId = _currentIndex;
        if (to == address(0)) _revert(MintToZeroAddress.selector);
        if (quantity == 0) _revert(MintZeroQuantity.selector);
        if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) _revert(MintERC2309QuantityExceedsLimit.selector);

        _beforeTokenTransfers(address(0), to, startTokenId, quantity);

        // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
        unchecked {
            // Updates:
            // - `balance += quantity`.
            // - `numberMinted += quantity`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `quantity == 1`.
            _packedOwnerships[startTokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
            );

            if (startTokenId + quantity - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);

            emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);

            _currentIndex = startTokenId + quantity;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }

    /**
     * @dev Safely mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
     * - `quantity` must be greater than 0.
     *
     * See {_mint}.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _safeMint(
        address to,
        uint256 quantity,
        bytes memory _data
    ) internal virtual {
        _mint(to, quantity);

        unchecked {
            if (to.code.length != 0) {
                uint256 end = _currentIndex;
                uint256 index = end - quantity;
                do {
                    if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                        _revert(TransferToNonERC721ReceiverImplementer.selector);
                    }
                } while (index < end);
                // This prevents reentrancy to `_safeMint`.
                // It does not prevent reentrancy to `_safeMintSpot`.
                if (_currentIndex != end) revert();
            }
        }
    }

    /**
     * @dev Equivalent to `_safeMint(to, quantity, '')`.
     */
    function _safeMint(address to, uint256 quantity) internal virtual {
        _safeMint(to, quantity, '');
    }

    /**
     * @dev Mints a single token at `tokenId`.
     *
     * Note: A spot-minted `tokenId` that has been burned can be re-minted again.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` must be greater than `_sequentialUpTo()`.
     * - `tokenId` must not exist.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _mintSpot(address to, uint256 tokenId) internal virtual {
        if (tokenId <= _sequentialUpTo()) _revert(SpotMintTokenIdTooSmall.selector);
        uint256 prevOwnershipPacked = _packedOwnerships[tokenId];
        if (_packedOwnershipExists(prevOwnershipPacked)) _revert(TokenAlreadyExists.selector);

        _beforeTokenTransfers(address(0), to, tokenId, 1);

        // Overflows are incredibly unrealistic.
        // The `numberMinted` for `to` is incremented by 1, and has a max limit of 2**64 - 1.
        // `_spotMinted` is incremented by 1, and has a max limit of 2**256 - 1.
        unchecked {
            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `true` (as `quantity == 1`).
            _packedOwnerships[tokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(1) | _nextExtraData(address(0), to, prevOwnershipPacked)
            );

            // Updates:
            // - `balance += 1`.
            // - `numberMinted += 1`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            _packedAddressData[to] += (1 << _BITPOS_NUMBER_MINTED) | 1;

            // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
            uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;

            if (toMasked == 0) _revert(MintToZeroAddress.selector);

            assembly {
                // Emit the `Transfer` event.
                log4(
                    0, // Start of data (0, since no data).
                    0, // End of data (0, since no data).
                    _TRANSFER_EVENT_SIGNATURE, // Signature.
                    0, // `address(0)`.
                    toMasked, // `to`.
                    tokenId // `tokenId`.
                )
            }

            ++_spotMinted;
        }

        _afterTokenTransfers(address(0), to, tokenId, 1);
    }

    /**
     * @dev Safely mints a single token at `tokenId`.
     *
     * Note: A spot-minted `tokenId` that has been burned can be re-minted again.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}.
     * - `tokenId` must be greater than `_sequentialUpTo()`.
     * - `tokenId` must not exist.
     *
     * See {_mintSpot}.
     *
     * Emits a {Transfer} event.
     */
    function _safeMintSpot(
        address to,
        uint256 tokenId,
        bytes memory _data
    ) internal virtual {
        _mintSpot(to, tokenId);

        unchecked {
            if (to.code.length != 0) {
                uint256 currentSpotMinted = _spotMinted;
                if (!_checkContractOnERC721Received(address(0), to, tokenId, _data)) {
                    _revert(TransferToNonERC721ReceiverImplementer.selector);
                }
                // This prevents reentrancy to `_safeMintSpot`.
                // It does not prevent reentrancy to `_safeMint`.
                if (_spotMinted != currentSpotMinted) revert();
            }
        }
    }

    /**
     * @dev Equivalent to `_safeMintSpot(to, tokenId, '')`.
     */
    function _safeMintSpot(address to, uint256 tokenId) internal virtual {
        _safeMintSpot(to, tokenId, '');
    }

    // =============================================================
    //                       APPROVAL OPERATIONS
    // =============================================================

    /**
     * @dev Equivalent to `_approve(to, tokenId, false)`.
     */
    function _approve(address to, uint256 tokenId) internal virtual {
        _approve(to, tokenId, false);
    }

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function _approve(
        address to,
        uint256 tokenId,
        bool approvalCheck
    ) internal virtual {
        address owner = ownerOf(tokenId);

        if (approvalCheck && _msgSenderERC721A() != owner)
            if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                _revert(ApprovalCallerNotOwnerNorApproved.selector);
            }

        _tokenApprovals[tokenId].value = to;
        emit Approval(owner, to, tokenId);
    }

    // =============================================================
    //                        BURN OPERATIONS
    // =============================================================

    /**
     * @dev Equivalent to `_burn(tokenId, false)`.
     */
    function _burn(uint256 tokenId) internal virtual {
        _burn(tokenId, false);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
        uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

        address from = address(uint160(prevOwnershipPacked));

        (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);

        if (approvalCheck) {
            // The nested ifs save around 20+ gas over a compound boolean condition.
            if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
        }

        _beforeTokenTransfers(from, address(0), tokenId, 1);

        // Clear approvals from the previous owner.
        assembly {
            if approvedAddress {
                // This is equivalent to `delete _tokenApprovals[tokenId]`.
                sstore(approvedAddressSlot, 0)
            }
        }

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
        unchecked {
            // Updates:
            // - `balance -= 1`.
            // - `numberBurned += 1`.
            //
            // We can directly decrement the balance, and increment the number burned.
            // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
            _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;

            // Updates:
            // - `address` to the last owner.
            // - `startTimestamp` to the timestamp of burning.
            // - `burned` to `true`.
            // - `nextInitialized` to `true`.
            _packedOwnerships[tokenId] = _packOwnershipData(
                from,
                (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
            );

            // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
            if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                uint256 nextTokenId = tokenId + 1;
                // If the next slot's address is zero and not burned (i.e. packed value is zero).
                if (_packedOwnerships[nextTokenId] == 0) {
                    // If the next slot is within bounds.
                    if (nextTokenId != _currentIndex) {
                        // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                        _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                    }
                }
            }
        }

        emit Transfer(from, address(0), tokenId);
        _afterTokenTransfers(from, address(0), tokenId, 1);

        // Overflow not possible, as `_burnCounter` cannot be exceed `_currentIndex + _spotMinted` times.
        unchecked {
            _burnCounter++;
        }
    }

    // =============================================================
    //                     EXTRA DATA OPERATIONS
    // =============================================================

    /**
     * @dev Directly sets the extra data for the ownership data `index`.
     */
    function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
        uint256 packed = _packedOwnerships[index];
        if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector);
        uint256 extraDataCasted;
        // Cast `extraData` with assembly to avoid redundant masking.
        assembly {
            extraDataCasted := extraData
        }
        packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
        _packedOwnerships[index] = packed;
    }

    /**
     * @dev Called during each token transfer to set the 24bit `extraData` field.
     * Intended to be overridden by the cosumer contract.
     *
     * `previousExtraData` - the value of `extraData` before transfer.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _extraData(
        address from,
        address to,
        uint24 previousExtraData
    ) internal view virtual returns (uint24) {}

    /**
     * @dev Returns the next extra data for the packed ownership data.
     * The returned result is shifted into position.
     */
    function _nextExtraData(
        address from,
        address to,
        uint256 prevOwnershipPacked
    ) private view returns (uint256) {
        uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
        return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
    }

    // =============================================================
    //                       OTHER OPERATIONS
    // =============================================================

    /**
     * @dev Returns the message sender (defaults to `msg.sender`).
     *
     * If you are writing GSN compatible contracts, you need to override this function.
     */
    function _msgSenderERC721A() internal view virtual returns (address) {
        return msg.sender;
    }

    /**
     * @dev Converts a uint256 to its ASCII string decimal representation.
     */
    function _toString(uint256 value) internal pure virtual returns (string memory str) {
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
            let m := add(mload(0x40), 0xa0)
            // Update the free memory pointer to allocate.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            // prettier-ignore
            for { let temp := value } 1 {} {
                str := sub(str, 1)
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                // prettier-ignore
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }

    /**
     * @dev For more efficient reverts.
     */
    function _revert(bytes4 errorSelector) internal pure {
        assembly {
            mstore(0x00, errorSelector)
            revert(0x00, 0x04)
        }
    }
}

// File: @openzeppelin/contracts/utils/Context.sol


// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// File: @openzeppelin/contracts/access/Ownable.sol


// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;


/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// File: @openzeppelin/contracts/utils/Panic.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// File: @openzeppelin/contracts/utils/math/SafeCast.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// File: @openzeppelin/contracts/utils/math/Math.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;



/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// File: @openzeppelin/contracts/utils/math/SignedMath.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;


/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// File: @openzeppelin/contracts/utils/Strings.sol


// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)

pragma solidity ^0.8.20;




/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// File: @openzeppelin/contracts/utils/Base64.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to operate with Base64 strings.
 */
library Base64 {
    /**
     * @dev Base64 Encoding/Decoding Table
     * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
     */
    string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";

    /**
     * @dev Converts a `bytes` to its Bytes64 `string` representation.
     */
    function encode(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE, true);
    }

