ERC-721
Overview
Max Total Supply
10,687 OCDNA
Holders
153
Market
Volume (24H)
N/A
Min Price (24H)
N/A
Max Price (24H)
N/A
Other Info
Token Contract
Balance
4 OCDNALoading...
Loading
Loading...
Loading
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
OnChainDNA
Compiler Version
v0.8.26+commit.8a97fa7a
Contract Source Code (Solidity)
/** *Submitted for verification at apescan.io on 2025-01-10 */ // File: erc721a/contracts/IERC721A.sol // ERC721A Contracts v4.3.0 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721A. */ interface IERC721A { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); /** * `_sequentialUpTo()` must be greater than `_startTokenId()`. */ error SequentialUpToTooSmall(); /** * The `tokenId` of a sequential mint exceeds `_sequentialUpTo()`. */ error SequentialMintExceedsLimit(); /** * Spot minting requires a `tokenId` greater than `_sequentialUpTo()`. */ error SpotMintTokenIdTooSmall(); /** * Cannot mint over a token that already exists. */ error TokenAlreadyExists(); /** * The feature is not compatible with spot mints. */ error NotCompatibleWithSpotMints(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external payable; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external payable; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); } // File: erc721a/contracts/ERC721A.sol // ERC721A Contracts v4.3.0 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721 token receiver. */ interface ERC721A__IERC721Receiver { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } /** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * The `_sequentialUpTo()` function can be overriden to enable spot mints * (i.e. non-consecutive mints) for `tokenId`s greater than `_sequentialUpTo()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is IERC721A { // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). struct TokenApprovalRef { address value; } // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 private _currentIndex; // The number of tokens burned. uint256 private _burnCounter; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) private _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) private _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => TokenApprovalRef) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // The amount of tokens minted above `_sequentialUpTo()`. // We call these spot mints (i.e. non-sequential mints). uint256 private _spotMinted; // ============================================================= // CONSTRUCTOR // ============================================================= constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _currentIndex = _startTokenId(); if (_sequentialUpTo() < _startTokenId()) _revert(SequentialUpToTooSmall.selector); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID for sequential mints. * * Override this function to change the starting token ID for sequential mints. * * Note: The value returned must never change after any tokens have been minted. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the maximum token ID (inclusive) for sequential mints. * * Override this function to return a value less than 2**256 - 1, * but greater than `_startTokenId()`, to enable spot (non-sequential) mints. * * Note: The value returned must never change after any tokens have been minted. */ function _sequentialUpTo() internal view virtual returns (uint256) { return type(uint256).max; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return _currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256 result) { // Counter underflow is impossible as `_burnCounter` cannot be incremented // more than `_currentIndex + _spotMinted - _startTokenId()` times. unchecked { // With spot minting, the intermediate `result` can be temporarily negative, // and the computation must be unchecked. result = _currentIndex - _burnCounter - _startTokenId(); if (_sequentialUpTo() != type(uint256).max) result += _spotMinted; } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256 result) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { result = _currentIndex - _startTokenId(); if (_sequentialUpTo() != type(uint256).max) result += _spotMinted; } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return _burnCounter; } /** * @dev Returns the total number of tokens that are spot-minted. */ function _totalSpotMinted() internal view virtual returns (uint256) { return _spotMinted; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector); return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(_packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = _packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); _packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnerships[index]); } /** * @dev Returns whether the ownership slot at `index` is initialized. * An uninitialized slot does not necessarily mean that the slot has no owner. */ function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) { return _packedOwnerships[index] != 0; } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (_packedOwnerships[index] == 0) { _packedOwnerships[index] = _packedOwnershipOf(index); } } /** * @dev Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) { if (_startTokenId() <= tokenId) { packed = _packedOwnerships[tokenId]; if (tokenId > _sequentialUpTo()) { if (_packedOwnershipExists(packed)) return packed; _revert(OwnerQueryForNonexistentToken.selector); } // If the data at the starting slot does not exist, start the scan. if (packed == 0) { if (tokenId >= _currentIndex) _revert(OwnerQueryForNonexistentToken.selector); // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `tokenId` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. for (;;) { unchecked { packed = _packedOwnerships[--tokenId]; } if (packed == 0) continue; if (packed & _BITMASK_BURNED == 0) return packed; // Otherwise, the token is burned, and we must revert. // This handles the case of batch burned tokens, where only the burned bit // of the starting slot is set, and remaining slots are left uninitialized. _revert(OwnerQueryForNonexistentToken.selector); } } // Otherwise, the data exists and we can skip the scan. // This is possible because we have already achieved the target condition. // This saves 2143 gas on transfers of initialized tokens. // If the token is not burned, return `packed`. Otherwise, revert. if (packed & _BITMASK_BURNED == 0) return packed; } _revert(OwnerQueryForNonexistentToken.selector); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}. * * Requirements: * * - The caller must own the token or be an approved operator. */ function approve(address to, uint256 tokenId) public payable virtual override { _approve(to, tokenId, true); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) _revert(ApprovalQueryForNonexistentToken.selector); return _tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { _operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool result) { if (_startTokenId() <= tokenId) { if (tokenId > _sequentialUpTo()) return _packedOwnershipExists(_packedOwnerships[tokenId]); if (tokenId < _currentIndex) { uint256 packed; while ((packed = _packedOwnerships[tokenId]) == 0) --tokenId; result = packed & _BITMASK_BURNED == 0; } } } /** * @dev Returns whether `packed` represents a token that exists. */ function _packedOwnershipExists(uint256 packed) private pure returns (bool result) { assembly { // The following is equivalent to `owner != address(0) && burned == false`. // Symbolically tested. result := gt(and(packed, _BITMASK_ADDRESS), and(packed, _BITMASK_BURNED)) } } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner( address approvedAddress, address owner, address msgSender ) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) public payable virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); // Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean. from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS)); if (address(uint160(prevOwnershipPacked)) != from) _revert(TransferFromIncorrectOwner.selector); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --_packedAddressData[from]; // Updates: `balance -= 1`. ++_packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. from, // `from`. toMasked, // `to`. tokenId // `tokenId`. ) } if (toMasked == 0) _revert(TransferToZeroAddress.selector); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public payable virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public payable virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns ( bytes4 retval ) { return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { _revert(TransferToNonERC721ReceiverImplementer.selector); } assembly { revert(add(32, reason), mload(reason)) } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (quantity == 0) _revert(MintZeroQuantity.selector); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; if (toMasked == 0) _revert(MintToZeroAddress.selector); uint256 end = startTokenId + quantity; uint256 tokenId = startTokenId; if (end - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector); do { assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. tokenId // `tokenId`. ) } // The `!