Overview
TokenID
4218965953487021590133963049729766548365...
Total Transfers
-
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract
Loading...
Loading
Loading...
Loading
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
N2MFactory
Compiler Version
v0.8.27+commit.40a35a09
Optimization Enabled:
Yes with 151 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
/** ---------------------------------------------------------------------------- // * // * Smart contract generated by https://nfts2me.com // * // * .::. // * ...... // * .... ::. // * .:.. :: ... // * ..:. :: ... // * ::. ..:-- ::. ... // * .: ..:::::-==: :::::.. : // * .: :::::::-====: :::::::: : // * .: :::::::-======. :::::::: : // * .: :::::::-=======-:::::::: : // * .: :::::::-========-::::::: : // * .: ::::::::========-::::::: : // * .: :::::::. .======-::::::: : // * .: :::::::. :====-::::::: : // * .: .:::::. -==-:::::. : // * .:. .:. .--:.. ... // * .:. :. ... // * .... :. .... // * .:. .:. // * .::::. // * :--. // * // * // * NFTs2Me. Make an NFT Collection. // * With ZERO Coding Skills. // * // * NFTs2Me is not associated or affiliated with this project. // * NFTs2Me is not liable for any bugs or issues associated with this contract. // * NFTs2Me Terms of Service: https://nfts2me.com/terms-of-service/ // * More info at: https://docs.nfts2me.com/ // * ----------------------------------------------------------------------------- */ /// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.27; import {ERC721} from "openzeppelin/contracts/token/ERC721/ERC721.sol"; import {IERC721} from "openzeppelin/contracts/interfaces/IERC721.sol"; import {ECDSA} from "solady/utils/ECDSA.sol"; import {LibClone} from "solady/utils/LibClone.sol"; import {CREATE3} from "solady/utils/CREATE3.sol"; import {LibString} from "solady/utils/LibString.sol"; import {Ownable} from "solady/auth/Ownable.sol"; import {IERC2981} from "openzeppelin/contracts/interfaces/IERC2981.sol"; import {IERC20} from "openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IN2MFactory, IN2MCommon} from "./interfaces/IN2MFactory.sol"; import {N2MVersion, Readme} from "./N2MVersion.sol"; import {IN2MCrossFactory} from "./interfaces/IN2MCrossFactory.sol"; import {SafeTransferLib} from "solady/utils/SafeTransferLib.sol"; address constant N2M_TREASURY = 0x6db16927DbC38AA39F0Ee2cB545e15EFd813FB99; address constant N2M_CONDUIT = 0x88899DC0B84C6E726840e00DFb94ABc6248825eC; address constant OPENSEA_CONDUIT = 0x1E0049783F008A0085193E00003D00cd54003c71; bytes4 constant IERC165_INTERFACE_ID = 0x01ffc9a7; bytes4 constant IERC173_INTERFACE_ID = 0x7f5828d0; bytes4 constant IERC721_INTERFACE_ID = 0x80ac58cd; bytes4 constant IERC721METADATA_INTERFACE_ID = 0x5b5e139f; bytes4 constant IERC2981_INTERFACE_ID = 0x2a55205a; /// @title NFTs2Me.com Factory /// @author The NFTs2Me Team /// @notice Read our terms of service /// @custom:security-contact [email protected] /// @custom:terms-of-service https://nfts2me.com/terms-of-service/ /// @custom:website https://nfts2me.com/ contract N2MFactory is ERC721, Ownable, IN2MFactory, IN2MCrossFactory, N2MVersion { mapping(bytes32 => address) private _implementationAddresses; address private _delegatedCreationSigner; string private _ownerTokenURI = "https://metadata.nfts2me.com/api/ownerTokenURI/"; constructor( address owner, address delegatedCreationSigner, bytes32 type1, bytes32 type2, address type1Address, address type2Address) ERC721("", "") payable { _initializeOwner(owner); _delegatedCreationSigner = delegatedCreationSigner; _implementationAddresses[type1] = type1Address; _implementationAddresses[type2] = type2Address; } /** * @dev Returns the name of the NFT Collection for the Ownership NFTs. * @return The name of the NFT Collection for the Ownership NFTs. */ function name() public pure override(ERC721) returns (string memory) { return "NFTs2Me Owners"; } /*** * @dev Returns the symbol of the NFT Collection for the Ownership NFTs. * @return The symbol of the NFT Collection for the Ownership NFTs. */ function symbol() public pure override(ERC721) returns (string memory) { return "N2MOwners"; } /*** * @dev Returns the implementation address for the given implementation type. * @param implementationType The type of implementation. Only 96 bits are considered. * @return The address of the implementation. */ function getImplementation(bytes32 implementationType) external view override returns (address) { return _implementationAddresses[implementationType]; } function _newContractImplementationsAndSigner( bytes32[] calldata