    /**
     * @dev Converts a `bytes` to its Bytes64Url `string` representation.
     * Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648].
     */
    function encodeURL(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE_URL, false);
    }

    /**
     * @dev Internal table-agnostic conversion
     */
    function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
        /**
         * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
         * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
         */
        if (data.length == 0) return "";

        // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
        // multiplied by 4 so that it leaves room for padding the last chunk
        // - `data.length + 2`  -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // - `4 *`              -> 4 characters for each chunk
        // This is equivalent to: 4 * Math.ceil(data.length / 3)
        //
        // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
        // opposed to when padding is required to fill the last chunk.
        // - `4 * data.length`  -> 4 characters for each chunk
        // - ` + 2`             -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // This is equivalent to: Math.ceil((4 * data.length) / 3)
        uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;

        string memory result = new string(resultLength);

        assembly ("memory-safe") {
            // Prepare the lookup table (skip the first "length" byte)
            let tablePtr := add(table, 1)

            // Prepare result pointer, jump over length
            let resultPtr := add(result, 0x20)
            let dataPtr := data
            let endPtr := add(data, mload(data))

            // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
            // set it to zero to make sure no dirty bytes are read in that section.
            let afterPtr := add(endPtr, 0x20)
            let afterCache := mload(afterPtr)
            mstore(afterPtr, 0x00)

            // Run over the input, 3 bytes at a time
            for {

            } lt(dataPtr, endPtr) {

            } {
                // Advance 3 bytes
                dataPtr := add(dataPtr, 3)
                let input := mload(dataPtr)

                // To write each character, shift the 3 byte (24 bits) chunk
                // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                // Use this as an index into the lookup table, mload an entire word
                // so the desired character is in the least significant byte, and
                // mstore8 this least significant byte into the result and continue.

                mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
            }

            // Reset the value that was cached
            mstore(afterPtr, afterCache)

            if withPadding {
                // When data `bytes` is not exactly 3 bytes long
                // it is padded with `=` characters at the end
                switch mod(mload(data), 3)
                case 1 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                    mstore8(sub(resultPtr, 2), 0x3d)
                }
                case 2 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                }
            }
        }

        return result;
    }
}

// File: contracts/3_Ballot.sol


pragma solidity ^0.8.0;





contract OnChainDNA is ERC721A, Ownable {
    // DNA yapısı: Her bir NFT için özellikleri belirler
    struct DNA {
        uint8 shirt;
        uint8 eyes;
        uint8 hair;
        uint8 glasses;
        uint8 mouth;
        uint8 neck;
    }

    // DNA kaydı
    mapping(uint256 => DNA) private _dnaStorage;

    // Kategorilere göre toplam özellik sayısı
    uint8 private constant TOTAL_SHIRTS = 10; // Örnek değerler, değiştirilebilir
    uint8 private constant TOTAL_EYES = 10;
    uint8 private constant TOTAL_HAIR = 10;
    uint8 private constant TOTAL_GLASSES = 10;
    uint8 private constant TOTAL_MOUTH = 10;
    uint8 private constant TOTAL_NECK = 10;

    constructor() ERC721A("OnChainDNA", "OCDNA") Ownable(msg.sender) {}

    // Rastgele bir DNA oluştur
    function _generateDNA(uint256 tokenId) internal view returns (DNA memory) {
        return DNA({
            shirt: uint8(uint256(keccak256(abi.encodePacked("SHIRT", tokenId, block.timestamp))) % TOTAL_SHIRTS),
            eyes: uint8(uint256(keccak256(abi.encodePacked("EYES", tokenId, block.timestamp))) % TOTAL_EYES),
            hair: uint8(uint256(keccak256(abi.encodePacked("HAIR", tokenId, block.timestamp))) % TOTAL_HAIR),
            glasses: uint8(uint256(keccak256(abi.encodePacked("GLASSES", tokenId, block.timestamp))) % TOTAL_GLASSES),
            mouth: uint8(uint256(keccak256(abi.encodePacked("MOUTH", tokenId, block.timestamp))) % TOTAL_MOUTH),
            neck: uint8(uint256(keccak256(abi.encodePacked("NECK", tokenId, block.timestamp))) % TOTAL_NECK)
        });
    }

    // NFT mint fonksiyonu
    function mint(uint256 quantity) external payable {
        uint256 startTokenId = _nextTokenId();
        _safeMint(msg.sender, quantity);

        for (uint256 i = 0; i < quantity; i++) {
            uint256 tokenId = startTokenId + i;
            _dnaStorage[tokenId] = _generateDNA(tokenId);
        }
    }

    // DNA bilgisi al
    function getDNA(uint256 tokenId) external view returns (DNA memory) {
        require(_exists(tokenId), "Token does not exist");
        return _dnaStorage[tokenId];
    }

    // On-chain SVG oluşturma
    function tokenURI(uint256 tokenId) public view override returns (string memory) {
        require(_exists(tokenId), "Token does not exist");
        DNA memory dna = _dnaStorage[tokenId];

        string memory attributes = string(
            abi.encodePacked(
                "<text x='10' y='20'>Shirt: ", Strings.toString(dna.shirt), "</text>",
                "<text x='10' y='40'>Eyes: ", Strings.toString(dna.eyes), "</text>",
                "<text x='10' y='60'>Hair: ", Strings.toString(dna.hair), "</text>",
                "<text x='10' y='80'>Glasses: ", Strings.toString(dna.glasses), "</text>",
                "<text x='10' y='100'>Mouth: ", Strings.toString(dna.mouth), "</text>",
                "<text x='10' y='120'>Neck: ", Strings.toString(dna.neck), "</text>"
            )
        );

        string memory svg = string(
            abi.encodePacked(
                "<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 500 500'>",
                attributes,
                "</svg>"
            )
        );