=` check ensures that large values of `quantity` // that overflows uint256 will make the loop run out of gas. } while (++tokenId != end); _currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (to == address(0)) _revert(MintToZeroAddress.selector); if (quantity == 0) _revert(MintZeroQuantity.selector); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) _revert(MintERC2309QuantityExceedsLimit.selector); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); if (startTokenId + quantity - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); _currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = _currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } } while (index < end); // This prevents reentrancy to `_safeMint`. // It does not prevent reentrancy to `_safeMintSpot`. if (_currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ''); } /** * @dev Mints a single token at `tokenId`. * * Note: A spot-minted `tokenId` that has been burned can be re-minted again. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` must be greater than `_sequentialUpTo()`. * - `tokenId` must not exist. * * Emits a {Transfer} event for each mint. */ function _mintSpot(address to, uint256 tokenId) internal virtual { if (tokenId <= _sequentialUpTo()) _revert(SpotMintTokenIdTooSmall.selector); uint256 prevOwnershipPacked = _packedOwnerships[tokenId]; if (_packedOwnershipExists(prevOwnershipPacked)) _revert(TokenAlreadyExists.selector); _beforeTokenTransfers(address(0), to, tokenId, 1); // Overflows are incredibly unrealistic. // The `numberMinted` for `to` is incremented by 1, and has a max limit of 2**64 - 1. // `_spotMinted` is incremented by 1, and has a max limit of 2**256 - 1. unchecked { // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `true` (as `quantity == 1`). _packedOwnerships[tokenId] = _packOwnershipData( to, _nextInitializedFlag(1) | _nextExtraData(address(0), to, prevOwnershipPacked) ); // Updates: // - `balance += 1`. // - `numberMinted += 1`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += (1 << _BITPOS_NUMBER_MINTED) | 1; // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; if (toMasked == 0) _revert(MintToZeroAddress.selector); assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. tokenId // `tokenId`. ) } ++_spotMinted; } _afterTokenTransfers(address(0), to, tokenId, 1); } /** * @dev Safely mints a single token at `tokenId`. * * Note: A spot-minted `tokenId` that has been burned can be re-minted again. * * Requirements: * * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}. * - `tokenId` must be greater than `_sequentialUpTo()`. * - `tokenId` must not exist. * * See {_mintSpot}. * * Emits a {Transfer} event. */ function _safeMintSpot( address to, uint256 tokenId, bytes memory _data ) internal virtual { _mintSpot(to, tokenId); unchecked { if (to.code.length != 0) { uint256 currentSpotMinted = _spotMinted; if (!_checkContractOnERC721Received(address(0), to, tokenId, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } // This prevents reentrancy to `_safeMintSpot`. // It does not prevent reentrancy to `_safeMint`. if (_spotMinted != currentSpotMinted) revert(); } } } /** * @dev Equivalent to `_safeMintSpot(to, tokenId, '')`. */ function _safeMintSpot(address to, uint256 tokenId) internal virtual { _safeMintSpot(to, tokenId, ''); } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Equivalent to `_approve(to, tokenId, false)`. */ function _approve(address to, uint256 tokenId) internal virtual { _approve(to, tokenId, false); } /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - `tokenId` must exist. * * Emits an {Approval} event. */ function _approve( address to, uint256 tokenId, bool approvalCheck ) internal virtual { address owner = ownerOf(tokenId); if (approvalCheck && _msgSenderERC721A() != owner) if (!isApprovedForAll(owner, _msgSenderERC721A())) { _revert(ApprovalCallerNotOwnerNorApproved.selector); } _tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as `_burnCounter` cannot be exceed `_currentIndex + _spotMinted` times. unchecked { _burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = _packedOwnerships[index]; if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); _packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData( address from, address to, uint24 previousExtraData ) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData( address from, address to, uint256 prevOwnershipPacked ) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } /** * @dev For more efficient reverts. */ function _revert(bytes4 errorSelector) internal pure { assembly { mstore(0x00, errorSelector) revert(0x00, 0x04) } } } // File: @openzeppelin/contracts/utils/Context.sol // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // File: @openzeppelin/contracts/access/Ownable.sol // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // File: @openzeppelin/contracts/utils/Panic.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } } // File: @openzeppelin/contracts/utils/math/SafeCast.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } } // File: @openzeppelin/contracts/utils/math/Math.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // File: @openzeppelin/contracts/utils/math/SignedMath.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } } // File: @openzeppelin/contracts/utils/Strings.sol // OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol) pragma solidity ^0.8.20; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } } // File: @openzeppelin/contracts/utils/Base64.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol) pragma solidity ^0.8.20; /** * @dev Provides a set of functions to operate with Base64 strings. */ library Base64 { /** * @dev Base64 Encoding/Decoding Table * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648 */ string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; /** * @dev Converts a `bytes` to its Bytes64 `string` representation. */ function encode(bytes memory data) internal pure returns (string memory) { return _encode(data, _TABLE, true); } /** * @dev Converts a `bytes` to its Bytes64Url `string` representation. * Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648]. */ function encodeURL(bytes memory data) internal pure returns (string memory) { return _encode(data, _TABLE_URL, false); } /** * @dev Internal table-agnostic conversion */ function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) { /** * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol */ if (data.length == 0) return ""; // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then // multiplied by 4 so that it leaves room for padding the last chunk // - `data.length + 2` -> Prepare for division rounding up // - `/ 3` -> Number of 3-bytes chunks (rounded up) // - `4 *` -> 4 characters for each chunk // This is equivalent to: 4 * Math.ceil(data.length / 3) // // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as // opposed to when padding is required to fill the last chunk. // - `4 * data.length` -> 4 characters for each chunk // - ` + 2` -> Prepare for division rounding up // - `/ 3` -> Number of 3-bytes chunks (rounded up) // This is equivalent to: Math.ceil((4 * data.length) / 3) uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3; string memory result = new string(resultLength); assembly ("memory-safe") { // Prepare the lookup table (skip the first "length" byte) let tablePtr := add(table, 1) // Prepare result pointer, jump over length let resultPtr := add(result, 0x20) let dataPtr := data let endPtr := add(data, mload(data)) // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and // set it to zero to make sure no dirty bytes are read in that section. let afterPtr := add(endPtr, 0x20) let afterCache := mload(afterPtr) mstore(afterPtr, 0x00) // Run over the input, 3 bytes at a time for { } lt(dataPtr, endPtr) { } { // Advance 3 bytes dataPtr := add(dataPtr, 3) let input := mload(dataPtr) // To write each character, shift the 3 byte (24 bits) chunk // 4 times in blocks of 6 bits for each character (18, 12, 6, 0) // and apply logical AND with 0x3F to bitmask the least significant 6 bits. // Use this as an index into the lookup table, mload an entire word // so the desired character is in the least significant byte, and // mstore8 this least significant byte into the result and continue. mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F)))) resultPtr := add(resultPtr, 1) // Advance } // Reset the value that was cached mstore(afterPtr, afterCache) if withPadding { // When data `bytes` is not exactly 3 bytes long // it is padded with `=` characters at the end switch mod(mload(data), 3) case 1 { mstore8(sub(resultPtr, 1), 0x3d) mstore8(sub(resultPtr, 2), 0x3d) } case 2 { mstore8(sub(resultPtr, 1), 0x3d) } } } return result; } } // File: contracts/3_Ballot.sol pragma solidity ^0.8.0; contract OnChainDNA is ERC721A, Ownable { // DNA yapısı: Her bir NFT için özellikleri belirler struct DNA { uint8 shirt; uint8 eyes; uint8 hair; uint8 glasses; uint8 mouth; uint8 neck; } // DNA kaydı mapping(uint256 => DNA) private _dnaStorage; // Kategorilere göre toplam özellik sayısı uint8 private constant TOTAL_SHIRTS = 10; // Örnek değerler, değiştirilebilir uint8 private constant TOTAL_EYES = 10; uint8 private constant TOTAL_HAIR = 10; uint8 private constant TOTAL_GLASSES = 10; uint8 private constant TOTAL_MOUTH = 10; uint8 private constant TOTAL_NECK = 10; constructor() ERC721A("OnChainDNA", "OCDNA") Ownable(msg.sender) {} // Rastgele bir DNA oluştur function _generateDNA(uint256 tokenId) internal view returns (DNA memory) { return DNA({ shirt: uint8(uint256(keccak256(abi.encodePacked("SHIRT", tokenId, block.timestamp))) % TOTAL_SHIRTS), eyes: uint8(uint256(keccak256(abi.encodePacked("EYES", tokenId, block.timestamp))) % TOTAL_EYES), hair: uint8(uint256(keccak256(abi.encodePacked("HAIR", tokenId, block.timestamp))) % TOTAL_HAIR), glasses: uint8(uint256(keccak256(abi.encodePacked("GLASSES", tokenId, block.timestamp))) % TOTAL_GLASSES), mouth: uint8(uint256(keccak256(abi.encodePacked("MOUTH", tokenId, block.timestamp))) % TOTAL_MOUTH), neck: uint8(uint256(keccak256(abi.encodePacked("NECK", tokenId, block.timestamp))) % TOTAL_NECK) }); } // NFT mint fonksiyonu function mint(uint256 quantity) external payable { uint256 startTokenId = _nextTokenId(); _safeMint(msg.sender, quantity); for (uint256 i = 0; i < quantity; i++) { uint256 tokenId = startTokenId + i; _dnaStorage[tokenId] = _generateDNA(tokenId); } } // DNA bilgisi al function getDNA(uint256 tokenId) external view returns (DNA memory) { require(_exists(tokenId), "Token does not exist"); return _dnaStorage[tokenId]; } // On-chain SVG oluşturma function tokenURI(uint256 tokenId) public view override returns (string memory) { require(_exists(tokenId), "Token does not exist"); DNA memory dna = _dnaStorage[tokenId]; string memory attributes = string( abi.encodePacked( "<text x='10' y='20'>Shirt: ", Strings.toString(dna.shirt), "</text>", "<text x='10' y='40'>Eyes: ", Strings.toString(dna.eyes), "</text>", "<text x='10' y='60'>Hair: ", Strings.toString(dna.hair), "</text>", "<text x='10' y='80'>Glasses: ", Strings.toString(dna.glasses), "</text>", "<text x='10' y='100'>Mouth: ", Strings.toString(dna.mouth), "</text>", "<text x='10' y='120'>Neck: ", Strings.toString(dna.neck), "</text>" ) ); string memory svg = string( abi.encodePacked( "<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 500 500'>", attributes, "</svg>" ) ); return string( abi.encodePacked( "data:application/json;base64,", Base64.encode( bytes( abi.encodePacked( "{\"name\": \"OnChainDNA #", Strings.toString(tokenId), "\", \"description\": \"On-chain DNA-based NFT\", \"image\": \"data:image/svg+xml;base64,", Base64.encode(bytes(svg)), "\"}" ) ) ) ) ); } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[],"name":"NotCompatibleWithSpotMints","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"SequentialMintExceedsLimit","type":"error"},{"inputs":[],"name":"SequentialUpToTooSmall","type":"error"},{"inputs":[],"name":"SpotMintTokenIdTooSmall","type":"error"},{"inputs":[],"name":"TokenAlreadyExists","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getDNA","outputs":[{"components":[{"internalType":"uint8","name":"shirt","type":"uint8"},{"internalType":"uint8","name":"eyes","type":"uint8"},{"internalType":"uint8","name":"hair","type":"uint8"},{"internalType":"uint8","name":"glasses","type":"uint8"},{"internalType":"uint8","name":"mouth","type":"uint8"},{"internalType":"uint8","name":"neck","type":"uint8"}],"internalType":"struct OnChainDNA.DNA","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405234801561000f575f80fd5b50336040518060400160405280600a8152602001694f6e436861696e444e4160b01b815250604051806040016040528060058152602001644f43444e4160d81b81525081600290816100619190610199565b50600361006e8282610199565b50505f8055506001600160a01b0381166100a157604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100aa816100b0565b50610253565b600980546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b634e487b7160e01b5f52604160045260245ffd5b600181811c9082168061012957607f821691505b60208210810361014757634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561019457805f5260205f20601f840160051c810160208510156101725750805b601f840160051c820191505b81811015610191575f815560010161017e565b50505b505050565b81516001600160401b038111156101b2576101b2610101565b6101c6816101c08454610115565b8461014d565b6020601f8211600181146101f8575f83156101e15750848201515b5f19600385901b1c1916600184901b178455610191565b5f84815260208120601f198516915b828110156102275787850151825560209485019460019092019101610207565b508482101561024457868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b611bc9806102605f395ff3fe608060405260043610610110575f3560e01c806370a082311161009d578063a22cb46511610062578063a22cb4651461030e578063b88d4fde1461032d578063c87b56dd14610340578063e985e9c51461035f578063f2fde38b1461037e575f80fd5b806370a0823114610297578063715018a6146102b65780638da5cb5b146102ca57806395d89b41146102e7578063a0712d68146102fb575f80fd5b806318160ddd116100e357806318160ddd146101b557806323b872dd146101d657806342842e0e146101e95780635bb209a5146101fc5780636352211e14610278575f80fd5b806301ffc9a71461011457806306fdde0314610148578063081812fc14610169578063095ea7b3146101a0575b5f80fd5b34801561011f575f80fd5b5061013361012e3660046114e7565b61039d565b60405190151581526020015b60405180910390f35b348015610153575f80fd5b5061015c6103ee565b60405161013f9190611530565b348015610174575f80fd5b50610188610183366004611542565b61047e565b6040516001600160a01b03909116815260200161013f565b6101b36101ae36600461156f565b6104b7565b005b3480156101c0575f80fd5b506001545f54035b60405190815260200161013f565b6101b36101e4366004611597565b6104c7565b6101b36101f7366004611597565b61063d565b348015610207575f80fd5b5061021b610216366004611542565b61065c565b60405161013f91905f60c08201905060ff835116825260ff602084015116602083015260ff604084015116604083015260ff606084015116606083015260ff608084015116608083015260ff60a08401511660a083015292915050565b348015610283575f80fd5b50610188610292366004611542565b61074e565b3480156102a2575f80fd5b506101c86102b13660046115d1565b610758565b3480156102c1575f80fd5b506101b361079c565b3480156102d5575f80fd5b506009546001600160a01b0316610188565b3480156102f2575f80fd5b5061015c6107af565b6101b3610309366004611542565b6107be565b348015610319575f80fd5b506101b36103283660046115ea565b610896565b6101b361033b366004611637565b610901565b34801561034b575f80fd5b5061015c61035a366004611542565b610942565b34801561036a575f80fd5b50610133610379366004611714565b610b04565b348015610389575f80fd5b506101b36103983660046115d1565b610b31565b5f6301ffc9a760e01b6001600160e01b0319831614806103cd57506380ac58cd60e01b6001600160e01b03198316145b806103e85750635b5e139f60e01b6001600160e01b03198316145b92915050565b6060600280546103fd90611745565b80601f016020809104026020016040519081016040528092919081815260200182805461042990611745565b80156104745780601f1061044b57610100808354040283529160200191610474565b820191905f5260205f20905b81548152906001019060200180831161045757829003601f168201915b5050505050905090565b5f61048882610b6e565b61049c5761049c6333d1c03960e21b610bb0565b505f908152600660205260409020546001600160a01b031690565b6104c382826001610bb8565b5050565b5f6104d182610c59565b6001600160a01b0394851694909150811684146104f7576104f762a1148160e81b610bb0565b5f8281526006602052604090208054338082146001600160a01b0388169091141761053a576105268633610b04565b61053a5761053a632ce44b5f60e11b610bb0565b8015610544575f82555b6001600160a01b038087165f9081526005602052604080822080545f190190559187168152208054600101905561059b85610580888287610ce8565b600160e11b174260a01b176001600160a01b03919091161790565b5f85815260046020526040812091909155600160e11b841690036105ec57600184015f8181526004602052604081205490036105ea575f5481146105ea575f8181526004602052604090208490555b505b6001600160a01b0385168481887fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4805f0361063457610634633a954ecd60e21b610bb0565b50505050505050565b61065783838360405180602001604052805f815250610901565b505050565b6040805160c0810182525f80825260208201819052918101829052606081018290526080810182905260a081019190915261069682610b6e565b6106de5760405162461bcd60e51b8152602060048201526014602482015273151bdad95b88191bd95cc81b9bdd08195e1a5cdd60621b60448201526064015b60405180910390fd5b505f908152600