implementationTypesAndAddresses, address delegatedCreationSigner_, string calldata ownerTokenURI ) private { for (uint256 i; i<implementationTypesAndAddresses.length; i++) { address implementationAddress = address(uint160(uint256(implementationTypesAndAddresses[i]))); bytes32 implementationType = implementationTypesAndAddresses[i] >> 160; _implementationAddresses[implementationType] = implementationAddress; } if (delegatedCreationSigner_ != address(0)) { _delegatedCreationSigner = delegatedCreationSigner_; } if (bytes(ownerTokenURI).length > 0) { _ownerTokenURI = ownerTokenURI; } } /** * @dev Sets new contract implementations and signer. * @param implementationTypesAndAddresses The array of implementation types and addresses. * @param delegatedCreationSigner_ The address of the signer for delegatedCreation. */ function newContractImplementationsAndSigner( bytes32[] calldata implementationTypesAndAddresses, address delegatedCreationSigner_, string calldata ownerTokenURI ) external payable onlyOwner { _newContractImplementationsAndSigner(implementationTypesAndAddresses, delegatedCreationSigner_, ownerTokenURI); } /** * @dev Creates a new NFT collection. * @param collectionInformation The information to create the collection. * @param collectionId The unique identifier for the collection and deployment. Must contain the msg.sender. * @param implementationType The type of implementation for the collection. Only 96 bits are considered. */ function createCollection( bytes calldata collectionInformation, bytes32 collectionId, bytes32 implementationType ) external payable containsCaller(collectionId) { address collection = LibClone.cloneDeterministic( _implementationAddresses[implementationType], collectionId ); (bool success, bytes memory returnData) = collection.call(collectionInformation); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } _mint(msg.sender, uint256(uint160((collection)))); } /** * @dev Creates a new NFT collection. * @param collectionInformation The information to create the collection. * @param collectionId The unique identifier for the collection and deployment. Must contain the msg.sender. * @param implementationType The type of implementation for the collection. Only 96 bits are considered. */ function createCollectionN2M_000oEFvt( bytes calldata collectionInformation, bytes32 collectionId, bytes32 implementationType ) external payable containsCaller(collectionId) { address collection = LibClone.cloneDeterministic( _implementationAddresses[implementationType], collectionId ); (bool success, bytes memory returnData) = collection.call(collectionInformation); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } _mint(msg.sender, uint256(uint160((collection)))); } /** * @dev Creates a new NFT collection. * @param collectionInformation The information to create the collection. * @param collectionId The unique identifier for the collection and deployment. Must contain the msg.sender. * @param implementationType The type of implementation for the collection. Only 96 bits are considered. */ function createCrossCollection( bytes calldata collectionInformation, bytes32 collectionId, bytes32 implementationType ) external payable containsCaller(collectionId) { bytes memory initCode = LibClone.initCode(_implementationAddresses[implementationType]); address collection = CREATE3.deployDeterministic(0, initCode, collectionId); (bool success, bytes memory returnData) = collection.call(collectionInformation); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } _mint(msg.sender, uint256(uint160((collection)))); } /** * @dev Performs a delegated creation of a new NFT collection. * @param owner The owner of the NFT collection. * @param collectionInformation The collection information to create the collection. * @param collectionId The ID of the NFT collection and deployment. Must contain the owner address. * @param implementationType The type of implementation for the NFT collection. Only 96 bits are considered. * @param signature The signature to validate the creation operation. */ function delegatedCreation( bytes calldata collectionInformation, address owner, bytes32 collectionId, bytes32 implementationType, bytes calldata signature ) external payable override { LibClone.checkStartsWith(collectionId, owner); address signer = ECDSA.recoverCalldata( ECDSA.toEthSignedMessageHash( keccak256( abi.encodePacked( this.delegatedCreation.selector, block.chainid, collectionInformation, owner, collectionId, implementationType ) ) ), signature ); if (signer != _delegatedCreationSigner && signer != owner) revert InvalidSignature(); address collection = LibClone.cloneDeterministic( _implementationAddresses[implementationType], collectionId ); (bool success, bytes memory returnData) = collection.call(collectionInformation); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } _mint(owner, uint256(uint160((collection)))); } /** * @dev Creates a new dynamic contract instance using the provided dynamic address, salt, and initialization data. * The caller must be the contract containing the `salt`. * @param dynamicAddress The address of the dynamic contract to clone. * @param salt The salt value used for deterministic cloning. * @param initData The initialization data to be passed to the cloned contract. */ function createNewDynamic( address dynamicAddress, bytes32 salt, bytes calldata initData ) external payable override containsCaller(salt) { address dynamic = LibClone.cloneDeterministic( dynamicAddress, salt ); if (initData.length > 0) { (bool success, bytes memory returnData) = dynamic.call{value: msg.value}(initData); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } } } /** * @dev Create a contract using CREATE3 by submitting a given salt or nonce * along with the initialization code for the contract. Note that the first 20 * bytes of the salt must match those of the calling address, which prevents * contract creation events from being submitted by unintended parties. * @param salt bytes32 The nonce that will be passed into the CREATE3 call. * Salts cannot be reused with the same initialization code. * @param initCode bytes The initialization code that will be passed * into the CREATE3 call. Note that initCode doesn't influence the generated address */ function create3(bytes32 salt, bytes memory initCode) external payable containsCaller(salt) { CREATE3.deployDeterministic(msg.value, initCode, salt); } /** * @dev Executes multiple calls in a single transaction, including calls to the factory and to a given collection. * @param collectionAndSelfcalls The first 160 bits represent the address of the collection contract, and the remaining bits represent the number of self-calls to be made to the factory. * @param data The array of calldata for each call. The length of the array must match the number of calls. */ function multicallN2M_001Taw5z(uint256 collectionAndSelfcalls, bytes[] calldata data) external payable override { address collection = address(uint160(collectionAndSelfcalls)); uint256 selfcalls = collectionAndSelfcalls >> 160; /// Delegate calls to factory (selfcalls) uint256 i; for (; i < selfcalls; i++) { (bool success, bytes memory returnData) = address(this).delegatecall(data[i]); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } } /// Calls to collection with owner permission if (collection != address(0)) { /// Check if msg.sender is the owner of the collection if (msg.sender != _ownerOf(uint256(uint160(collection)))) revert Unauthorized(); /// Regular call to collection for (; i < data.length; i++) { (bool success, bytes memory returnData) = collection.call(data[i]); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } } } } /** * @dev Executes multiple calls in a single transaction, including calls to the factory and to a given collection. * @param collectionAndSelfcalls The first 160 bits represent the address of the collection contract, and the remaining bits represent the number of self-calls to be made to the factory. * @param data The array of calldata for each call. The length of the array must match the number of calls. */ function multicall(uint256 collectionAndSelfcalls, bytes[] calldata data) external payable override { address collection = address(uint160(collectionAndSelfcalls)); uint256 selfcalls = collectionAndSelfcalls >> 160; /// Delegate calls to factory (selfcalls) uint256 i; for (; i < selfcalls; i++) { (bool success, bytes memory returnData) = address(this).delegatecall(data[i]); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } } /// Calls to collection with owner permission if (collection != address(0)) { /// Check if msg.sender is the owner of the collection if (msg.sender != _ownerOf(uint256(uint160(collection)))) revert Unauthorized(); /// Regular call to collection for (; i < data.length; i++) { (bool success, bytes memory returnData) = collection.call(data[i]); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } } } } /** * @dev Executes multiple calls in a single transaction, including calls to the factory and to multiple