        return string(
            abi.encodePacked(
                "data:application/json;base64,",
                Base64.encode(
                    bytes(
                        abi.encodePacked(
                            "{\"name\": \"OnChainDNA #",
                            Strings.toString(tokenId),
                            "\", \"description\": \"On-chain DNA-based NFT\", \"image\": \"data:image/svg+xml;base64,",
                            Base64.encode(bytes(svg)),
                            "\"}"
                        )
                    )
                )
            )
        );
    }
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[],"name":"NotCompatibleWithSpotMints","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"SequentialMintExceedsLimit","type":"error"},{"inputs":[],"name":"SequentialUpToTooSmall","type":"error"},{"inputs":[],"name":"SpotMintTokenIdTooSmall","type":"error"},{"inputs":[],"name":"TokenAlreadyExists","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getDNA","outputs":[{"components":[{"internalType":"uint8","name":"shirt","type":"uint8"},{"internalType":"uint8","name":"eyes","type":"uint8"},{"internalType":"uint8","name":"hair","type":"uint8"},{"internalType":"uint8","name":"glasses","type":"uint8"},{"internalType":"uint8","name":"mouth","type":"uint8"},{"internalType":"uint8","name":"neck","type":"uint8"}],"internalType":"struct OnChainDNA.DNA","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561000f575f80fd5b50336040518060400160405280600a8152602001694f6e436861696e444e4160b01b815250604051806040016040528060058152602001644f43444e4160d81b81525081600290816100619190610199565b50600361006e8282610199565b50505f8055506001600160a01b0381166100a157604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100aa816100b0565b50610253565b600980546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b634e487b7160e01b5f52604160045260245ffd5b600181811c9082168061012957607f821691505b60208210810361014757634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561019457805f5260205f20601f840160051c810160208510156101725750805b601f840160051c820191505b81811015610191575f815560010161017e565b50505b505050565b81516001600160401b038111156101b2576101b2610101565b6101c6816101c08454610115565b8461014d565b6020601f8211600181146101f8575f83156101e15750848201515b5f19600385901b1c1916600184901b178455610191565b5f84815260208120601f198516915b828110156102275787850151825560209485019460019092019101610207565b508482101561024457868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b611bc9806102605f395ff3fe608060405260043610610110575f3560e01c806370a082311161009d578063a22cb46511610062578063a22cb4651461030e578063b88d4fde1461032d578063c87b56dd14610340578063e985e9c51461035f578063f2fde38b1461037e575f80fd5b806370a0823114610297578063715018a6146102b65780638da5cb5b146102ca57806395d89b41146102e7578063a0712d68146102fb575f80fd5b806318160ddd116100e357806318160ddd146101b557806323b872dd146101d657806342842e0e146101e95780635bb209a5146101fc5780636352211e14610278575f80fd5b806301ffc9a71461011457806306fdde0314610148578063081812fc14610169578063095ea7b3146101a0575b5f80fd5b34801561011f575f80fd5b5061013361012e3660046114e7565b61039d565b60405190151581526020015b60405180910390f35b348015610153575f80fd5b5061015c6103ee565b60405161013f9190611530565b348015610174575f80fd5b50610188610183366004611542565b61047e565b6040516001600160a01b03909116815260200161013f565b6101b36101ae36600461156f565b6104b7565b005b3480156101c0575f80fd5b506001545f54035b60405190815260200161013f565b6101b36101e4366004611597565b6104c7565b6101b36101f7366004611597565b61063d565b348015610207575f80fd5b5061021b610216366004611542565b61065c565b60405161013f91905f60c08201905060ff835116825260ff602084015116602083015260ff604084015116604083015260ff606084015116606083015260ff608084015116608083015260ff60a08401511660a083015292915050565b348015610283575f80fd5b50610188610292366004611542565b61074e565b3480156102a2575f80fd5b506101c86102b13660046115d1565b610758565b3480156102c1575f80fd5b506101b361079c565b3480156102d5575f80fd5b506009546001600160a01b0316610188565b3480156102f2575f80fd5b5061015c6107af565b6101b3610309366004611542565b6107be565b348015610319575f80fd5b506101b36103283660046115ea565b610896565b6101b361033b366004611637565b610901565b34801561034b575f80fd5b5061015c61035a366004611542565b610942565b34801561036a575f80fd5b50610133610379366004611714565b610b04565b348015610389575f80fd5b506101b36103983660046115d1565b610b31565b5f6301ffc9a760e01b6001600160e01b0319831614806103cd57506380ac58cd60e01b6001600160e01b03198316145b806103e85750635b5e139f60e01b6001600160e01b03198316145b92915050565b6060600280546103fd90611745565b80601f016020809104026020016040519081016040528092919081815260200182805461042990611745565b80156104745780601f1061044b57610100808354040283529160200191610474565b820191905f5260205f20905b81548152906001019060200180831161045757829003601f168201915b5050505050905090565b5f61048882610b6e565b61049c5761049c6333d1c03960e21b610bb0565b505f908152600660205260409020546001600160a01b031690565b6104c382826001610bb8565b5050565b5f6104d182610c59565b6001600160a01b0394851694909150811684146104f7576104f762a1148160e81b610bb0565b5f8281526006602052604090208054338082146001600160a01b0388169091141761053a576105268633610b04565b61053a5761053a632ce44b5f60e11b610bb0565b8015610544575f82555b6001600160a01b038087165f9081526005602052604080822080545f190190559187168152208054600101905561059b85610580888287610ce8565b600160e11b174260a01b176001600160a01b03919091161790565b5f85815260046020526040812091909155600160e11b841690036105ec57600184015f8181526004602052604081205490036105ea575f5481146105ea575f8181526004602052604090208490555b505b6001600160a01b0385168481887fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4805f0361063457610634633a954ecd60e21b610bb0565b50505050505050565b61065783838360405180602001604052805f815250610901565b505050565b6040805160c0810182525f80825260208201819052918101829052606081018290526080810182905260a081019190915261069682610b6e565b6106de5760405162461bcd60e51b8152602060048201526014602482015273151bdad95b88191bd95cc81b9bdd08195e1a5cdd60621b60448201526064015b60405180910390fd5b505f908152600a6020908152604091829020825160c081018452905460ff808216835261010082048116938301939093526201000081048316938201939093526301000000830482166060820152640100000000830482166080820152650100000000009092041660a082015290565b5f6103e882610c59565b5f6001600160a01b038216610777576107776323d3ad8160e21b610bb0565b506001600160a01b03165f9081526005602052604090205467ffffffffffffffff1690565b6107a4610cf1565b6107ad5f610d1e565b565b6060600380546103fd90611745565b5f546107ca3383610d6f565b5f5b82811015610657575f6107df8284611791565b90506107ea81610d88565b5f918252600a60209081526040928390208251815492840151948401516060850151608086015160a09096015160ff908116650100000000000265ff000000000019978216640100000000029790971665ffff000000001992821663010000000263ff0000001994831662010000029490941663ffff0000199983166101000261ffff1990981692909516919091179590951796909616919091171793909316171790556001016107cc565b335f8181526007602090815260408083206001600160a01b03871680855290835292819020805460ff191686151590811790915590519081529192917f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a35050565b61090c8484846104c7565b6001600160a01b0383163b1561093c5761092884848484610fb3565b61093c5761093c6368d2bf6b60e11b610bb0565b50505050565b606061094d82610b6e565b6109905760405162461bcd60e51b8152602060048201526014602482015273151bdad95b88191bd95cc81b9bdd08195e1a5cdd60621b60448201526064016106d5565b5f828152600a60209081526040808320815160c081018352905460ff8082168084526101008304821695840195909552620100008204811693830193909352630100000081048316606083015264010000000081048316608083015265010000000000900490911660a08201529190610a0890611091565b610a18836020015160ff16611091565b610a28846040015160ff16611091565b610a38856060015160ff16611091565b610a48866080015160ff16611091565b610a588760a0015160ff16611091565b604051602001610a6d969594939291906117bb565b60405160208183030381529060405290505f81604051602001610a90919061194b565b6040516020818303038152906040529050610adb610aad86611091565b610ab683611121565b604051602001610ac79291906119b8565b604051602081830303815290604052611121565b604051602001610