a6020908152604091829020825160c081018452905460ff808216835261010082048116938301939093526201000081048316938201939093526301000000830482166060820152640100000000830482166080820152650100000000009092041660a082015290565b5f6103e882610c59565b5f6001600160a01b038216610777576107776323d3ad8160e21b610bb0565b506001600160a01b03165f9081526005602052604090205467ffffffffffffffff1690565b6107a4610cf1565b6107ad5f610d1e565b565b6060600380546103fd90611745565b5f546107ca3383610d6f565b5f5b82811015610657575f6107df8284611791565b90506107ea81610d88565b5f918252600a60209081526040928390208251815492840151948401516060850151608086015160a09096015160ff908116650100000000000265ff000000000019978216640100000000029790971665ffff000000001992821663010000000263ff0000001994831662010000029490941663ffff0000199983166101000261ffff1990981692909516919091179590951796909616919091171793909316171790556001016107cc565b335f8181526007602090815260408083206001600160a01b03871680855290835292819020805460ff191686151590811790915590519081529192917f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a35050565b61090c8484846104c7565b6001600160a01b0383163b1561093c5761092884848484610fb3565b61093c5761093c6368d2bf6b60e11b610bb0565b50505050565b606061094d82610b6e565b6109905760405162461bcd60e51b8152602060048201526014602482015273151bdad95b88191bd95cc81b9bdd08195e1a5cdd60621b60448201526064016106d5565b5f828152600a60209081526040808320815160c081018352905460ff8082168084526101008304821695840195909552620100008204811693830193909352630100000081048316606083015264010000000081048316608083015265010000000000900490911660a08201529190610a0890611091565b610a18836020015160ff16611091565b610a28846040015160ff16611091565b610a38856060015160ff16611091565b610a48866080015160ff16611091565b610a588760a0015160ff16611091565b604051602001610a6d969594939291906117bb565b60405160208183030381529060405290505f81604051602001610a90919061194b565b6040516020818303038152906040529050610adb610aad86611091565b610ab683611121565b604051602001610ac79291906119b8565b604051602081830303815290604052611121565b604051602001610aeb9190611a65565b6040516020818303038152906040529350505050919050565b6001600160a01b039182165f90815260076020908152604080832093909416825291909152205460ff1690565b610b39610cf1565b6001600160a01b038116610b6257604051631e4fbdf760e01b81525f60048201526024016106d5565b610b6b81610d1e565b50565b5f8054821015610bab575f5b505f8281526004602052604081205490819003610ba157610b9a83611a96565b9250610b7a565b600160e01b161590505b919050565b805f5260045ffd5b5f610bc28361074e565b9050818015610bda5750336001600160a01b03821614155b15610bfd57610be98133610b04565b610bfd57610bfd6367d9dca160e11b610bb0565b5f8381526006602052604080822080546001600160a01b0319166001600160a01b0388811691821790925591518693918516917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591a450505050565b5f81815260046020526040902054805f03610cc6575f548210610c8657610c86636f96cda160e11b610bb0565b5b505f19015f818152600460205260409020548015610c8757600160e01b81165f03610cb157919050565b610cc1636f96cda160e11b610bb0565b610c87565b600160e01b81165f03610cd857919050565b610bab636f96cda160e11b610bb0565b5f5b9392505050565b6009546001600160a01b031633146107ad5760405163118cdaa760e01b81523360048201526024016106d5565b600980546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6104c3828260405180602001604052805f815250611147565b6040805160c0810182525f80825260208201819052918101829052606081018290526080810182905260a08101919091526040805160c081019091526414d212549560da1b60e082015260e581018390524261010582015280600a6101258201604051602081830303815290604052805190602001205f1c610e0a9190611abf565b60ff168152604051634559455360e01b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610e5c9190611abf565b60ff168152604051632420a4a960e11b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610eae9190611abf565b60ff16815260405166474c415353455360c81b6020828101919091526027820186905242604783015290910190600a90606701604051602081830303815290604052805190602001205f1c610f039190611abf565b60ff1681526040516409a9eaaa8960db1b6020828101919091526025820186905242604583015290910190600a90606501604051602081830303815290604052805190602001205f1c610f569190611abf565b60ff168152604051634e45434b60e01b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610fa89190611abf565b60ff16905292915050565b604051630a85bd0160e11b81525f906001600160a01b0385169063150b7a0290610fe7903390899088908890600401611ad2565b6020604051808303815f875af1925050508015611021575060408051601f3d908101601f1916820190925261101e91810190611b0e565b60015b611074573d80801561104e576040519150601f19603f3d011682016040523d82523d5f602084013e611053565b606091505b5080515f0361106c5761106c6368d2bf6b60e11b610bb0565b805181602001fd5b6001600160e01b031916630a85bd0160e11b149050949350505050565b60605f61109d836111a7565b60010190505f8167ffffffffffffffff8111156110bc576110bc611623565b6040519080825280601f01601f1916602001820160405280156110e6576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846110f057509392505050565b60606103e882604051806060016040528060408152602001611b5460409139600161127e565b61115183836113f9565b6001600160a01b0383163b15610657575f548281035b6111795f868380600101945086610fb3565b61118d5761118d6368d2bf6b60e11b610bb0565b81811061116757815f54146111a0575f80fd5b5050505050565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b83106111e55772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611211576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061122f57662386f26fc10000830492506010015b6305f5e1008310611247576305f5e100830492506008015b612710831061125b57612710830492506004015b6064831061126d576064830492506002015b600a83106103e85760010192915050565b606083515f0361129c575060408051602081019091525f8152610cea565b5f826112cc576003855160046112b29190611b29565b6112bd906002611791565b6112c79190611b40565b6112f1565b6003855160026112dc9190611791565b6112e69190611b40565b6112f1906004611b29565b90505f8167ffffffffffffffff81111561130d5761130d611623565b6040519080825280601f01601f191660200182016040528015611337576020820181803683370190505b509050600185016020820187885189016020810180515f82525b828410156113ac576003840193508351603f8160121c168701518653600186019550603f81600c1c168701518653600186019550603f8160061c168701518653600186019550603f8116870151865350600185019450611351565b9052505085156113ed576003885106600181146113d057600281146113e3576113eb565b603d6001830353603d60028303536113eb565b603d60018303535b505b50909695505050505050565b5f8054908290036114145761141463b562e8dd60e01b610bb0565b611440836114235f865f610ce8565b6001851460e11b174260a01b176001600160a01b03919091161790565b5f828152600460209081526040808320939093556001600160a01b0386168083526005909152918120805468010000000000000001860201905581900361149057611490622e076360e81b610bb0565b818301825b80835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a481816001019150810361149557505f5550505050565b6001600160e01b031981168114610b6b575f80fd5b5f602082840312156114f7575f80fd5b8135610cea816114d2565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610cea6020830184611502565b5f60208284031215611552575f80fd5b5035919050565b80356001600160a01b0381168114610bab575f80fd5b5f8060408385031215611580575f80fd5b61158983611559565b946020939093013593505050565b5f805f606084860312156115a9575f80fd5b6115b284611559565b92506115c060208501611559565b929592945050506040919091013590565b5f602082840312156115e1575f80fd5b610cea82611559565b5f80604083850312156115fb575f80fd5b61160483611559565b915060208301358015158114611618575f80fd5b809150509250929050565b634e487b7160e01b5f52604160045260245ffd5b5f805f806080858703121561164a575f80fd5b61165385611559565b935061166160208601611559565b925060408501359150606085013567ffffffffffffffff811115611683575f80fd5b8501601f81018713611693575f80fd5b803567ffffffffffffffff8111156116ad576116ad611623565b604051601f8201601f19908116603f0116810167ffffffffffffffff811182821017156116dc576116dc611623565b6040528181528282016020018910156116f3575f80fd5b816020840160208301375f6020838301015280935050505092959194509250565b5f8060408385031215611725575f80fd5b61172e83611559565b915061173c60208401611559565b90509250929050565b600181811c9082168061175957607f821691505b60208210810361177757634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b808201808211156103e8576103e861177d565b5f81518060208401855e5f93019283525090919050565b7f3c7465787420783d2731302720793d273230273e53686972743a20000000000081525f6117ec601b8301896117a4565b661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273430273e457965733a20000000000000600782015261182c60218201896117a4565b9050661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273630273e486169723a20000000000000600782015261186e60218201886117a4565b9050661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273830273e476c61737365733a2000000060078201526118b060248201876117a4565b661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d27313030273e4d6f7574683a20000000006007820152602301905061193e6118fc61193861190f82858a6117a4565b661e17ba32bc3a1f60c91b815260070190565b7f3c7465787420783d2731302720793d27313230273e4e65636b3a2000000000008152601b0190565b866117a4565b9998505050505050505050565b7f3c73766720786d6c6e733d27687474703a2f2f7777772e77332e6f72672f323081527f30302f737667272076696577426f783d273020302035303020353030273e000060208201525f6119a2603e8301846117a4565b651e17b9bb339f60d11b81526006019392505050565b757b226e616d65223a20224f6e436861696e444e41202360501b81525f6119e260168301856117a4565b7f222c20226465736372697074696f6e223a20224f6e2d636861696e20444e412d81527f6261736564204e4654222c2022696d616765223a2022646174613a696d61676560208201526f0bdcdd99cade1b5b0ed8985cd94d8d0b60821b6040820152611a5160508201856117a4565b61227d60f01b815260020195945050505050565b7f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081525f610cea601d8301846117a4565b5f81611aa457611aa461177d565b505f190190565b634e487b7160e01b5f52601260045260245ffd5b5f82611acd57611acd611aab565b500690565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f90611b0490830184611502565b9695505050505050565b5f60208284031215611b1e575f80fd5b8151610cea816114d2565b80820281158282048414176103e8576103e861177d565b5f82611b4e57611b4e611aab565b50049056fe4142434445464748494a4b4c4d4e4f505152535455565758595a6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2fa264697066735822122052a5cfa6f886f4e9d112d019b2bf6974a9dd7fb04bd4ff4ccd61ae577c219bdd64736f6c634300081a0033