collections. * @param collectionsAndCalls Array of collection addresses and call amounts. address(0) is used for selfcalls. The first 160 bits represent the address of the collection contract, and the remaining bits represent the number of calls to be made to the collection. * @param collectionsValues Optional. Array of values to be sent with each call. If the array is shorter than the number of calls, the remaining calls will be sent with 0 value. * @param data Array of call data for each collection. The length of the array must match the number of calls. */ function multicallMulticollection(uint256[] calldata collectionsAndCalls, uint256[] calldata collectionsValues, bytes[] calldata data) external payable override { uint256 collectionsValuesLength = collectionsValues.length; /// If there are msg.value transfers, transfer current native contract balance to treasury. if (collectionsValuesLength > 0) { uint256 previousBalance = address(this).balance - msg.value; if ((previousBalance) > 0) { assembly { pop(call(gas(), N2M_TREASURY, previousBalance, 0, 0, 0, 0)) } } } uint256 dataIndex; uint256 valueIndex; for (uint256 i; i < collectionsAndCalls.length; i++) { uint256 currentCollectionAndAmount = collectionsAndCalls[i]; address collection = address(uint160(currentCollectionAndAmount)); uint256 callAmount = currentCollectionAndAmount >> 160; if (collection == address(0)) { /// Delegate calls to factory (selfcalls) for (uint256 j; j < callAmount; j++) { (bool success, bytes memory returnData) = address(this).delegatecall(data[dataIndex++]); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } } } else { /// Check if msg.sender is the owner of the collection if (msg.sender != _ownerOf(uint256(uint160(collection)))) revert Unauthorized(); for (uint256 j; j < callAmount; j++) { uint256 currentValue; if (valueIndex < collectionsValuesLength) { currentValue = collectionsValues[valueIndex++]; } (bool success, bytes memory returnData) = collection.call{value: currentValue}(data[dataIndex++]); if (!success) { assembly { revert(add(returnData, 32), mload(returnData)) } } } } } /// Final additional checks if (dataIndex != data.length) revert InvalidLengths(); if (valueIndex != collectionsValuesLength) revert InvalidLengths(); } /** * @dev Predicts the deterministic address for a contract deployment based on the implementation type and collection and deploy ID. * @param implementationType The type of implementation for the contract. * @param collectionId The collection and deploy ID for the contract. * @return The deterministic address for the contract deployment. */ function predictDeterministicAddress( bytes32 implementationType, bytes32 collectionId ) external view returns (address) { return LibClone.predictDeterministicAddress( _implementationAddresses[implementationType], collectionId, address(this) ); } /** * @dev Withdraws ETH and ERC20 tokens from the contract to a specified address. * @param to The address to which the funds will be transferred. * @param erc20 Optional. The address of the ERC20 token. */ function withdrawTo(address to, address erc20) onlyOwner external payable { assembly { pop(call(gas(), to, selfbalance(), 0, 0, 0, 0)) } if (erc20 != address(0)) { IERC20(erc20).transfer(to, SafeTransferLib.balanceOf(erc20, address(this))); } } function _update( address to, uint256 tokenId, address auth ) internal virtual override returns (address previousOwner) { previousOwner = super._update(to, tokenId, auth); if (previousOwner != address(0)) { address collection = address(uint160(tokenId)); IN2MCommon(collection).ownershipTransferred(previousOwner, to); } } /** * @dev Returns the token URI for a given token ID of the Ownership NFTs. * @param tokenId The ID of the Ownership NFT. * @return The token URI. */ function tokenURI(uint256 tokenId) public view override returns (string memory) { address collection = address(uint160(tokenId)); uint256 ownerRevenue = IN2MCommon(collection).ownerMaxRevenue(); return string(abi.encodePacked(_ownerTokenURI, LibString.toString(block.chainid), "/", LibString.toString(tokenId), "/", LibString.toString(uint256(uint160(ownerOf(tokenId)))), "/", LibString.toString(ownerRevenue), "/")); } /// @notice Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of exchange. The royalty amount is denominated and should be paid in that same unit of exchange. /// @param salePrice The sale price /// @return receiver the receiver of the royalties. /// @return royaltyAmount the amount of the royalties for the given input. function