aeb9190611a65565b6040516020818303038152906040529350505050919050565b6001600160a01b039182165f90815260076020908152604080832093909416825291909152205460ff1690565b610b39610cf1565b6001600160a01b038116610b6257604051631e4fbdf760e01b81525f60048201526024016106d5565b610b6b81610d1e565b50565b5f8054821015610bab575f5b505f8281526004602052604081205490819003610ba157610b9a83611a96565b9250610b7a565b600160e01b161590505b919050565b805f5260045ffd5b5f610bc28361074e565b9050818015610bda5750336001600160a01b03821614155b15610bfd57610be98133610b04565b610bfd57610bfd6367d9dca160e11b610bb0565b5f8381526006602052604080822080546001600160a01b0319166001600160a01b0388811691821790925591518693918516917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591a450505050565b5f81815260046020526040902054805f03610cc6575f548210610c8657610c86636f96cda160e11b610bb0565b5b505f19015f818152600460205260409020548015610c8757600160e01b81165f03610cb157919050565b610cc1636f96cda160e11b610bb0565b610c87565b600160e01b81165f03610cd857919050565b610bab636f96cda160e11b610bb0565b5f5b9392505050565b6009546001600160a01b031633146107ad5760405163118cdaa760e01b81523360048201526024016106d5565b600980546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6104c3828260405180602001604052805f815250611147565b6040805160c0810182525f80825260208201819052918101829052606081018290526080810182905260a08101919091526040805160c081019091526414d212549560da1b60e082015260e581018390524261010582015280600a6101258201604051602081830303815290604052805190602001205f1c610e0a9190611abf565b60ff168152604051634559455360e01b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610e5c9190611abf565b60ff168152604051632420a4a960e11b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610eae9190611abf565b60ff16815260405166474c415353455360c81b6020828101919091526027820186905242604783015290910190600a90606701604051602081830303815290604052805190602001205f1c610f039190611abf565b60ff1681526040516409a9eaaa8960db1b6020828101919091526025820186905242604583015290910190600a90606501604051602081830303815290604052805190602001205f1c610f569190611abf565b60ff168152604051634e45434b60e01b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610fa89190611abf565b60ff16905292915050565b604051630a85bd0160e11b81525f906001600160a01b0385169063150b7a0290610fe7903390899088908890600401611ad2565b6020604051808303815f875af1925050508015611021575060408051601f3d908101601f1916820190925261101e91810190611b0e565b60015b611074573d80801561104e576040519150601f19603f3d011682016040523d82523d5f602084013e611053565b606091505b5080515f0361106c5761106c6368d2bf6b60e11b610bb0565b805181602001fd5b6001600160e01b031916630a85bd0160e11b149050949350505050565b60605f61109d836111a7565b60010190505f8167ffffffffffffffff8111156110bc576110bc611623565b6040519080825280601f01601f1916602001820160405280156110e6576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846110f057509392505050565b60606103e882604051806060016040528060408152602001611b5460409139600161127e565b61115183836113f9565b6001600160a01b0383163b15610657575f548281035b6111795f868380600101945086610fb3565b61118d5761118d6368d2bf6b60e11b610bb0565b81811061116757815f54146111a0575f80fd5b5050505050565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b83106111e55772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611211576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061122f57662386f26fc10000830492506010015b6305f5e1008310611247576305f5e100830492506008015b612710831061125b57612710830492506004015b6064831061126d576064830492506002015b600a83106103e85760010192915050565b606083515f0361129c575060408051602081019091525f8152610cea565b5f826112cc576003855160046112b29190611b29565b6112bd906002611791565b6112c79190611b40565b6112f1565b6003855160026112dc9190611791565b6112e69190611b40565b6112f1906004611b29565b90505f8167ffffffffffffffff81111561130d5761130d611623565b6040519080825280601f01601f191660200182016040528015611337576020820181803683370190505b509050600185016020820187885189016020810180515f82525b828410156113ac576003840193508351603f8160121c168701518653600186019550603f81600c1c168701518653600186019550603f8160061c168701518653600186019550603f8116870151865350600185019450611351565b9052505085156113ed576003885106600181146113d057600281146113e3576113eb565b603d6001830353603d60028303536113eb565b603d60018303535b505b50909695505050505050565b5f8054908290036114145761141463b562e8dd60e01b610bb0565b611440836114235f865f610ce8565b6001851460e11b174260a01b176001600160a01b03919091161790565b5f828152600460209081526040808320939093556001600160a01b0386168083526005909152918120805468010000000000000001860201905581900361149057611490622e076360e81b610bb0565b818301825b80835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a481816001019150810361149557505f5550505050565b6001600160e01b031981168114610b6b575f80fd5b5f602082840312156114f7575f80fd5b8135610cea816114d2565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610cea6020830184611502565b5f60208284031215611552575f80fd5b5035919050565b80356001600160a01b0381168114610bab575f80fd5b5f8060408385031215611580575f80fd5b61158983611559565b946020939093013593505050565b5f805f606084860312156115a9575f80fd5b6115b284611559565b92506115c060208501611559565b929592945050506040919091013590565b5f602082840312156115e1575f80fd5b610cea82611559565b5f80604083850312156115fb575f80fd5b61160483611559565b915060208301358015158114611618575f80fd5b809150509250929050565b634e487b7160e01b5f52604160045260245ffd5b5f805f806080858703121561164a575f80fd5b61165385611559565b935061166160208601611559565b925060408501359150606085013567ffffffffffffffff811115611683575f80fd5b8501601f81018713611693575f80fd5b803567ffffffffffffffff8111156116ad576116ad611623565b604051601f8201601f19908116603f0116810167ffffffffffffffff811182821017156116dc576116dc611623565b6040528181528282016020018910156116f3575f80fd5b816020840160208301375f6020838301015280935050505092959194509250565b5f8060408385031215611725575f80fd5b61172e83611559565b915061173c60208401611559565b90509250929050565b600181811c9082168061175957607f821691505b60208210810361177757634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b808201808211156103e8576103e861177d565b5f81518060208401855e5f93019283525090919050565b7f3c7465787420783d2731302720793d273230273e53686972743a20000000000081525f6117ec601b8301896117a4565b661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273430273e457965733a20000000000000600782015261182c60218201896117a4565b9050661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273630273e486169723a20000000000000600782015261186e60218201886117a4565b9050661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273830273e476c61737365733a2000000060078201526118b060248201876117a4565b661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d27313030273e4d6f7574683a20000000006007820152602301905061193e6118fc61193861190f82858a6117a4565b661e17ba32bc3a1f60c91b815260070190565b7f3c7465787420783d2731302720793d27313230273e4e65636b3a2000000000008152601b0190565b866117a4565b9998505050505050505050565b7f3c73766720786d6c6e733d27687474703a2f2f7777772e77332e6f72672f323081527f30302f737667272076696577426f783d273020302035303020353030273e000060208201525f6119a2603e8301846117a4565b651e17b9bb339f60d11b81526006019392505050565b757b226e616d65223a20224f6e436861696e444e41202360501b81525f6119e260168301856117a4565b7f222c20226465736372697074696f6e223a20224f6e2d636861696e20444e412d81527f6261736564204e4654222c2022696d616765223a2022646174613a696d61676560208201526f0bdcdd99cade1b5b0ed8985cd94d8d0b60821b6040820152611a5160508201856117a4565b61227d60f01b815260020195945050505050565b7f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081525f610cea601d8301846117a4565b5f81611aa457611aa461177d565b505f190190565b634e487b7160e01b5f52601260045260245ffd5b5f82611acd57611acd611aab565b500690565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f90611b0490830184611502565b9695505050505050565b5f60208284031215611b1e575f80fd5b8151610cea816114d2565b80820281158282048414176103e8576103e861177d565b5f82611b4e57611b4e611aab565b50049056fe4142434445464748494a4b4c4d4e4f505152535455565758595a6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2fa264697066735822122052a5cfa6f886f4e9d112d019b2bf6974a9dd7fb04bd4ff4ccd61ae577c219bdd64736f6c634300081a0033