Deployed Bytecode
0x608060405260043610610110575f3560e01c806370a082311161009d578063a22cb46511610062578063a22cb4651461030e578063b88d4fde1461032d578063c87b56dd14610340578063e985e9c51461035f578063f2fde38b1461037e575f80fd5b806370a0823114610297578063715018a6146102b65780638da5cb5b146102ca57806395d89b41146102e7578063a0712d68146102fb575f80fd5b806318160ddd116100e357806318160ddd146101b557806323b872dd146101d657806342842e0e146101e95780635bb209a5146101fc5780636352211e14610278575f80fd5b806301ffc9a71461011457806306fdde0314610148578063081812fc14610169578063095ea7b3146101a0575b5f80fd5b34801561011f575f80fd5b5061013361012e3660046114e7565b61039d565b60405190151581526020015b60405180910390f35b348015610153575f80fd5b5061015c6103ee565b60405161013f9190611530565b348015610174575f80fd5b50610188610183366004611542565b61047e565b6040516001600160a01b03909116815260200161013f565b6101b36101ae36600461156f565b6104b7565b005b3480156101c0575f80fd5b506001545f54035b60405190815260200161013f565b6101b36101e4366004611597565b6104c7565b6101b36101f7366004611597565b61063d565b348015610207575f80fd5b5061021b610216366004611542565b61065c565b60405161013f91905f60c08201905060ff835116825260ff602084015116602083015260ff604084015116604083015260ff606084015116606083015260ff608084015116608083015260ff60a08401511660a083015292915050565b348015610283575f80fd5b50610188610292366004611542565b61074e565b3480156102a2575f80fd5b506101c86102b13660046115d1565b610758565b3480156102c1575f80fd5b506101b361079c565b3480156102d5575f80fd5b506009546001600160a01b0316610188565b3480156102f2575f80fd5b5061015c6107af565b6101b3610309366004611542565b6107be565b348015610319575f80fd5b506101b36103283660046115ea565b610896565b6101b361033b366004611637565b610901565b34801561034b575f80fd5b5061015c61035a366004611542565b610942565b34801561036a575f80fd5b50610133610379366004611714565b610b04565b348015610389575f80fd5b506101b36103983660046115d1565b610b31565b5f6301ffc9a760e01b6001600160e01b0319831614806103cd57506380ac58cd60e01b6001600160e01b03198316145b806103e85750635b5e139f60e01b6001600160e01b03198316145b92915050565b6060600280546103fd90611745565b80601f016020809104026020016040519081016040528092919081815260200182805461042990611745565b80156104745780601f1061044b57610100808354040283529160200191610474565b820191905f5260205f20905b81548152906001019060200180831161045757829003601f168201915b5050505050905090565b5f61048882610b6e565b61049c5761049c6333d1c03960e21b610bb0565b505f908152600660205260409020546001600160a01b031690565b6104c382826001610bb8565b5050565b5f6104d182610c59565b6001600160a01b0394851694909150811684146104f7576104f762a1148160e81b610bb0565b5f8281526006602052604090208054338082146001600160a01b0388169091141761053a576105268633610b04565b61053a5761053a632ce44b5f60e11b610bb0565b8015610544575f82555b6001600160a01b038087165f9081526005602052604080822080545f190190559187168152208054600101905561059b85610580888287610ce8565b600160e11b174260a01b176001600160a01b03919091161790565b5f85815260046020526040812091909155600160e11b841690036105ec57600184015f8181526004602052604081205490036105ea575f5481146105ea575f8181526004602052604090208490555b505b6001600160a01b0385168481887fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4805f0361063457610634633a954ecd60e21b610bb0565b50505050505050565b61065783838360405180602001604052805f815250610901565b505050565b6040805160c0810182525f80825260208201819052918101829052606081018290526080810182905260a081019190915261069682610b6e565b6106de5760405162461bcd60e51b8152602060048201526014602482015273151bdad95b88191bd95cc81b9bdd08195e1a5cdd60621b60448201526064015b60405180910390fd5b505f908152600a6020908152604091829020825160c081018452905460ff808216835261010082048116938301939093526201000081048316938201939093526301000000830482166060820152640100000000830482166080820152650100000000009092041660a082015290565b5f6103e882610c59565b5f6001600160a01b038216610777576107776323d3ad8160e21b610bb0565b506001600160a01b03165f9081526005602052604090205467ffffffffffffffff1690565b6107a4610cf1565b6107ad5f610d1e565b565b6060600380546103fd90611745565b5f546107ca3383610d6f565b5f5b82811015610657575f6107df8284611791565b90506107ea81610d88565b5f918252600a60209081526040928390208251815492840151948401516060850151608086015160a09096015160ff908116650100000000000265ff000000000019978216640100000000029790971665ffff000000001992821663010000000263ff0000001994831662010000029490941663ffff0000199983166101000261ffff1990981692909516919091179590951796909616919091171793909316171790556001016107cc565b335f8181526007602090815260408083206001600160a01b03871680855290835292819020805460ff191686151590811790915590519081529192917f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a35050565b61090c8484846104c7565b6001600160a01b0383163b1561093c5761092884848484610fb3565b61093c5761093c6368d2bf6b60e11b610bb0565b50505050565b606061094d82610b6e565b6109905760405162461bcd60e51b8152602060048201526014602482015273151bdad95b88191bd95cc81b9bdd08195e1a5cdd60621b60448201526064016106d5565b5f828152600a60209081526040808320815160c081018352905460ff8082168084526101008304821695840195909552620100008204811693830193909352630100000081048316606083015264010000000081048316608083015265010000000000900490911660a08201529190610a0890611091565b610a18836020015160ff16611091565b610a28846040015160ff16611091565b610a38856060015160ff16611091565b610a48866080015160ff16611091565b610a588760a0015160ff16611091565b604051602001610a6d969594939291906117bb565b60405160208183030381529060405290505f81604051602001610a90919061194b565b6040516020818303038152906040529050610adb610aad86611091565b610ab683611121565b604051602001610ac79291906119b8565b604051602081830303815290604052611121565b604051602001610aeb9190611a65565b6040516020818303038152906040529350505050919050565b6001600160a01b039182165f90815260076020908152604080832093909416825291909152205460ff1690565b610b39610cf1565b6001600160a01b038116610b6257604051631e4fbdf760e01b81525f60048201526024016106d5565b610b6b81610d1e565b50565b5f8054821015610bab575f5b505f8281526004602052604081205490819003610ba157610b9a83611a96565b9250610b7a565b600160e01b161590505b919050565b805f5260045ffd5b5f610bc28361074e565b9050818015610bda5750336001600160a01b03821614155b15610bfd57610be98133610b04565b610bfd57610bfd6367d9dca160e11b610bb0565b5f8381526006602052604080822080546001600160a01b0319166001600160a01b0388811691821790925591518693918516917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591a450505050565b5f81815260046020526040902054805f03610cc6575f548210610c8657610c86636f96cda160e11b610bb0565b5b505f19015f818152600460205260409020548015610c8757600160e01b81165f03610cb157919050565b610cc1636f96cda160e11b610bb0565b610c87565b600160e01b81165f03610cd857919050565b610bab636f96cda160e11b610bb0565b5f5b9392505050565b6009546001600160a01b031633146107ad5760405163118cdaa760e01b81523360048201526024016106d5565b600980546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6104c3828260405180602001604052805f815250611147565b6040805160c0810182525f80825260208201819052918101829052606081018290526080810182905260a08101919091526040805160c081019091526414d212549560da1b60e082015260e581018390524261010582015280600a6101258201604051602081830303815290604052805190602001205f1c610e0a9190611abf565b60ff168152604051634559455360e01b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610e5c9190611abf565b60ff168152604051632420a4a960e11b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610eae9190611abf565b60ff16815260405166474c415353455360c81b6020828101919091526027820186905242604783015290910190600a90606701604051602081830303815290604052805190602001205f1c610f039190611abf565b60ff1681526040516409a9eaaa8960db1b6020828101919091526025820186905