royaltyInfo( uint256, uint256 salePrice ) external view virtual returns (address receiver, uint256 royaltyAmount) { return (address(N2M_TREASURY), uint256((salePrice * 5_00) / 100_00)); } /// @notice Query if a contract implements an interface /// @param interfaceId The interface identifier, as specified in ERC-165 /// @dev Interface identification is specified in ERC-165. This function uses less than 30,000 gas. /// @return `true` if the contract implements `interfaceId` and `interfaceId` is not 0xffffffff, `false` otherwise function supportsInterface(bytes4 interfaceId) public pure override(ERC721) returns (bool) { if (interfaceId == IERC165_INTERFACE_ID) return true; if (interfaceId == IERC173_INTERFACE_ID) return true; if (interfaceId == IERC721_INTERFACE_ID) return true; if (interfaceId == IERC721METADATA_INTERFACE_ID) return true; return (interfaceId == IERC2981_INTERFACE_ID); } /// @notice Query if an address is an authorized operator for another address /// @param owner The address that owns the NFTs /// @param operator The address that acts on behalf of the owner /// @return True if `operator` is an approved operator for `owner`, false otherwise function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { if (operator == N2M_CONDUIT) return true; if (operator == OPENSEA_CONDUIT) return true; return super.isApprovedForAll(owner, operator); } function ownerOf(uint256 tokenId) public view override(ERC721, IN2MCrossFactory) returns (address) { return super.ownerOf(tokenId); } /** * @dev Transfers the ownership of a collection to the specified address. * @param to The address to transfer the ownership to. * @notice The caller must be the collection itself, being the call initiated by the current owner of the collection. * @notice If the collection does not exist, the function reverts. */ function transferCollectionOwnership(address to) external payable { uint256 tokenId = uint256(uint160(msg.sender)); address previousOwner = _update(to, tokenId, address(0)); if (previousOwner == address(0)) revert ERC721NonexistentToken(tokenId); } /** * @dev Retrieves the IPFS URI for a given CID hash. * @param CIDHash The CID hash to retrieve the IPFS URI for. * @return The IPFS URI in base32 v1 using DAG-PB codec for root. */ function getIPFSURI(bytes32 CIDHash) external pure override returns (string memory) { bytes memory decodedInput = abi.encodePacked(bytes4(0x01701220), CIDHash, bytes1(0x00)); bytes memory outputString = new bytes(58); for(uint256 i = 0; i < 58; i++){ uint8 base32Value = _getBase32Value(decodedInput, i); outputString[i] = _base32ToChar(base32Value); } return string.concat("ipfs://b", string(outputString)); } function _getBase32Value(bytes memory decodedInput, uint256 position) private pure returns (uint8){ position *= 5; uint256 inputPosition = (position) / 8; bytes32 temp = bytes32(decodedInput[inputPosition]) | bytes32(decodedInput[inputPosition + 1]) >> 8; uint256 positionRemainder = (position) % 8; temp <<= positionRemainder; bytes32 mask = 0xf800000000000000000000000000000000000000000000000000000000000000; temp &= mask; return uint8(uint256((temp >> 251))); } function _base32ToChar(uint8 base32Value) private pure returns (bytes1){ if (base32Value < 26){ return bytes1(base32Value + 97); } else { return bytes1(base32Value + 24); } } modifier containsCaller(bytes32 salt) { /// prevent contract addresses from being stolen by requiring /// that the first 20 bytes of the submitted salt match msg.sender. LibClone.checkStartsWith(salt, msg.sender); /// if ( /// (address(bytes20(salt)) != msg.sender) && /// (bytes20(salt) != bytes20(0))) /// revert InvalidSalt(); _; } }
/** ---------------------------------------------------------------------------- // * // * Smart contract generated by https://nfts2me.com // * // * .::. // * ...... // * .... ::. // * .:.. :: ... // * ..:. :: ... // * ::. ..:-- ::. ... // * .: ..:::::-==: :::::.. : // * .: :::::::-====: :::::::: : // * .: :::::::-======. :::::::: : // * .: :::::::-=======-:::::::: : // * .: :::::::-========-::::::: : // * .: ::::::::========-::::::: : // * .: :::::::. .======-::::::: : // * .: :::::::. :====-::::::: : // * .: .:::::. -==-:::::. : // * .:. .:. .--:.. ... // * .:. :. ... // * .... :. .... // * .:. .:. // * .::::. // * :--. // * // * // * NFTs2Me. Make an NFT Collection. // * With ZERO Coding Skills. // * // * NFTs2Me is not associated or affiliated with this project. // * NFTs2Me is not liable for any bugs or issues associated with this contract. // * NFTs2Me Terms of Service: https://nfts2me.com/terms-of-service/ // * More info at: https://docs.nfts2me.com/ // * ----------------------------------------------------------------------------- */ /// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.27; /// @title NFTs2Me.com Smart Contracts README /// @author The NFTs2Me Team /// @notice Read our terms of service /// @custom:security-contact [email protected] /// @custom:terms-of-service https://nfts2me.com/terms-of-service/ /// @custom:website https://nfts2me.com/ interface Readme { function n2mVersion() external pure returns (uint256); }