Deployed Bytecode

0x608060405260043610610110575f3560e01c806370a082311161009d578063a22cb46511610062578063a22cb4651461030e578063b88d4fde1461032d578063c87b56dd14610340578063e985e9c51461035f578063f2fde38b1461037e575f80fd5b806370a0823114610297578063715018a6146102b65780638da5cb5b146102ca57806395d89b41146102e7578063a0712d68146102fb575f80fd5b806318160ddd116100e357806318160ddd146101b557806323b872dd146101d657806342842e0e146101e95780635bb209a5146101fc5780636352211e14610278575f80fd5b806301ffc9a71461011457806306fdde0314610148578063081812fc14610169578063095ea7b3146101a0575b5f80fd5b34801561011f575f80fd5b5061013361012e3660046114e7565b61039d565b60405190151581526020015b60405180910390f35b348015610153575f80fd5b5061015c6103ee565b60405161013f9190611530565b348015610174575f80fd5b50610188610183366004611542565b61047e565b6040516001600160a01b03909116815260200161013f565b6101b36101ae36600461156f565b6104b7565b005b3480156101c0575f80fd5b506001545f54035b60405190815260200161013f565b6101b36101e4366004611597565b6104c7565b6101b36101f7366004611597565b61063d565b348015610207575f80fd5b5061021b610216366004611542565b61065c565b60405161013f91905f60c08201905060ff835116825260ff602084015116602083015260ff604084015116604083015260ff606084015116606083015260ff608084015116608083015260ff60a08401511660a083015292915050565b348015610283575f80fd5b50610188610292366004611542565b61074e565b3480156102a2575f80fd5b506101c86102b13660046115d1565b610758565b3480156102c1575f80fd5b506101b361079c565b3480156102d5575f80fd5b506009546001600160a01b0316610188565b3480156102f2575f80fd5b5061015c6107af565b6101b3610309366004611542565b6107be565b348015610319575f80fd5b506101b36103283660046115ea565b610896565b6101b361033b366004611637565b610901565b34801561034b575f80fd5b5061015c61035a366004611542565b610942565b34801561036a575f80fd5b50610133610379366004611714565b610b04565b348015610389575f80fd5b506101b36103983660046115d1565b610b31565b5f6301ffc9a760e01b6001600160e01b0319831614806103cd57506380ac58cd60e01b6001600160e01b03198316145b806103e85750635b5e139f60e01b6001600160e01b03198316145b92915050565b6060600280546103fd90611745565b80601f016020809104026020016040519081016040528092919081815260200182805461042990611745565b80156104745780601f1061044b57610100808354040283529160200191610474565b820191905f5260205f20905b81548152906001019060200180831161045757829003601f168201915b5050505050905090565b5f61048882610b6e565b61049c5761049c6333d1c03960e21b610bb0565b505f908152600660205260409020546001600160a01b031690565b6104c382826001610bb8565b5050565b5f6104d182610c59565b6001600160a01b0394851694909150811684146104f7576104f762a1148160e81b610bb0565b5f8281526006602052604090208054338082146001600160a01b0388169091141761053a576105268633610b04565b61053a5761053a632ce44b5f60e11b610bb0565b8015610544575f82555b6001600160a01b038087165f9081526005602052604080822080545f190190559187168152208054600101905561059b85610580888287610ce8565b600160e11b174260a01b176001600160a01b03919091161790565b5f85815260046020526040812091909155600160e11b841690036105ec57600184015f8181526004602052604081205490036105ea575f5481146105ea575f8181526004602052604090208490555b505b6001600160a01b0385168481887fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4805f0361063457610634633a954ecd60e21b610bb0565b50505050505050565b61065783838360405180602001604052805f815250610901565b505050565b6040805160c0810182525f80825260208201819052918101829052606081018290526080810182905260a081019190915261069682610b6e565b6106de5760405162461bcd60e51b8152602060048201526014602482015273151bdad95b88191bd95cc81b9bdd08195e1a5cdd60621b60448201526064015b60405180910390fd5b505f908152600a6020908152604091829020825160c081018452905460ff808216835261010082048116938301939093526201000081048316938201939093526301000000830482166060820152640100000000830482166080820152650100000000009092041660a082015290565b5f6103e882610c59565b5f6001600160a01b038216610777576107776323d3ad8160e21b610bb0565b506001600160a01b03165f9081526005602052604090205467ffffffffffffffff1690565b6107a4610cf1565b6107ad5f610d1e565b565b6060600380546103fd90611745565b5f546107ca3383610d6f565b5f5b82811015610657575f6107df8284611791565b90506107ea81610d88565b5f918252600a60209081526040928390208251815492840151948401516060850151608086015160a09096015160ff908116650100000000000265ff000000000019978216640100000000029790971665ffff000000001992821663010000000263ff0000001994831662010000029490941663ffff0000199983166101000261ffff1990981692909516919091179590951796909616919091171793909316171790556001016107cc565b335f8181526007602090815260408083206001600160a01b03871680855290835292819020805460ff191686151590811790915590519081529192917f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a35050565b61090c8484846104c7565b6001600160a01b0383163b1561093c5761092884848484610fb3565b61093c5761093c6368d2bf6b60e11b610bb0565b50505050565b606061094d82610b6e565b6109905760405162461bcd60e51b8152602060048201526014602482015273151bdad95b88191bd95cc81b9bdd08195e1a5cdd60621b60448201526064016106d5565b5f828152600a60209081526040808320815160c081018352905460ff8082168084526101008304821695840195909552620100008204811693830193909352630100000081048316606083015264010000000081048316608083015265010000000000900490911660a08201529190610a0890611091565b610a18836020015160ff16611091565b610a28846040015160ff16611091565b610a38856060015160ff16611091565b610a48866080015160ff16611091565b610a588760a0015160ff16611091565b604051602001610a6d969594939291906117bb565b60405160208183030381529060405290505f81604051602001610a90919061194b565b6040516020818303038152906040529050610adb610aad86611091565b610ab683611121565b604051602001610ac79291906119b8565b604051602081830303815290604052611121565b604051602001610aeb9190611a65565b6040516020818303038152906040529350505050919050565b6001600160a01b039182165f90815260076020908152604080832093909416825291909152205460ff1690565b610b39610cf1565b6001600160a01b038116610b6257604051631e4fbdf760e01b81525f60048201526024016106d5565b610b6b81610d1e565b50565b5f8054821015610bab575f5b505f8281526004602052604081205490819003610ba157610b9a83611a96565b9250610b7a565b600160e01b161590505b919050565b805f5260045ffd5b5f610bc28361074e565b9050818015610bda5750336001600160a01b03821614155b15610bfd57610be98133610b04565b610bfd57610bfd6367d9dca160e11b610bb0565b5f8381526006602052604080822080546001600160a01b0319166001600160a01b0388811691821790925591518693918516917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591a450505050565b5f81815260046020526040902054805f03610cc6575f548210610c8657610c86636f96cda160e11b610bb0565b5b505f19015f818152600460205260409020548015610c8757600160e01b81165f03610cb157919050565b610cc1636f96cda160e11b610bb0565b610c87565b600160e01b81165f03610cd857919050565b610bab636f96cda160e11b610bb0565b5f5b9392505050565b6009546001600160a01b031633146107ad5760405163118cdaa760e01b81523360048201526024016106d5565b600980546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6104c3828260405180602001604052805f815250611147565b6040805160c0810182525f80825260208201819052918101829052606081018290526080810182905260a08101919091526040805160c081019091526414d212549560da1b60e082015260e581018390524261010582015280600a6101258201604051602081830303815290604052805190602001205f1c610e0a9190611abf565b60ff168152604051634559455360e01b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610e5c9190611abf565b60ff168152604051632420a4a960e11b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610eae9190611abf565b60ff16815260405166474c415353455360c81b6020828101919091526027820186905242604783015290910190600a90606701604051602081830303815290604052805190602001205f1c610f039190611abf565b60ff1681526040516409a9eaaa8960db1b6020828101919091526025820186905242604583015290910190600a90606501604051602081830303815290604052805190602001205f1c610f569190611abf565b60ff168152604051634e45434b60e01b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610fa89190611abf565b60ff16905292915050565b604051630a85bd0160e11b81525f906001600160a01b0385169063150b7a0290610fe7903390899088908890600401611ad2565b6020604051808303815f875af1925050508015611021575060408051601f3d908101601f1916820190925261101e91810190611b0e565b60015b611074573d80801561104e576040519150601f19603f3d011682016040523d82523d5f602084013e611053565b606091505b5080515f0361106c5761106c6368d2bf6b60e11b610bb0565b805181602001fd5b6001600160e01b031916630a85bd0160e11b149050949350505050565b60605f61109d836111a7565b60010190505f8167ffffffffffffffff8111156110bc576110bc611623565b6040519080825280601f01601f1916602001820160405280156110e6576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846110f057509392505050565b60606103e882604051806060016040528060408152602001611b5460409139600161127e565b61115183836113f9565b6001600160a01b0383163b15610657575f548281035b6111795f868380600101945086610fb3565b61118d5761118d6368d2bf6b60e11b610bb0565b81811061116757815f54146111a0575f80fd5b5050505050565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b83106111e55772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611211576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061122f57662386f26fc10000830492506010015b6305f5e1008310611247576305f5e100830492506008015b612710831061125b57612710830492506004015b6064831061126d576064830492506002015b600a83106103e85760010192915050565b606083515f0361129c575060408051602081019091525f8152610cea565b5f826112cc576003855160046112b29190611b29565b6112bd906002611791565b6112c79190611b40565b6112f1565b6003855160026112dc9190611791565b6112e69190611b40565b6112f1906004611b29565b90505f8167ffffffffffffffff81111561130d5761130d611623565b6040519080825280601f01601f191660200182016040528015611337576020820181803683370190505b509050600185016020820187885189016020810180515f82525b828410156113ac576003840193508351603f8160121c168701518653600186019550603f81600c1c168701518653600186019550603f8160061c168701518653600186019550603f8116870151865350600185019450611351565b9052505085156113ed576003885106600181146113d057600281146113e3576113eb565b603d6001830353603d60028303536113eb565b603d60018303535b505b50909695505050505050565b5f8054908290036114145761141463b562e8dd60e01b610bb0565b611440836114235f865f610ce8565b6001851460e11b174260a01b176001600160a01b03919091161790565b5f828152600460209081526040808320939093556001600160a01b0386168083526005909152918120805468010000000000000001860201905581900361149057611490622e076360e81b610bb0565b818301825b80835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a481816001019150810361149557505f5550505050565b6001600160e01b031981168114610b6b575f80fd5b5f602082840312156114f7575f80fd5b8135610cea816114d2565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610cea6020830184611502565b5f60208284031215611552575f80fd5b5035919050565b80356001600160a01b0381168114610bab575f80fd5b5f8060408385031215611580575f80fd5b61158983611559565b946020939093013593505050565b5f805f606084860312156115a9575f80fd5b6115b284611559565b92506115c060208501611559565b929592945050506040919091013590565b5f602082840312156115e1575f80fd5b610cea82611559565b5f80604083850312156115fb575f80fd5b61160483611559565b915060208301358015158114611618575f80fd5b809150509250929050565b634e487b7160e01b5f52604160045260245ffd5b5f805f806080858703121561164a575f80fd5b61165385611559565b935061166160208601611559565b925060408501359150606085013567ffffffffffffffff811115611683575f80fd5b8501601f81018713611693575f80fd5b803567ffffffffffffffff8111156116ad576116ad611623565b604051601f8201601f19908116603f0116810167ffffffffffffffff811182821017156116dc576116dc611623565b6040528181528282016020018910156116f3575f80fd5b816020840160208301375f6020838301015280935050505092959194509250565b5f8060408385031215611725575f80fd5b61172e83611559565b915061173c60208401611559565b90509250929050565b600181811c9082168061175957607f821691505b60208210810361177757634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b808201808211156103e8576103e861177d565b5f81518060208401855e5f93019283525090919050565b7f3c7465787420783d2731302720793d273230273e53686972743a20000000000081525f6117ec601b8301896117a4565b661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273430273e457965733a20000000000000600782015261182c60218201896117a4565b9050661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273630273e486169723a20000000000000600782015261186e60218201886117a4565b9050661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273830273e476c61737365733a2000000060078201526118b060248201876117a4565b661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d27313030273e4d6f7574683a20000000006007820152602301905061193e6118fc61193861190f82858a6117a4565b661e17ba32bc3a1f60c91b815260070190565b7f3c7465787420783d2731302720793d27313230273e4e65636b3a2000000000008152601b0190565b866117a4565b9998505050505050505050565b7f3c73766720786d6c6e733d27687474703a2f2f7777772e77332e6f72672f323081527f30302f737667272076696577426f783d273020302035303020353030273e000060208201525f6119a2603e8301846117a4565b651e17b9bb339f60d11b81526006019392505050565b757b226e616d65223a20224f6e436861696e444e41202360501b81525f6119e260168301856117a4565b7f222c20226465736372697074696f6e223a20224f6e2d636861696e20444e412d81527f6261736564204e4654222c2022696d616765223a2022646174613a696d61676560208201526f0bdcdd99cade1b5b0ed8985cd94d8d0b60821b6040820152611a5160508201856117a4565b61227d60f01b815260020195945050505050565b7f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081525f610cea601d8301846117a4565b5f81611aa457611aa461177d565b505f190190565b634e487b7160e01b5f52601260045260245ffd5b5f82611acd57611acd611aab565b500690565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f90611b0490830184611502565b9695505050505050565b5f60208284031215611b1e575f80fd5b8151610cea816114d2565b80820281158282048414176103e8576103e861177d565b5f82611b4e57611b4e611aab565b50049056fe4142434445464748494a4b4c4d4e4f505152535455565758595a6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2fa264697066735822122052a5cfa6f886f4e9d112d019b2bf6974a9dd7fb04bd4ff4ccd61ae577c219bdd64736f6c634300081a0033