242604583015290910190600a90606501604051602081830303815290604052805190602001205f1c610f569190611abf565b60ff168152604051634e45434b60e01b6020828101919091526024820186905242604483015290910190600a90606401604051602081830303815290604052805190602001205f1c610fa89190611abf565b60ff16905292915050565b604051630a85bd0160e11b81525f906001600160a01b0385169063150b7a0290610fe7903390899088908890600401611ad2565b6020604051808303815f875af1925050508015611021575060408051601f3d908101601f1916820190925261101e91810190611b0e565b60015b611074573d80801561104e576040519150601f19603f3d011682016040523d82523d5f602084013e611053565b606091505b5080515f0361106c5761106c6368d2bf6b60e11b610bb0565b805181602001fd5b6001600160e01b031916630a85bd0160e11b149050949350505050565b60605f61109d836111a7565b60010190505f8167ffffffffffffffff8111156110bc576110bc611623565b6040519080825280601f01601f1916602001820160405280156110e6576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846110f057509392505050565b60606103e882604051806060016040528060408152602001611b5460409139600161127e565b61115183836113f9565b6001600160a01b0383163b15610657575f548281035b6111795f868380600101945086610fb3565b61118d5761118d6368d2bf6b60e11b610bb0565b81811061116757815f54146111a0575f80fd5b5050505050565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b83106111e55772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611211576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061122f57662386f26fc10000830492506010015b6305f5e1008310611247576305f5e100830492506008015b612710831061125b57612710830492506004015b6064831061126d576064830492506002015b600a83106103e85760010192915050565b606083515f0361129c575060408051602081019091525f8152610cea565b5f826112cc576003855160046112b29190611b29565b6112bd906002611791565b6112c79190611b40565b6112f1565b6003855160026112dc9190611791565b6112e69190611b40565b6112f1906004611b29565b90505f8167ffffffffffffffff81111561130d5761130d611623565b6040519080825280601f01601f191660200182016040528015611337576020820181803683370190505b509050600185016020820187885189016020810180515f82525b828410156113ac576003840193508351603f8160121c168701518653600186019550603f81600c1c168701518653600186019550603f8160061c168701518653600186019550603f8116870151865350600185019450611351565b9052505085156113ed576003885106600181146113d057600281146113e3576113eb565b603d6001830353603d60028303536113eb565b603d60018303535b505b50909695505050505050565b5f8054908290036114145761141463b562e8dd60e01b610bb0565b611440836114235f865f610ce8565b6001851460e11b174260a01b176001600160a01b03919091161790565b5f828152600460209081526040808320939093556001600160a01b0386168083526005909152918120805468010000000000000001860201905581900361149057611490622e076360e81b610bb0565b818301825b80835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a481816001019150810361149557505f5550505050565b6001600160e01b031981168114610b6b575f80fd5b5f602082840312156114f7575f80fd5b8135610cea816114d2565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610cea6020830184611502565b5f60208284031215611552575f80fd5b5035919050565b80356001600160a01b0381168114610bab575f80fd5b5f8060408385031215611580575f80fd5b61158983611559565b946020939093013593505050565b5f805f606084860312156115a9575f80fd5b6115b284611559565b92506115c060208501611559565b929592945050506040919091013590565b5f602082840312156115e1575f80fd5b610cea82611559565b5f80604083850312156115fb575f80fd5b61160483611559565b915060208301358015158114611618575f80fd5b809150509250929050565b634e487b7160e01b5f52604160045260245ffd5b5f805f806080858703121561164a575f80fd5b61165385611559565b935061166160208601611559565b925060408501359150606085013567ffffffffffffffff811115611683575f80fd5b8501601f81018713611693575f80fd5b803567ffffffffffffffff8111156116ad576116ad611623565b604051601f8201601f19908116603f0116810167ffffffffffffffff811182821017156116dc576116dc611623565b6040528181528282016020018910156116f3575f80fd5b816020840160208301375f6020838301015280935050505092959194509250565b5f8060408385031215611725575f80fd5b61172e83611559565b915061173c60208401611559565b90509250929050565b600181811c9082168061175957607f821691505b60208210810361177757634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b808201808211156103e8576103e861177d565b5f81518060208401855e5f93019283525090919050565b7f3c7465787420783d2731302720793d273230273e53686972743a20000000000081525f6117ec601b8301896117a4565b661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273430273e457965733a20000000000000600782015261182c60218201896117a4565b9050661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273630273e486169723a20000000000000600782015261186e60218201886117a4565b9050661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d273830273e476c61737365733a2000000060078201526118b060248201876117a4565b661e17ba32bc3a1f60c91b81527f3c7465787420783d2731302720793d27313030273e4d6f7574683a20000000006007820152602301905061193e6118fc61193861190f82858a6117a4565b661e17ba32bc3a1f60c91b815260070190565b7f3c7465787420783d2731302720793d27313230273e4e65636b3a2000000000008152601b0190565b866117a4565b9998505050505050505050565b7f3c73766720786d6c6e733d27687474703a2f2f7777772e77332e6f72672f323081527f30302f737667272076696577426f783d273020302035303020353030273e000060208201525f6119a2603e8301846117a4565b651e17b9bb339f60d11b81526006019392505050565b757b226e616d65223a20224f6e436861696e444e41202360501b81525f6119e260168301856117a4565b7f222c20226465736372697074696f6e223a20224f6e2d636861696e20444e412d81527f6261736564204e4654222c2022696d616765223a2022646174613a696d61676560208201526f0bdcdd99cade1b5b0ed8985cd94d8d0b60821b6040820152611a5160508201856117a4565b61227d60f01b815260020195945050505050565b7f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081525f610cea601d8301846117a4565b5f81611aa457611aa461177d565b505f190190565b634e487b7160e01b5f52601260045260245ffd5b5f82611acd57611acd611aab565b500690565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f90611b0490830184611502565b9695505050505050565b5f60208284031215611b1e575f80fd5b8151610cea816114d2565b80820281158282048414176103e8576103e861177d565b5f82611b4e57611b4e611aab565b50049056fe4142434445464748494a4b4c4d4e4f505152535455565758595a6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2fa264697066735822122052a5cfa6f886f4e9d112d019b2bf6974a9dd7fb04bd4ff4ccd61ae577c219bdd64736f6c634300081a0033
Deployed Bytecode Sourcemap
157394:3911:0:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;20588:639;;;;;;;;;;-1:-1:-1;20588:639:0;;;;;:::i;:::-;;:::i;:::-;;;565:14:1;;558:22;540:41;;528:2;513:18;20588:639:0;;;;;;;;21490:100;;;;;;;;;;;;;:::i;:::-;;;;;;;:::i;28730:227::-;;;;;;;;;;-1:-1:-1;28730:227:0;;;;;:::i;:::-;;:::i;:::-;;;-1:-1:-1;;;;;1528:32:1;;;1510:51;;1498:2;1483:18;28730:227:0;1364:203:1;28447:124:0;;;;;;:::i;:::-;;:::i;:::-;;16692:573;;;;;;;;;;-1:-1:-1;17136:12:0;;16753:14;17120:13;:28;16692:573;;;2201:25:1;;;2189:2;2174:18;16692:573:0;2055:177:1;33002:3523:0;;;;;;:::i;:::-;;:::i;36621:193::-;;;;;;:::i;:::-;;:::i;159394:174::-;;;;;;;;;;-1:-1:-1;159394:174:0;;;;;:::i;:::-;;:::i;:::-;;;;;;2750:4:1;2792:3;2781:9;2777:19;2769:27;;2842:4;2833:6;2827:13;2823:24;2812:9;2805:43;2916:4;2908;2900:6;2896:17;2890:24;2886:35;2879:4;2868:9;2864:20;2857:65;2990:4;2982;2974:6;2970:17;2964:24;2960:35;2953:4;2942:9;2938:20;2931:65;3064:4;3056;3048:6;3044:17;3038:24;3034:35;3027:4;3016:9;3012:20;3005:65;3138:4;3130;3122:6;3118:17;3112:24;3108:35;3101:4;3090:9;3086:20;3079:65;3212:4;3204;3196:6;3192:17;3186:24;3182:35;3175:4;3164:9;3160:20;3153:65;2616:608;;;;;22892:152:0;;;;;;;;;;-1:-1:-1;22892:152:0;;;;;:::i;:::-;;:::i;18416:242::-;;;;;;;;;;-1:-1:-1;18416:242:0;;;;;:::i;:::-;;:::i;64152:103::-;;;;;;;;;;;;;:::i;63477:87::-;;;;;;;;;;-1:-1:-1;63550:6:0;;-1:-1:-1;;;;;63550:6:0;63477:87;;21666:104;;;;;;;;;;;;;:::i;159045:318::-;;;;;;:::i;:::-;;:::i;29297:234::-;;;;;;;;;;-1:-1:-1;29297:234:0;;;;;:::i;:::-;;:::i;37412:416::-;;;;;;:::i;:::-;;:::i;159608:1694::-;;;;;;;;;;-1:-1:-1;159608:1694:0;;;;;:::i;:::-;;:::i;29688:164::-;;;;;;;;;;-1:-1:-1;29688:164:0;;;;;:::i;:::-;;:::i;64410:220::-;;;;;;;;;;-1:-1:-1;64410:220:0;;;;;:::i;:::-;;:::i;20588:639::-;20673:4;-1:-1:-1;;;;;;;;;20997:25:0;;;;:102;;-1:-1:-1;;;;;;;;;;21074:25:0;;;20997:102;:179;;;-1:-1:-1;;;;;;;;;;21151:25:0;;;20997:179;20977:199;20588:639;-1:-1:-1;;20588:639:0:o;21490:100::-;21544:13;21577:5;21570:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;21490:100;:::o;28730:227::-;28806:7;28831:16;28839:7;28831;:16::i;:::-;28826:73;;28849:50;-1:-1:-1;;;28849:7:0;:50::i;:::-;-1:-1:-1;28919:24:0;;;;:15;:24;;;;;:30;-1:-1:-1;;;;;28919:30:0;;28730:227::o;28447:124::-;28536:27;28545:2;28549:7;28558:4;28536:8;:27::i;:::-;28447:124;;:::o;33002:3523::-;33144:27;33174;33193:7;33174:18;:27::i;:::-;-1:-1:-1;;;;;33329:22:0;;;;33144:57;;-1:-1:-1;33389:45:0;;;;33385:95;;33436:44;-1:-1:-1;;;33436:7:0;:44::i;:::-;33494:27;32110:24;;;:15;:24;;;;;32338:26;;58687:10;31735:30;;;-1:-1:-1;;;;;31428:28:0;;31713:20;;;31710:56;33680