// SPDX-License-Identifier: CC0-1.0 pragma solidity ^0.8.27; interface IERC4907 { /// Logged when the user of a token assigns a new user or updates expires /// @notice Emitted when the `user` of an NFT or the `expires` of the `user` is changed /// The zero address for user indicates that there is no user address event UpdateUser(uint256 indexed tokenId, address indexed user, uint64 expires); /// @notice set the user and expires of a NFT /// @dev The zero address indicates there is no user /// Throws if `tokenId` is not valid NFT /// @param user The new user of the NFT /// @param expires UNIX timestamp, The new user could use the NFT before expires function setUser(uint256 tokenId, address user, uint64 expires) external ; /// @notice Get the user address of an NFT /// @dev The zero address indicates that there is no user or the user is expired /// @param tokenId The NFT to get the user address for /// @return The user address for this NFT function userOf(uint256 tokenId) external view returns(address); /// @notice Get the user expires of an NFT /// @dev The zero value indicates that there is no user /// @param tokenId The NFT to get the user expires for /// @return The user expires for this NFT function userExpires(uint256 tokenId) external view returns(uint256); }
// SPDX-License-Identifier: CC0-1.0 pragma solidity ^0.8.27; interface IERC5192 { /// @notice Emitted when the locking status is changed to locked. /// @dev If a token is minted and the status is locked, this event should be emitted. /// @param tokenId The identifier for a token. event Locked(uint256 tokenId); /// @notice Emitted when the locking status is changed to unlocked. /// @dev If a token is minted and the status is unlocked, this event should be emitted. /// @param tokenId The identifier for a token. event Unlocked(uint256 tokenId); /// @notice Returns the locking status of an Soulbound Token /// @dev SBTs assigned to zero address are considered invalid, and queries /// about them do throw. /// @param tokenId The identifier for an SBT. function locked(uint256 tokenId) external view returns (bool); }
// SPDX-License-Identifier: CC0-1.0 pragma solidity ^0.8.27; interface IERC7496 { /// Events event TraitUpdated(bytes32 indexed traitKey, uint256 tokenId, bytes32 traitValue); event TraitUpdatedRange(bytes32 indexed traitKey, uint256 fromTokenId, uint256 toTokenId); event TraitUpdatedRangeUniformValue( bytes32 indexed traitKey, uint256 fromTokenId, uint256 toTokenId, bytes32 traitValue ); event TraitUpdatedList(bytes32 indexed traitKey, uint256[] tokenIds); event TraitUpdatedListUniformValue(bytes32 indexed traitKey, uint256[] tokenIds, bytes32 traitValue); event TraitMetadataURIUpdated(); /// Getters function getTraitValue(uint256 tokenId, bytes32 traitKey) external view returns (bytes32 traitValue); function getTraitValues(uint256 tokenId, bytes32[] calldata traitKeys) external view returns (bytes32[] memory traitValues); function getTraitMetadataURI() external view returns (string memory uri); /// Setters function setTrait(uint256 tokenId, bytes32 traitKey, bytes32 traitValue) external; /// Errors error TraitValueUnchanged(); }
// SPDX-License-Identifier: CC0-1.0 pragma solidity ^0.8.27; interface IERC7572 { function contractURI() external view returns (string memory); event ContractURIUpdated(); }