Deployed Bytecode Sourcemap

157394:3911:0:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;20588:639;;;;;;;;;;-1:-1:-1;20588:639:0;;;;;:::i;:::-;;:::i;:::-;;;565:14:1;;558:22;540:41;;528:2;513:18;20588:639:0;;;;;;;;21490:100;;;;;;;;;;;;;:::i;:::-;;;;;;;:::i;28730:227::-;;;;;;;;;;-1:-1:-1;28730:227:0;;;;;:::i;:::-;;:::i;:::-;;;-1:-1:-1;;;;;1528:32:1;;;1510:51;;1498:2;1483:18;28730:227:0;1364:203:1;28447:124:0;;;;;;:::i;:::-;;:::i;:::-;;16692:573;;;;;;;;;;-1:-1:-1;17136:12:0;;16753:14;17120:13;:28;16692:573;;;2201:25:1;;;2189:2;2174:18;16692:573:0;2055:177:1;33002:3523:0;;;;;;:::i;:::-;;:::i;36621:193::-;;;;;;:::i;:::-;;:::i;159394:174::-;;;;;;;;;;-1:-1:-1;159394:174:0;;;;;:::i;:::-;;:::i;:::-;;;;;;2750:4:1;2792:3;2781:9;2777:19;2769:27;;2842:4;2833:6;2827:13;2823:24;2812:9;2805:43;2916:4;2908;2900:6;2896:17;2890:24;2886:35;2879:4;2868:9;2864:20;2857:65;2990:4;2982;2974:6;2970:17;2964:24;2960:35;2953:4;2942:9;2938:20;2931:65;3064:4;3056;3048:6;3044:17;3038:24;3034:35;3027:4;3016:9;3012:20;3005:65;3138:4;3130;3122:6;3118:17;3112:24;3108:35;3101:4;3090:9;3086:20;3079:65;3212:4;3204;3196:6;3192:17;3186:24;3182:35;3175:4;3164:9;3160:20;3153:65;2616:608;;;;;22892:152:0;;;;;;;;;;-1:-1:-1;22892:152:0;;;;;:::i;:::-;;:::i;18416:242::-;;;;;;;;;;-1:-1:-1;18416:242:0;;;;;:::i;:::-;;:::i;64152:103::-;;;;;;;;;;;;;:::i;63477:87::-;;;;;;;;;;-1:-1:-1;63550:6:0;;-1:-1:-1;;;;;63550:6:0;63477:87;;21666:104;;;;;;;;;;;;;:::i;159045:318::-;;;;;;:::i;:::-;;:::i;29297:234::-;;;;;;;;;;-1:-1:-1;29297:234:0;;;;;:::i;:::-;;:::i;37412:416::-;;;;;;:::i;:::-;;:::i;159608:1694::-;;;;;;;;;;-1:-1:-1;159608:1694:0;;;;;:::i;:::-;;:::i;29688:164::-;;;;;;;;;;-1:-1:-1;29688:164:0;;;;;:::i;:::-;;:::i;64410:220::-;;;;;;;;;;-1:-1:-1;64410:220:0;;;;;:::i;:::-;;:::i;20588:639::-;20673:4;-1:-1:-1;;;;;;;;;20997:25:0;;;;:102;;-1:-1:-1;;;;;;;;;;21074:25:0;;;20997:102;:179;;;-1:-1:-1;;;;;;;;;;21151:25:0;;;20997:179;20977:199;20588:639;-1:-1:-1;;20588:639:0:o;21490:100::-;21544:13;21577:5;21570:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;21490:100;:::o;28730:227::-;28806:7;28831:16;28839:7;28831;:16::i;:::-;28826:73;;28849:50;-1:-1:-1;;;28849:7:0;:50::i;:::-;-1:-1:-1;28919:24:0;;;;:15;:24;;;;;:30;-1:-1:-1;;;;;28919:30:0;;28730:227::o;28447:124::-;28536:27;28545:2;28549:7;28558:4;28536:8;:27::i;:::-;28447:124;;:::o;33002:3523::-;33144:27;33174;33193:7;33174:18;:27::i;:::-;-1:-1:-1;;;;;33329:22:0;;;;33144:57;;-1:-1:-1;33389:45:0;;;;33385:95;;33436:44;-1:-1:-1;;;33436:7:0;:44::i;:::-;33494:27;32110:24;;;:15;:24;;;;;32338:26;;58687:10;31735:30;;;-1:-1:-1;;;;;31428:28:0;;31713:20;;;31710:56;33680:189;;33773:43;33790:4;58687:10;29688:164;:::i;33773:43::-;33768:101;;33818:51;-1:-1:-1;;;33818:7:0;:51::i;:::-;34018:15;34015:160;;;34158:1;34137:19;34130:30;34015:160;-1:-1:-1;;;;;34555:24:0;;;;;;;:18;:24;;;;;;34553:26;;-1:-1:-1;;34553:26:0;;;34624:22;;;;;;34622:24;;34553:26;34622:24;;;34946:146;34643:2;35032:45;34574:4;34643:2;35057:19;35032:14;:45::i;:::-;-1:-1:-1;;;35004:73:0;27549:11;27524:23;27520:41;27517:52;-1:-1:-1;;;;;27375:28:0;;;;27507:63;;27138:450;34946:146;34917:26;;;;:17;:26;;;;;:175;;;;-1:-1:-1;;;35212:47:0;;:52;;35208:627;;35317:1;35307:11;;35285:19;35440:30;;;:17;:30;;;;;;:35;;35436:384;;35578:13;;35563:11;:28;35559:242;;35725:30;;;;:17;:30;;;;;:52;;;35559:242;35266:569;35208:627;-1:-1:-1;;;;;35967:20:0;;36347:7;35967:20;36277:4;36219:25;35948:16;;36084:299;36408:8;36420:1;36408:13;36404:58;;36423:39;-1:-1:-1;;;36423:7:0;:39::i;:::-;33133:3392;;;;33002:3523;;;:::o;36621:193::-;36767:39;36784:4;36790:2;36794:7;36767:39;;;;;;;;;;;;:16;:39::i;:::-;36621:193;;;:::o;159394:174::-;-1:-1:-1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;159481:16:0;159489:7;159481;:16::i;:::-;159473:49;;;;-1:-1:-1;;;159473:49:0;;5968:2:1;159473:49:0;;;5950:21:1;6007:2;5987:18;;;5980:30;-1:-1:-1;;;6026:18:1;;;6019:50;6086:18;;159473:49:0;;;;;;;;;-1:-1:-1;159540:20:0;;;;:11;:20;;;;;;;;;159533:27;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;159394:174::o;22892:152::-;22964:7;23007:27;23026:7;23007:18;:27::i;18416:242::-;18488:7;-1:-1:-1;;;;;18512:19:0;;18508:69;;18533:44;-1:-1:-1;;;18533:7:0;:44::i;:::-;-1:-1:-1;;;;;;18595:25:0;;;;;:18;:25;;;;;;11176:13;18595:55;;18416:242::o;64152:103::-;63363:13;:11;:13::i;:::-;64217:30:::1;64244:1;64217:18;:30::i;:::-;64152:103::o:0;21666:104::-;21722:13;21755:7;21748:14;;;;;:::i;159045:318::-;159105:20;16461:13;159153:31;159163:10;159175:8;159153:9;:31::i;:::-;159202:9;159197:159;159221:8;159217:1;:12;159197:159;;;159251:15;159269:16;159284:1;159269:12;:16;:::i;:::-;159251:34;;159323:21;159336:7;159323:12;:21::i;:::-;159300:20;;;;:11;:20;;;;;;;;;:44;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;159300:44:0;;;;;;;;;-1:-1:-1;;159300:44:0;;;;;-1:-1:-1;;159300:44:0;;;;;;;;;-1:-1:-1;;159300:44:0;;;;;-1:-1:-1;;159300:44:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;159231:3;159197:159;;29297:234;58687:10;29392:39;;;;:18;:39;;;;;;;;-1:-1:-1;;;;;29392:49:0;;;;;;;;;;;;:60;;-1:-1:-1;;29392:60:0;;;;;;;;;;29468:55;;540:41:1;;;29392:49:0;;58687:10;29468:55;;513:18:1;29468:55:0;;;;;;;29297:234;;:::o;37412:416::-;37587:31;37600:4;37606:2;37610:7;37587:12;:31::i;:::-;-1:-1:-1;;;;;37633:14:0;;;:19;37629:192;;37672:56;37703:4;37709:2;37713:7;37722:5;37672:30;:56::i;:::-;37667:154;;37749:56;-1:-1:-1;;;37749:7:0;:56::i;:::-;37412:416;;;;:::o;159608:1694::-;159673:13;159707:16;159715:7;159707;:16::i;:::-;159699:49;;;;-1:-1:-1;;;159699:49:0;;5968:2:1;159699:49:0;;;5950:21:1;6007:2;5987:18;;;5980:30;-1:-1:-1;;;6026:18:1;;;6019:50;6086:18;;159699:49:0;5766:344:1;159699:49:0;159759:14;159776:20;;;:11;:20;;;;;;;;159759:37;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:14;159923:27;;:16;:27::i;:::-;160010:26;160027:3;:8;;;160010:26;;:16;:26::i;:::-;160096;160113:3;:8;;;160096:26;;:16;:26::i;:::-;160185:29;160202:3;:11;;;160185:29;;:16;:29::i;:::-;160276:27;160293:3;:9;;;160276:27;;:16;:27::i;:::-;160364:26;160381:3;:8;;;160364:26;;:16;:26::i;:::-;159857:559;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;159809:618;;160440:17;160599:10;160481:170;;;;;;;;:::i;:::-;;;;;;;;;;;;;160440:222;;160788:480;160961:25;160978:7;160961:16;:25::i;:::-;161138;161158:3;161138:13;:25::i;:::-;160856:370;;;;;;;;;:::i;:::-;;;;;;;;;;;;;160788:13;:480::i;:::-;160703:580;;;;;;;;:::i;:::-;;;;;;;;;;;;;160675:619;;;;;159608:1694;;;:::o;29688:164::-;-1:-1:-1;;;;;29809:25:0;;;29785:4;29809:25;;;:18;:25;;;;;;;;:35;;;;;;;;;;;;;;;29688:164::o;64410:220::-;63363:13;:11;:13::i;:::-;-1:-1:-1;;;;;64495:22:0;::::1;64491:93;;64541:31;::::0;-1:-1:-1;;;64541:31:0;;64569:1:::1;64541:31;::::0;::::1;1510:51:1::0;1483:18;;64541:31:0::1;1364:203:1::0;64491:93:0::1;64594:28;64613:8;64594:18;:28::i;:::-;64410:220:::0;:::o;30110:475::-;30175:11;30367:13;;30357