:189;;33773:43;33790:4;58687:10;29688:164;:::i;33773:43::-;33768:101;;33818:51;-1:-1:-1;;;33818:7:0;:51::i;:::-;34018:15;34015:160;;;34158:1;34137:19;34130:30;34015:160;-1:-1:-1;;;;;34555:24:0;;;;;;;:18;:24;;;;;;34553:26;;-1:-1:-1;;34553:26:0;;;34624:22;;;;;;34622:24;;34553:26;34622:24;;;34946:146;34643:2;35032:45;34574:4;34643:2;35057:19;35032:14;:45::i;:::-;-1:-1:-1;;;35004:73:0;27549:11;27524:23;27520:41;27517:52;-1:-1:-1;;;;;27375:28:0;;;;27507:63;;27138:450;34946:146;34917:26;;;;:17;:26;;;;;:175;;;;-1:-1:-1;;;35212:47:0;;:52;;35208:627;;35317:1;35307:11;;35285:19;35440:30;;;:17;:30;;;;;;:35;;35436:384;;35578:13;;35563:11;:28;35559:242;;35725:30;;;;:17;:30;;;;;:52;;;35559:242;35266:569;35208:627;-1:-1:-1;;;;;35967:20:0;;36347:7;35967:20;36277:4;36219:25;35948:16;;36084:299;36408:8;36420:1;36408:13;36404:58;;36423:39;-1:-1:-1;;;36423:7:0;:39::i;:::-;33133:3392;;;;33002:3523;;;:::o;36621:193::-;36767:39;36784:4;36790:2;36794:7;36767:39;;;;;;;;;;;;:16;:39::i;:::-;36621:193;;;:::o;159394:174::-;-1:-1:-1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;159481:16:0;159489:7;159481;:16::i;:::-;159473:49;;;;-1:-1:-1;;;159473:49:0;;5968:2:1;159473:49:0;;;5950:21:1;6007:2;5987:18;;;5980:30;-1:-1:-1;;;6026:18:1;;;6019:50;6086:18;;159473:49:0;;;;;;;;;-1:-1:-1;159540:20:0;;;;:11;:20;;;;;;;;;159533:27;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;159394:174::o;22892:152::-;22964:7;23007:27;23026:7;23007:18;:27::i;18416:242::-;18488:7;-1:-1:-1;;;;;18512:19:0;;18508:69;;18533:44;-1:-1:-1;;;18533:7:0;:44::i;:::-;-1:-1:-1;;;;;;18595:25:0;;;;;:18;:25;;;;;;11176:13;18595:55;;18416:242::o;64152:103::-;63363:13;:11;:13::i;:::-;64217:30:::1;64244:1;64217:18;:30::i;:::-;64152:103::o:0;21666:104::-;21722:13;21755:7;21748:14;;;;;:::i;159045:318::-;159105:20;16461:13;159153:31;159163:10;159175:8;159153:9;:31::i;:::-;159202:9;159197:159;159221:8;159217:1;:12;159197:159;;;159251:15;159269:16;159284:1;159269:12;:16;:::i;:::-;159251:34;;159323:21;159336:7;159323:12;:21::i;:::-;159300:20;;;;:11;:20;;;;;;;;;:44;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;159300:44:0;;;;;;;;;-1:-1:-1;;159300:44:0;;;;;-1:-1:-1;;159300:44:0;;;;;;;;;-1:-1:-1;;159300:44:0;;;;;-1:-1:-1;;159300:44:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;159231:3;159197:159;;29297:234;58687:10;29392:39;;;;:18;:39;;;;;;;;-1:-1:-1;;;;;29392:49:0;;;;;;;;;;;;:60;;-1:-1:-1;;29392:60:0;;;;;;;;;;29468:55;;540:41:1;;;29392:49:0;;58687:10;29468:55;;513:18:1;29468:55:0;;;;;;;29297:234;;:::o;37412:416::-;37587:31;37600:4;37606:2;37610:7;37587:12;:31::i;:::-;-1:-1:-1;;;;;37633:14:0;;;:19;37629:192;;37672:56;37703:4;37709:2;37713:7;37722:5;37672:30;:56::i;:::-;37667:154;;37749:56;-1:-1:-1;;;37749:7:0;:56::i;:::-;37412:416;;;;:::o;159608:1694::-;159673:13;159707:16;159715:7;159707;:16::i;:::-;159699:49;;;;-1:-1:-1;;;159699:49:0;;5968:2:1;159699:49:0;;;5950:21:1;6007:2;5987:18;;;5980:30;-1:-1:-1;;;6026:18:1;;;6019:50;6086:18;;159699:49:0;5766:344:1;159699:49:0;159759:14;159776:20;;;:11;:20;;;;;;;;159759:37;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:14;159923:27;;:16;:27::i;:::-;160010:26;160027:3;:8;;;160010:26;;:16;:26::i;:::-;160096;160113:3;:8;;;160096:26;;:16;:26::i;:::-;160185:29;160202:3;:11;;;160185:29;;:16;:29::i;:::-;160276:27;160293:3;:9;;;160276:27;;:16;:27::i;:::-;160364:26;160381:3;:8;;;160364:26;;:16;:26::i;:::-;159857:559;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;159809:618;;160440:17;160599:10;160481:170;;;;;;;;:::i;:::-;;;;;;;;;;;;;160440:222;;160788:480;160961:25;160978:7;160961:16;:25::i;:::-;161138;161158:3;161138:13;:25::i;:::-;160856:370;;;;;;;;;:::i;:::-;;;;;;;;;;;;;160788:13;:480::i;:::-;160703:580;;;;;;;;:::i;:::-;;;;;;;;;;;;;160675:619;;;;;159608:1694;;;:::o;29688:164::-;-1:-1:-1;;;;;29809:25:0;;;29785:4;29809:25;;;:18;:25;;;;;;;;:35;;;;;;;;;;;;;;;29688:164::o;64410:220::-;63363:13;:11;:13::i;:::-;-1:-1:-1;;;;;64495:22:0;::::1;64491:93;;64541:31;::::0;-1:-1:-1;;;64541:31:0;;64569:1:::1;64541:31;::::0;::::1;1510:51:1::0;1483:18;;64541:31:0::1;1364:203:1::0;64491:93:0::1;64594:28;64613:8;64594:18;:28::i;:::-;64410:220:::0;:::o;30110:475::-;30175:11;30367:13;;30357:7;:23;30353:214;;;30401:14;30434:60;-1:-1:-1;30451:26:0;;;;:17;:26;;;;;;;30441:42;;;30434:60;;30485:9;;;:::i;:::-;;;30434:60;;;-1:-1:-1;;;30522:24:0;:29;;-1:-1:-1;30353:214:0;30110:475;;;:::o;60619:165::-;60720:13;60714:4;60707:27;60761:4;60755;60748:18;52034:474;52163:13;52179:16;52187:7;52179;:16::i;:::-;52163:32;;52212:13;:45;;;;-1:-1:-1;58687:10:0;-1:-1:-1;;;;;52229:28:0;;;;52212:45;52208:201;;;52277:44;52294:5;58687:10;29688:164;:::i;52277:44::-;52272:137;;52342:51;-1:-1:-1;;;52342:7:0;:51::i;:::-;52421:24;;;;:15;:24;;;;;;:35;;-1:-1:-1;;;;;;52421:35:0;-1:-1:-1;;;;;52421:35:0;;;;;;;;;52472:28;;52421:24;;52472:28;;;;;;;52152:356;52034:474;;;:::o;24377:2213::-;24527:26;;;;:17;:26;;;;;;24854:6;24864:1;24854:11;24850:1292;;24901:13;;24890:7;:24;24886:77;;24916:47;-1:-1:-1;;;24916:7:0;:47::i;:::-;25520:607;-1:-1:-1;;;25616:9:0;25598:28;;;;:17;:28;;;;;;25672:25;;25520:607;25672:25;-1:-1:-1;;;25724:6:0;:24;25752:1;25724:29;25720:48;;24377:2213;;;:::o;25720:48::-;26060:47;-1:-1:-1;;;26060:7:0;:47::i;:::-;25520:607;;24850:1292;-1:-1:-1;;;26469:6:0;:24;26497:1;26469:29;26465:48;;24377:2213;;;:::o;26465:48::-;26535:47;-1:-1:-1;;;26535:7:0;:47::i;57909:311::-;58044:7;57909:311;;;;;;:::o;63642:166::-;63550:6;;-1:-1:-1;;;;;63550:6:0;58687:10;63702:23;63698:103;;63749:40;;-1:-1:-1;;;63749:40:0;;58687:10;63749:40;;;1510:51:1;1483:18;;63749:40:0;1364:203:1;64790:191:0;64883:6;;;-1:-1:-1;;;;;64900:17:0;;;-1:-1:-1;;;;;;64900:17:0;;;;;;;64933:40;;64883:6;;;64900:17;64883:6;;64933:40;;64864:16;;64933:40;64853:128;64790:191;:::o;47228:112::-;47305:27;47315:2;47319:8;47305:27;;;;;;;;;;;;:9;:27::i;158211:798::-;-1:-1:-1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;158303:698:0;;;;;;;;;-1:-1:-1;;;158353:51:0;;;11709:20:1;11745:11;;;11738:27;;;158388:15:0;11781:12:1;;;11774:28;158303:698:0;157822:2;11818:12:1;;;158353:51:0;;;;;;;;;;;;158343:62;;;;;;158335:71;;:86;;;;:::i;:::-;158303:698;;;;158467:50;;-1:-1:-1;;;158303:698:0;158467:50;;;12348:19:1;;;;12383:11;;;12376:27;;;158501:15:0;12419:12:1;;;12412:28;158303:698:0;;;;157907:2;;12456:12:1;;158467:50:0;;;;;;;;;;;;158457:61;;;;;;158449:70;;:83;;;;:::i;:::-;158303:698;;;;158578:50;;-1:-1:-1;;;158303:698:0;158578:50;;;12737:19:1;;;;12772:11;;;12765:27;;;158612:15:0;12808:12:1;;;12801:28;158303:698:0;;;;157952:2;;12845:12:1;;158578:50:0;;;;;;;;;;;;158568:61;;;;;;158560:70;;:83;;;;:::i;:::-;158303:698;;;;158692:53;;-1:-1:-1;;;158303:698:0;158692:53;;;13126:22:1;;;;13164:11;;;13157:27;;;158729:15:0;13200:12:1;;;13193:28;158303:698:0;;;;158000:2;;13237:12:1;;158692:53:0;;;;;;;;;;;;158682:64;;;;;;158674:73;;:89;;;;:::i;:::-;158303:698;;;;158810:51;;-1:-1:-1;;;158303:698:0;158810:51;;;13518:20:1;;;;13554:11;;;13547:27;;;158845:15:0;13590:12:1;;;13583:28;158303:698:0;;;;158046:2;;13627:12:1;;158810:51:0;;;;;;;;;;;;158800:62;;;;;;158792:71;;:85;;;;:::i;:::-;158303:698;;;;158923:50;;-1:-1:-1;;;158303:698:0;158923:50;;;13908:19:1;;;;13943:11;;;13936:27;;;158957:15:0;13979:12:1;;;13972:28;158303:698:0;;;;158091:2;;14016:12:1;;158923:50:0;;;;;;;;;;;;158913:61;;;;;;158905:70;;:83;;;;:::i;:::-;158303:698;;;;158296:705;158211:798;-1:-1:-1;;158211:798:0:o;39912:691::-;40096:88;;-1:-1:-1;;;40096:88:0;;40075:4;;-1:-1:-1;;;;;40096:45:0;;;;;:88;;58687:10;;40163:4;;40169:7;;40178:5;;40096:88;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;-1:-1:-1;40096:88:0;;;;;;;;-1:-1:-1;;40096:88:0;;;;;;;;;;;;:::i;:::-;;;40092:504;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;40379:6;:13;40396:1;40379:18;40375:115;;40418:56;-1:-1:-1;;;40418:7:0;:56::i;:::-;40562:6;40556:13;40547:6;40543:2;40539:15;40532:38;40092:504;-1:-1:-1;;;;;;40255:64:0;-1:-1:-1;;;40255:64:0;;-1:-1:-1;39912:691:0;;;;;;:::o;135705:650::-;135761:13;135812:14;135829:17;135840:5;135829:10;:17::i;:::-;135849:1;135829:21;135812:38;;135865:20;135899:6;135888:18;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;135888:18:0;-1:-1:-1;135865:41:0;-1:-1:-1;135998:28:0;;;136014:2;135998:28;136055:254;-1:-1:-1;;136087:5:0;-1:-1:-1;;;136188:2:0;136177:14;;136172:32;136087:5;136159:46;136251:2;136242:11;;;-1:-1:-1;136272:21:0;136055:254;136272:21;-1:-1:-1;136330:6:0;135705:650;-1:-1:-1;;;135705:650:0:o;152668:126::-;152726:13;152759:27;152767:4;152773:6;;;;;;;;;;;;;;;;;152781:4;152759:7;:27::i;46357:787::-;46488:19;46494:2;46498:8;46488:5;:19::i;:::-;-1:-1:-1;;;;;46549:14:0;;;:19;46545:581;;46589:11;46603:13;46651:14;;;46684:242;46715:62;46754:1;46758:2;46762:7;;;;;;46771:5;46715:30;:62::i;:::-;46710:176;;46806:56;-1:-1:-1;;;46806:7:0;:56::i;:::-;46921:3;46913:5;:11;46684:242;;47097:3;47080:13;;:20;47076:34;;47102:8;;;47076:34;46570:556;;46357:787;;;:::o;129032:948::-;129085:7;;-1:-1:-1;;;129163:17:0;;129