:7;:23;30353:214;;;30401:14;30434:60;-1:-1:-1;30451:26:0;;;;:17;:26;;;;;;;30441:42;;;30434:60;;30485:9;;;:::i;:::-;;;30434:60;;;-1:-1:-1;;;30522:24:0;:29;;-1:-1:-1;30353:214:0;30110:475;;;:::o;60619:165::-;60720:13;60714:4;60707:27;60761:4;60755;60748:18;52034:474;52163:13;52179:16;52187:7;52179;:16::i;:::-;52163:32;;52212:13;:45;;;;-1:-1:-1;58687:10:0;-1:-1:-1;;;;;52229:28:0;;;;52212:45;52208:201;;;52277:44;52294:5;58687:10;29688:164;:::i;52277:44::-;52272:137;;52342:51;-1:-1:-1;;;52342:7:0;:51::i;:::-;52421:24;;;;:15;:24;;;;;;:35;;-1:-1:-1;;;;;;52421:35:0;-1:-1:-1;;;;;52421:35:0;;;;;;;;;52472:28;;52421:24;;52472:28;;;;;;;52152:356;52034:474;;;:::o;24377:2213::-;24527:26;;;;:17;:26;;;;;;24854:6;24864:1;24854:11;24850:1292;;24901:13;;24890:7;:24;24886:77;;24916:47;-1:-1:-1;;;24916:7:0;:47::i;:::-;25520:607;-1:-1:-1;;;25616:9:0;25598:28;;;;:17;:28;;;;;;25672:25;;25520:607;25672:25;-1:-1:-1;;;25724:6:0;:24;25752:1;25724:29;25720:48;;24377:2213;;;:::o;25720:48::-;26060:47;-1:-1:-1;;;26060:7:0;:47::i;:::-;25520:607;;24850:1292;-1:-1:-1;;;26469:6:0;:24;26497:1;26469:29;26465:48;;24377:2213;;;:::o;26465:48::-;26535:47;-1:-1:-1;;;26535:7:0;:47::i;57909:311::-;58044:7;57909:311;;;;;;:::o;63642:166::-;63550:6;;-1:-1:-1;;;;;63550:6:0;58687:10;63702:23;63698:103;;63749:40;;-1:-1:-1;;;63749:40:0;;58687:10;63749:40;;;1510:51:1;1483:18;;63749:40:0;1364:203:1;64790:191:0;64883:6;;;-1:-1:-1;;;;;64900:17:0;;;-1:-1:-1;;;;;;64900:17:0;;;;;;;64933:40;;64883:6;;;64900:17;64883:6;;64933:40;;64864:16;;64933:40;64853:128;64790:191;:::o;47228:112::-;47305:27;47315:2;47319:8;47305:27;;;;;;;;;;;;:9;:27::i;158211:798::-;-1:-1:-1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;158303:698:0;;;;;;;;;-1:-1:-1;;;158353:51:0;;;11709:20:1;11745:11;;;11738:27;;;158388:15:0;11781:12:1;;;11774:28;158303:698:0;157822:2;11818:12:1;;;158353:51:0;;;;;;;;;;;;158343:62;;;;;;158335:71;;:86;;;;:::i;:::-;158303:698;;;;158467:50;;-1:-1:-1;;;158303:698:0;158467:50;;;12348:19:1;;;;12383:11;;;12376:27;;;158501:15:0;12419:12:1;;;12412:28;158303:698:0;;;;157907:2;;12456:12:1;;158467:50:0;;;;;;;;;;;;158457:61;;;;;;158449:70;;:83;;;;:::i;:::-;158303:698;;;;158578:50;;-1:-1:-1;;;158303:698:0;158578:50;;;12737:19:1;;;;12772:11;;;12765:27;;;158612:15:0;12808:12:1;;;12801:28;158303:698:0;;;;157952:2;;12845:12:1;;158578:50:0;;;;;;;;;;;;158568:61;;;;;;158560:70;;:83;;;;:::i;:::-;158303:698;;;;158692:53;;-1:-1:-1;;;158303:698:0;158692:53;;;13126:22:1;;;;13164:11;;;13157:27;;;158729:15:0;13200:12:1;;;13193:28;158303:698:0;;;;158000:2;;13237:12:1;;158692:53:0;;;;;;;;;;;;158682:64;;;;;;158674:73;;:89;;;;:::i;:::-;158303:698;;;;158810:51;;-1:-1:-1;;;158303:698:0;158810:51;;;13518:20:1;;;;13554:11;;;13547:27;;;158845:15:0;13590:12:1;;;13583:28;158303:698:0;;;;158046:2;;13627:12:1;;158810:51:0;;;;;;;;;;;;158800:62;;;;;;158792:71;;:85;;;;:::i;:::-;158303:698;;;;158923:50;;-1:-1:-1;;;158303:698:0;158923:50;;;13908:19:1;;;;13943:11;;;13936:27;;;158957:15:0;13979:12:1;;;13972:28;158303:698:0;;;;158091:2;;14016:12:1;;158923:50:0;;;;;;;;;;;;158913:61;;;;;;158905:70;;:83;;;;:::i;:::-;158303:698;;;;158296:705;158211:798;-1:-1:-1;;158211:798:0:o;39912:691::-;40096:88;;-1:-1:-1;;;40096:88:0;;40075:4;;-1:-1:-1;;;;;40096:45:0;;;;;:88;;58687:10;;40163:4;;40169:7;;40178:5;;40096:88;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;-1:-1:-1;40096:88:0;;;;;;;;-1:-1:-1;;40096:88:0;;;;;;;;;;;;:::i;:::-;;;40092:504;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;40379:6;:13;40396:1;40379:18;40375:115;;40418:56;-1:-1:-1;;;40418:7:0;:56::i;:::-;40562:6;40556:13;40547:6;40543:2;40539:15;40532:38;40092:504;-1:-1:-1;;;;;;40255:64:0;-1:-1:-1;;;40255:64:0;;-1:-1:-1;39912:691:0;;;;;;:::o;135705:650::-;135761:13;135812:14;135829:17;135840:5;135829:10;:17::i;:::-;135849:1;135829:21;135812:38;;135865:20;135899:6;135888:18;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;135888:18:0;-1:-1:-1;135865:41:0;-1:-1:-1;135998:28:0;;;136014:2;135998:28;136055:254;-1:-1:-1;;136087:5:0;-1:-1:-1;;;136188:2:0;136177:14;;136172:32;136087:5;136159:46;136251:2;136242:11;;;-1:-1:-1;136272:21:0;136055:254;136272:21;-1:-1:-1;136330:6:0;135705:650;-1:-1:-1;;;135705:650:0:o;152668:126::-;152726:13;152759:27;152767:4;152773:6;;;;;;;;;;;;;;;;;152781:4;152759:7;:27::i;46357:787::-;46488:19;46494:2;46498:8;46488:5;:19::i;:::-;-1:-1:-1;;;;;46549:14:0;;;:19;46545:581;;46589:11;46603:13;46651:14;;;46684:242;46715:62;46754:1;46758:2;46762:7;;;;;;46771:5;46715:30;:62::i;:::-;46710:176;;46806:56;-1:-1:-1;;;46806:7:0;:56::i;:::-;46921:3;46913:5;:11;46684:242;;47097:3;47080:13;;:20;47076:34;;47102:8;;;47076:34;46570:556;;46357:787;;;:::o;129032:948::-;129085:7;;-1:-1:-1;;;129163:17:0;;129159:106;;-1:-1:-1;;;129201:17:0;;;-1:-1:-1;129247:2:0;129237:12;129159:106;129292:8;129283:5;:17;129279:106;;129330:8;129321:17;;;-1:-1:-1;129367:2:0;129357:12;129279:106;129412:8;129403:5;:17;129399:106;;129450:8;129441:17;;;-1:-1:-1;129487:2:0;129477:12;129399:106;129532:7;129523:5;:16;129519:103;;129569:7;129560:16;;;-1:-1:-1;129605:1:0;129595:11;129519:103;129649:7;129640:5;:16;129636:103;;129686:7;129677:16;;;-1:-1:-1;129722:1:0;129712:11;129636:103;129766:7;129757:5;:16;129753:103;;129803:7;129794:16;;;-1:-1:-1;129839:1:0;129829:11;129753:103;129883:7;129874:5;:16;129870:68;;129921:1;129911:11;129966:6;129032:948;-1:-1:-1;;129032:948:0:o;153206:4109::-;153303:13;153540:4;:11;153555:1;153540:16;153536:31;;-1:-1:-1;153558:9:0;;;;;;;;;-1:-1:-1;153558:9:0;;;;153536:31;154520:20;154543:11;:69;;154611:1;154592:4;:11;154588:1;:15;;;;:::i;:::-;:19;;154606:1;154588:19;:::i;:::-;154587:25;;;;:::i;:::-;154543:69;;;154582:1;154563:4;:11;154577:1;154563:15;;;;:::i;:::-;154562:21;;;;:::i;:::-;154557:27;;:1;:27;:::i;:::-;154520:92;;154625:20;154659:12;154648:24;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;154648:24:0;;154625:47;;154824:1;154817:5;154813:13;154928:4;154920:6;154916:17;154962:4;155010;155004:11;154998:4;154994:22;155262:4;155254:6;155250:17;155305:8;155299:15;155345:4;155335:8;155328:22;155420:1286;155455:6;155446:7;155443:19;155420:1286;;;155561:1;155552:7;155548:15;155537:26;;155600:7;155594:14;156196:4;156188:5;156184:2;156180:14;156176:25;156166:8;156162:40;156156:47;156145:9;156137:67;156250:1;156239:9;156235:17;156222:30;;156342:4;156334:5;156330:2;156326:14;156322:25;156312:8;156308:40;156302:47;156291:9;156283:67;156396:1;156385:9;156381:17;156368:30;;156487:4;156479:5;156476:1;156472:13;156468:24;156458:8;156454:39;156448:46;156437:9;156429:66;156541:1;156530:9;156526:17;156513:30;;156624:4;156617:5;156613:16;156603:8;156599:31;156593:38;156582:9;156574:58;;156678:1;156667:9;156663:17;156650:30;;155420:1286;;;156770:28;;-1:-1:-1;;156814:457:0;;;;157002:1;156995:4;156989:11;156985:19;157027:1;157022:135;;;;157180:1;157175:81;;;;156978:278;;157022:135;157079:4;157075:1;157064:9;157060:17;157052:32;157133:4;157129:1;157118:9;157114:17;157106:32;157022:135;;157175:81;157232:4;157228:1;157217:9;157213:17;157205:32;156978:278;;156814:457;-1:-1:-1;157301:6:0;;153206:4109;-1:-1:-1;;;;;;153206:4109:0:o;41065:2399::-;41138:20;41161:13;;;41189;;;41185:53;;41204:34;-1:-1:-1;;;41204:7:0;:34::i;:::-;41785:139;41822:2;41876:33;41899:1;41903:2;41907:1;41876:14;:33::i;:::-;27993:1;27980:15;;27954:24;27950:46;41843:66;27549:11;27524:23;27520:41;27517:52;-1:-1:-1;;;;;27375:28:0;;;;27507:63;;27138:450;41785:139;41751:31;;;;:17;:31;;;;;;;;:173;;;;-1:-1:-1;;;;;42142:22:0;;;;;:18;:22;;;;;;:71;;42180:32;42168:45;;42142:71;;;42403:13;;;42399:54;;42418:35;-1:-1:-1;;;42418:7:0;:35::i;:::-;42484:23;;;;42663:676;43082:7;43038:8;42993:1;42927:25;42864:1;42799;42768:358;43334:3;43321:9;;;;;;:16;42663:676;;-1:-1:-1;43355:13:0;:19;-1:-1:-1;36621:193:0;;;:::o;14:131:1:-;-1:-1:-1;;;;;;88:32:1;;78:43;;68:71;;135:1;132;125:12;150:245;208:6;261:2;249:9;240:7;236:23;232:32;229:52;;;277:1;274;267:12;229:52;316:9;303:23;335:30;359:5;335:30;:::i;592:300::-;645:3;683:5;677:12;710:6;705:3;698:19;766:6;759:4;752:5;748:16;741:4;736:3;732:14;726:47;818:1;811:4;802:6;797:3;793:16;789:27;782:38;881:4;874:2;870:7;865:2;857:6;853:15;849:29;844:3;840:39;836:50;829:57;;;592:300;;;;:::o;897:231::-;1046:2;1035:9;1028:21;1009:4;1066:56;1118:2;1107:9;1103:18;1095:6;1066:56;:::i;1133:226::-;1192:6;1245:2;1233:9;1224:7;1220:23;1216:32;1213:52;;;1261:1;1258;1251:12;1213:52;-1:-1:-1;1306:23:1;;1133:226;-1:-1:-1;1133:226:1:o;1572:173::-;1640:20;;-1:-1:-1;;;;;1689:31:1;;1679:42;;1669:70;;1735:1;1732;1725:12;1750:300;1818:6;1826;1879:2;1867:9;1858:7;1854:23;1850:32;1847:52;;;1895:1;1892;1885:12;1847:52;1918:29;1937:9;1918:29;:::i;:::-;1908:39;2016:2;2001:18;;;;1988:32;;-1:-1:-1;;;1750:300:1:o;2237:374::-;2314:6;2322;2330;2383:2;2371:9;2362:7;2358:23;2354:32;2351:52;;;2399:1;2396;2389:12;2351:52;2422:29;2441:9;2422:29;:::i;:::-;2412:39;;2470:38;2504:2;2493:9;2489:18;2470:38;:::i;:::-;2237:374;;2460:48;;-1:-1:-1;;;2577:2:1;2562:18;;;;2549:32;;2237:374::o;3229:186::-;3288:6;3341:2;3329:9;3320:7;3316:23;3312:32;3309:52;;;3357:1;3354;3347:12;3309:52;3380:29;3399:9;3380:29;:::i;3420:347::-;3485:6;3493;3546:2;3534:9;3525:7;3521:23;3517:32;3514:52;;;3562:1;3559;3552:12;3514:52;3585:29;3604:9;3585:29;:::i;:::-;3575:39;;3664:2;3653:9;3649:18;3636:32;3711:5;3704:13;3697:21;3690:5;3687:32;3677:60;;3733:1;3730;3723:12;3677:60;3756:5;3746:15;;;3420:347;;;;;:::o;3772:127::-;3833:10;3828:3;3824:20;3821:1;3814:31;3864:4;3861:1;3854:15;3888:4;3885:1;3878:15;3904:1207;3999:6;4007;4015;4023;4076:3;4064:9;4055:7;4051:23;4047:33;4044:53;;;4093:1;4090;4083:12;4044:53;4116:29;4135:9;4116:29;:::i;:::-;4106:39;;4164:38;4198:2;4187:9;4183:18;4164:38;:::i;:::-;4154:48;-1:-1:-1;4271:2:1;4256:18;;4243:32;;-1:-1:-1;4350:2:1;4335:18;;4322:32;4377:18;4366:30;;4363:50;;;4409:1;4406;4399:12;4363:50;4432:22;;4485:4;4477:13;;4473:27;-1:-1:-1;4463:55:1;;4514:1;4511;4504:12;4463:55;4554:2;4541:16;4580:18;4572:6;4569:30;4566:56;;;4602:18;;:::i;:::-;4651:2;4645:9;4743:2;4705:17;;-1:-1:-1;;4701:31:1;;;4734:2;4697:40;4693:54;4681:67;;4778:18;4763:34;;4799:22;;;4760:62;4757:88;;;4825:18;;:::i;:::-;4861:2;4854:22;4885;;;4926:15;;;4943:2;4922:24;4919:37;-1:-1:-1;4916:57:1;;;4969:1;4966;4959:12;4916:57;5025:6;5020:2;5016;5012:11;5007:2;4999:6;4995:15;4982:50;5078:1;5073:2;5064:6;5056;5052:19;5048:28;5041:39;5099:6;5089:16;;;;;3904:1207;;;;;;;:::o;5116:260::-;5184:6;5192;5245:2;5233:9;5224:7;5220:23;5216:32;5213:52;;;5261:1;5258;5251:12;5213:52;5284:29;5303:9;5284:29;:::i;:::-;5274:39;;5332:38;5366:2;5355:9;5351:18;5332:38;:::i;:::-;5322:48;;5116:260;;;;;:::o;5381:380::-;5460:1;5456:12;;;;5503;;;5524:61;;5578:4;5570:6;5566:17;5556:27;;5524:61;5631:2;5623:6;5620:14;5600:18;5597:38;5594:161;;5677:10;5672:3;5668:20;5665:1;5658:31;5712:4;5709:1;5702:15;5740:4;5737:1;5730:15;5594:161;;5381:380;;;:::o;6115:127::-;6176:10;6171:3;6167:20;6164:1;6157:31;6207:4;6204:1;6197:15;6231:4;6228:1;6221:15;6247:125;6312:9;;;6333:10;;;6330:36;;;6346:18;;:::i;6377:212::-;6419:3;6457:5;6451:12;6501:6;6494:4;6487:5;6483:16;6478:3;6472:36;6563:1;6527:16;;6552:13;;;-1:-1:-1;6527:16:1;;6377:212;-1:-1:-1;6377:212:1:o;6865:2509::-;8478:29;8473:3;8466:42;8448:3;8527:39;8562:2;8557:3;8553:12;8545:6;8527:39;:::i;:::-;-1:-1:-1;;;8582:2:1;8575:21;8624:28;8620:1;8616:2;8612:10;8605:48;8672:38;8706:2;8702;8698:11;8690:6;8672:38;:::i;:::-;8662:48;;-1:-1:-1;;;8726:2:1;8719:21;8768:28;8764:1;8760:2;8756:10;8749:48;8816:38;8850:2;8846;8842:11;8834:6;8816:38;:::i;:::-;8806:48;;-1:-1:-1;;;8870:2:1;8863:21;8912:31;8908:1;8904:2;8900:10;8893:51;8966:38;9000:2;8996;8992:11;8984:6;8966:38;:::i;:::-;-1:-1:-1;;;9036:24:1;;9137:30;9089:1;9078:13;;9123:45;9186:14;;;-1:-1:-1;9216:152:1;9246:121;9272:94;9302:63;9246:121;9186:14;9350:6;9332:32;:::i;:::-;-1:-1:-1;;;6659:22:1;;6706:1;6697:11;;6594:120;9302:63;6796:29;6784:42;;6851:2;6842:12;;6719:141;9272:94;9264:6;9246:121;:::i;9216:152::-;9209:159;6865:2509;-1:-1:-1;;;;;;;;;6865:2509:1:o;9379:580::-;9742:34;9737:3;9730:47;9807:32;9802:2;9797:3;9793:12;9786:54;9712:3;9859:39;9894:2;9889:3;9885:12;9877:6;9859:39;:::i;:::-;-1:-1:-1;;;9907:20:1;;9951:1;9943:10;;9379:580;-1:-1:-1;;;9379:580:1:o;9964:981::-;-1:-1:-1;;;10464:68:1;;10446:3;10551:39;10586:2;10577:12;;10569:6;10551:39;:::i;:::-;10610:66;10606:2;10599:78;10706:66;10701:2;10697;10693:11;10686:87;-1:-1:-1;;;10797:2:1;10793;10789:11;10782:39;10840:38;10874:2;10870;10866:11;10858:6;10840:38;:::i;:::-;-1:-1:-1;;;10887:26:1;;10937:1;10929:10;;9964:981;-1:-1:-1;;;;;9964:981:1:o;10950:355::-;11212:31;11207:3;11200:44;11182:3;11260:39;11295:2;11290:3;11286:12;11278:6;11260:39;:::i;11310:136::-;11349:3;11377:5;11367:39;;11386:18;;:::i;:::-;-1:-1:-1;;;11422:18:1;;11310:136::o;11841:127::-;11902:10;11897:3;11893:20;11890:1;11883:31;11933:4;11930:1;11923:15;11957:4;11954:1;11947:15;11973:112;12005:1;12031;12021:35;;12036:18;;:::i;:::-;-1:-1:-1;12070:9:1;;11973:112::o;14039:496::-;-1:-1:-1;;;;;14270:32:1;;;14252:51;;14339:32;;14334:2;14319:18;;14312:60;14403:2;14388:18;;14381:34;;;14451:3;14446:2;14431:18;;14424:31;;;-1:-1:-1;;14472:57:1;;14509:19;;14501:6;14472:57;:::i;:::-;14464:65;14039:496;-1:-1:-1;;;;;;14039:496:1:o;14540:249::-;14609:6;14662:2;14650:9;14641:7;14637:23;14633:32;14630:52;;;14678:1;14675;14668:12;14630:52;14710:9;14704:16;14729:30;14753:5;14729:30;:::i;14794:168::-;14867:9;;;14898;;14915:15;;;14909:22;;14895:37;14885:71;;14936:18;;:::i;14967:120::-;15007:1;15033;15023:35;;15038:18;;:::i;:::-;-1:-1:-1;15072:9:1;;14967:120::o

Swarm Source

ipfs://52a5cfa6f886f4e9d112d019b2bf6974a9dd7fb04bd4ff4ccd61ae577c219bdd
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.