159:106;;-1:-1:-1;;;129201:17:0;;;-1:-1:-1;129247:2:0;129237:12;129159:106;129292:8;129283:5;:17;129279:106;;129330:8;129321:17;;;-1:-1:-1;129367:2:0;129357:12;129279:106;129412:8;129403:5;:17;129399:106;;129450:8;129441:17;;;-1:-1:-1;129487:2:0;129477:12;129399:106;129532:7;129523:5;:16;129519:103;;129569:7;129560:16;;;-1:-1:-1;129605:1:0;129595:11;129519:103;129649:7;129640:5;:16;129636:103;;129686:7;129677:16;;;-1:-1:-1;129722:1:0;129712:11;129636:103;129766:7;129757:5;:16;129753:103;;129803:7;129794:16;;;-1:-1:-1;129839:1:0;129829:11;129753:103;129883:7;129874:5;:16;129870:68;;129921:1;129911:11;129966:6;129032:948;-1:-1:-1;;129032:948:0:o;153206:4109::-;153303:13;153540:4;:11;153555:1;153540:16;153536:31;;-1:-1:-1;153558:9:0;;;;;;;;;-1:-1:-1;153558:9:0;;;;153536:31;154520:20;154543:11;:69;;154611:1;154592:4;:11;154588:1;:15;;;;:::i;:::-;:19;;154606:1;154588:19;:::i;:::-;154587:25;;;;:::i;:::-;154543:69;;;154582:1;154563:4;:11;154577:1;154563:15;;;;:::i;:::-;154562:21;;;;:::i;:::-;154557:27;;:1;:27;:::i;:::-;154520:92;;154625:20;154659:12;154648:24;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;154648:24:0;;154625:47;;154824:1;154817:5;154813:13;154928:4;154920:6;154916:17;154962:4;155010;155004:11;154998:4;154994:22;155262:4;155254:6;155250:17;155305:8;155299:15;155345:4;155335:8;155328:22;155420:1286;155455:6;155446:7;155443:19;155420:1286;;;155561:1;155552:7;155548:15;155537:26;;155600:7;155594:14;156196:4;156188:5;156184:2;156180:14;156176:25;156166:8;156162:40;156156:47;156145:9;156137:67;156250:1;156239:9;156235:17;156222:30;;156342:4;156334:5;156330:2;156326:14;156322:25;156312:8;156308:40;156302:47;156291:9;156283:67;156396:1;156385:9;156381:17;156368:30;;156487:4;156479:5;156476:1;156472:13;156468:24;156458:8;156454:39;156448:46;156437:9;156429:66;156541:1;156530:9;156526:17;156513:30;;156624:4;156617:5;156613:16;156603:8;156599:31;156593:38;156582:9;156574:58;;156678:1;156667:9;156663:17;156650:30;;155420:1286;;;156770:28;;-1:-1:-1;;156814:457:0;;;;157002:1;156995:4;156989:11;156985:19;157027:1;157022:135;;;;157180:1;157175:81;;;;156978:278;;157022:135;157079:4;157075:1;157064:9;157060:17;157052:32;157133:4;157129:1;157118:9;157114:17;157106:32;157022:135;;157175:81;157232:4;157228:1;157217:9;157213:17;157205:32;156978:278;;156814:457;-1:-1:-1;157301:6:0;;153206:4109;-1:-1:-1;;;;;;153206:4109:0:o;41065:2399::-;41138:20;41161:13;;;41189;;;41185:53;;41204:34;-1:-1:-1;;;41204:7:0;:34::i;:::-;41785:139;41822:2;41876:33;41899:1;41903:2;41907:1;41876:14;:33::i;:::-;27993:1;27980:15;;27954:24;27950:46;41843:66;27549:11;27524:23;27520:41;27517:52;-1:-1:-1;;;;;27375:28:0;;;;27507:63;;27138:450;41785:139;41751:31;;;;:17;:31;;;;;;;;:173;;;;-1:-1:-1;;;;;42142:22:0;;;;;:18;:22;;;;;;:71;;42180:32;42168:45;;42142:71;;;42403:13;;;42399:54;;42418:35;-1:-1:-1;;;42418:7:0;:35::i;:::-;42484:23;;;;42663:676;43082:7;43038:8;42993:1;42927:25;42864:1;42799;42768:358;43334:3;43321:9;;;;;;:16;42663:676;;-1:-1:-1;43355:13:0;:19;-1:-1:-1;36621:193:0;;;:::o;14:131:1:-;-1:-1:-1;;;;;;88:32:1;;78:43;;68:71;;135:1;132;125:12;150:245;208:6;261:2;249:9;240:7;236:23;232:32;229:52;;;277:1;274;267:12;229:52;316:9;303:23;335:30;359:5;335:30;:::i;592:300::-;645:3;683:5;677:12;710:6;705:3;698:19;766:6;759:4;752:5;748:16;741:4;736:3;732:14;726:47;818:1;811:4;802:6;797:3;793:16;789:27;782:38;881:4;874:2;870:7;865:2;857:6;853:15;849:29;844:3;840:39;836:50;829:57;;;592:300;;;;:::o;897:231::-;1046:2;1035:9;1028:21;1009:4;1066:56;1118:2;1107:9;1103:18;1095:6;1066:56;:::i;1133:226::-;1192:6;1245:2;1233:9;1224:7;1220:23;1216:32;1213:52;;;1261:1;1258;1251:12;1213:52;-1:-1:-1;1306:23:1;;1133:226;-1:-1:-1;1133:226:1:o;1572:173::-;1640:20;;-1:-1:-1;;;;;1689:31:1;;1679:42;;1669:70;;1735:1;1732;1725:12;1750:300;1818:6;1826;1879:2;1867:9;1858:7;1854:23;1850:32;1847:52;;;1895:1;1892;1885:12;1847:52;1918:29;1937:9;1918:29;:::i;:::-;1908:39;2016:2;2001:18;;;;1988:32;;-1:-1:-1;;;1750:300:1:o;2237:374::-;2314:6;2322;2330;2383:2;2371:9;2362:7;2358:23;2354:32;2351:52;;;2399:1;2396;2389:12;2351:52;2422:29;2441:9;2422:29;:::i;:::-;2412:39;;2470:38;2504:2;2493:9;2489:18;2470:38;:::i;:::-;2237:374;;2460:48;;-1:-1:-1;;;2577:2:1;2562:18;;;;2549:32;;2237:374::o;3229:186::-;3288:6;3341:2;3329:9;3320:7;3316:23;3312:32;3309:52;;;3357:1;3354;3347:12;3309:52;3380:29;3399:9;3380:29;:::i;3420:347::-;3485:6;3493;3546:2;3534:9;3525:7;3521:23;3517:32;3514:52;;;3562:1;3559;3552:12;3514:52;3585:29;3604:9;3585:29;:::i;:::-;3575:39;;3664:2;3653:9;3649:18;3636:32;3711:5;3704:13;3697:21;3690:5;3687:32;3677:60;;3733:1;3730;3723:12;3677:60;3756:5;3746:15;;;3420:347;;;;;:::o;3772:127::-;3833:10;3828:3;3824:20;3821:1;3814:31;3864:4;3861:1;3854:15;3888:4;3885:1;3878:15;3904:1207;3999:6;4007;4015;4023;4076:3;4064:9;4055:7;4051:23;4047:33;4044:53;;;4093:1;4090;4083:12;4044:53;4116:29;4135:9;4116:29;:::i;:::-;4106:39;;4164:38;4198:2;4187:9;4183:18;4164:38;:::i;:::-;4154:48;-1:-1:-1;4271:2:1;4256:18;;4243:32;;-1:-1:-1;4350:2:1;4335:18;;4322:32;4377:18;4366:30;;4363:50;;;4409:1;4406;4399:12;4363:50;4432:22;;4485:4;4477:13;;4473:27;-1:-1:-1;4463:55:1;;4514:1;4511;4504:12;4463:55;4554:2;4541:16;4580:18;4572:6;4569:30;4566:56;;;4602:18;;:::i;:::-;4651:2;4645:9;4743:2;4705:17;;-1:-1:-1;;4701:31:1;;;4734:2;4697:40;4693:54;4681:67;;4778:18;4763:34;;4799:22;;;4760:62;4757:88;;;4825:18;;:::i;:::-;4861:2;4854:22;4885;;;4926:15;;;4943:2;4922:24;4919:37;-1:-1:-1;4916:57:1;;;4969:1;4966;4959:12;4916:57;5025:6;5020:2;5016;5012:11;5007:2;4999:6;4995:15;4982:50;5078:1;5073:2;5064:6;5056;5052:19;5048:28;5041:39;5099:6;5089:16;;;;;3904:1207;;;;;;;:::o;5116:260::-;5184:6;5192;5245:2;5233:9;5224:7;5220:23;5216:32;5213:52;;;5261:1;5258;5251:12;5213:52;5284:29;5303:9;5284:29;:::i;:::-;5274:39;;5332:38;5366:2;5355:9;5351:18;5332:38;:::i;:::-;5322:48;;5116:260;;;;;:::o;5381:380::-;5460:1;5456:12;;;;5503;;;5524:61;;5578:4;5570:6;5566:17;5556:27;;5524:61;5631:2;5623:6;5620:14;5600:18;5597:38;5594:161;;5677:10;5672:3;5668:20;5665:1;5658:31;5712:4;5709:1;5702:15;5740:4;5737:1;5730:15;5594:161;;5381:380;;;:::o;6115:127::-;6176:10;6171:3;6167:20;6164:1;6157:31;6207:4;6204:1;6197:15;6231:4;6228:1;6221:15;6247:125;6312:9;;;6333:10;;;6330:36;;;6346:18;;:::i;6377:212::-;6419:3;6457:5;6451:12;6501:6;6494:4;6487:5;6483:16;6478:3;6472:36;6563:1;6527:16;;6552:13;;;-1:-1:-1;6527:16:1;;6377:212;-1:-1:-1;6377:212:1:o;6865:2509::-;8478:29;8473:3;8466:42;8448:3;8527:39;8562:2;8557:3;8553:12;8545:6;8527:39;:::i;:::-;-1:-1:-1;;;8582:2:1;8575:21;8624:28;8620:1;8616:2;8612:10;8605:48;8672:38;8706:2;8702;8698:11;8690:6;8672:38;:::i;:::-;8662:48;;-1:-1:-1;;;8726:2:1;8719:21;8768:28;8764:1;8760:2;8756:10;8749:48;8816:38;8850:2;8846;8842:11;8834:6;8816:38;:::i;:::-;8806:48;;-1:-1:-1;;;8870:2:1;8863:21;8912:31;8908:1;8904:2;8900:10;8893:51;8966:38;9000:2;8996;8992:11;8984:6;8966:38;:::i;:::-;-1:-1:-1;;;9036:24:1;;9137:30;9089:1;9078:13;;9123:45;9186:14;;;-1:-1:-1;9216:152:1;9246:121;9272:94;9302:63;9246:121;9186:14;9350:6;9332:32;:::i;:::-;-1:-1:-1;;;6659:22:1;;6706:1;6697:11;;6594:120;9302:63;6796:29;6784:42;;6851:2;6842:12;;6719:141;9272:94;9264:6;9246:121;:::i;9216:152::-;9209:159;6865:2509;-1:-1:-1;;;;;;;;;6865:2509:1:o;9379:580::-;9742:34;9737:3;9730:47;9807:32;9802:2;9797:3;9793:12;9786:54;9712:3;9859:39;9894:2;9889:3;9885:12;9877:6;9859:39;:::i;:::-;-1:-1:-1;;;9907:20:1;;9951:1;9943:10;;9379:580;-1:-1:-1;;;9379:580:1:o;9964:981::-;-1:-1:-1;;;10464:68:1;;10446:3;10551:39;10586:2;10577:12;;10569:6;10551:39;:::i;:::-;10610:66;10606:2;10599:78;10706:66;10701:2;10697;10693:11;10686:87;-1:-1:-1;;;10797:2:1;10793;10789:11;10782:39;10840:38;10874:2;10870;10866:11;10858:6;10840:38;:::i;:::-;-1:-1:-1;;;10887:26:1;;10937:1;10929:10;;9964:981;-1:-1:-1;;;;;9964:981:1:o;10950:355::-;11212:31;11207:3;11200:44;11182:3;11260:39;11295:2;11290:3;11286:12;11278:6;11260:39;:::i;11310:136::-;11349:3;11377:5;11367:39;;11386:18;;:::i;:::-;-1:-1:-1;;;11422:18:1;;11310:136::o;11841:127::-;11902:10;11897:3;11893:20;11890:1;11883:31;11933:4;11930:1;11923:15;11957:4;11954:1;11947:15;11973:112;12005:1;12031;12021:35;;12036:18;;:::i;:::-;-1:-1:-1;12070:9:1;;11973:112::o;14039:496::-;-1:-1:-1;;;;;14270:32:1;;;14252:51;;14339:32;;14334:2;14319:18;;14312:60;14403:2;14388:18;;14381:34;;;14451:3;14446:2;14431:18;;14424:31;;;-1:-1:-1;;14472:57:1;;14509:19;;14501:6;14472:57;:::i;:::-;14464:65;14039:496;-1:-1:-1;;;;;;14039:496:1:o;14540:249::-;14609:6;14662:2;14650:9;14641:7;14637:23;14633:32;14630:52;;;14678:1;14675;14668:12;14630:52;14710:9;14704:16;14729:30;14753:5;14729:30;:::i;14794:168::-;14867:9;;;14898;;14915:15;;;14909:22;;14895:37;14885:71;;14936:18;;:::i;14967:120::-;15007:1;15033;15023:35;;15038:18;;:::i;:::-;-1:-1:-1;15072:9:1;;14967:120::o
Swarm Source
ipfs://52a5cfa6f886f4e9d112d019b2bf6974a9dd7fb04bd4ff4ccd61ae577c219bdd
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.