/** ---------------------------------------------------------------------------- // * // * Smart contract generated by https://nfts2me.com // * // * .::. // * ...... // * .... ::. // * .:.. :: ... // * ..:. :: ... // * ::. ..:-- ::. ... // * .: ..:::::-==: :::::.. : // * .: :::::::-====: :::::::: : // * .: :::::::-======. :::::::: : // * .: :::::::-=======-:::::::: : // * .: :::::::-========-::::::: : // * .: ::::::::========-::::::: : // * .: :::::::. .======-::::::: : // * .: :::::::. :====-::::::: : // * .: .:::::. -==-:::::. : // * .:. .:. .--:.. ... // * .:. :. ... // * .... :. .... // * .:. .:. // * .::::. // * :--. // * // * // * NFTs2Me. Make an NFT Collection. // * With ZERO Coding Skills. // * // * NFTs2Me is not associated or affiliated with this project. // * NFTs2Me is not liable for any bugs or issues associated with this contract. // * NFTs2Me Terms of Service: https://nfts2me.com/terms-of-service/ // * More info at: https://docs.nfts2me.com/ // * ----------------------------------------------------------------------------- */ /// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.27; import {IERC2981} from "openzeppelin/contracts/interfaces/IERC2981.sol"; import {IERC4907} from "./IERC4907.sol"; import {IERC5192} from "./IERC5192.sol"; import {IERC7496} from "./IERC7496.sol"; import {IERC7572} from "./IERC7572.sol"; import {IN2MCommonStorage} from "./IN2MCommonStorage.sol"; interface IN2MCommon is IN2MCommonStorage, IERC2981, IERC4907, IERC5192, IERC7496, IERC7572 { /// @notice This event is emitted when a token is minted using an affiliate /// @param affiliate The affiliate address event AffiliateSell(address indexed affiliate); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); event BatchMetadataUpdate(uint256 fromTokenId, uint256 toTokenId); event ImmutableTrait(bytes32 indexed traitKey, uint256 indexed tokenId, bytes32 value); /// @notice Error thrown when input variable differ in length error InvalidInputSizesDontMatch(); /// @notice Error thrown when trying to mint a token with a given invalid id error InvalidTokenId(); /// @notice Error thrown when the input amount is not valid error InvalidAmount(); /// @notice Error thrown when trying to mint a sold out collection or the amount to mint exceeds the remaining supply error CollectionSoldOut(); /// @notice Error thrown when trying to presale/whitelist mint and the collection current phase is `closed` error PresaleNotOpen(); /// @notice Error thrown when trying to mint and the collection current phase is not `open` error PublicSaleNotOpen(); /// @notice Error thrown when trying to mint but the sale has already finished error SaleFinished(); /// @notice Error thrown when trying to mint more than the allowance to mint error NotEnoughAmountToMint(); /// @notice Error thrown when the sent amount is not valid error InvalidMintFee(); /// @notice Invalid input. Total supply must be greater than zero error InvadlidCollectionSize(); /// @notice Can't transfer a Soulbound Token (SBT) error NonTransferrableSoulboundNFT(); /// @notice The input revenue percentages are not valid error InvalidRevenuePercentage(); /// @notice The amount of revenue addresses is too high error InvalidRevenueAddresses(); /// @notice Can't mint until specified drop date error WaitUntilDropDate(); /// @notice Trying to use mintPresale method in a collection with a minting type that doesn't support whitelist error PresaleInvalidMintingType(); /// @notice Metadata is already fixed. Can't change metadata once fixed error MetadataAlreadyFixed(); /// @notice Invalid collection minting type for the current minting function error InvalidMintingType(); /// @notice The address exceeded the max per address amount error MaxPerAddressExceeded(); /// @notice The given signature doesn't match the input values error SignatureMismatch(); /// @notice The given signature is not valid error InvalidSignature(); /// @notice Reentrancy Guard protection error ReentrancyGuard(); /// @notice New BaseURI can't be empty error NewBaseURICantBeEmpty(); /// @notice Invalid percentage or discount values error InvalidPercentageOrDiscountValues(); /// @notice Can't lower current percentages error CantLowerCurrentPercentages(); /// @notice Invalid phase can't be set without giving a date, use the proper functions error InvalidPhaseWithoutDate(); /// @notice Payment address can't be changed if there is pending affiliate balance to withdraw. error PendingAffiliatesBalance(); /// @notice Operator not allowed error OperatorNotAllowed(address operator); /// @notice Error indicating that the minter is not allowlisted error NotAllowlisted(); /// @notice The initialization has already been done error InvalidInitialization(); /// @notice Error indicating that the trait is not editable more than once error OnlyOnceTrait(); /// @notice Trait is not editable by the token owner error NonEditableTraitByTokenOwner(); /// @notice Error indicating that the caller is not the owner of the contract or an authorized account error OwnableUnauthorizedAccount(address account); /// @notice Error indicating that the metadata cannot be frozen when setting a placeholder error PlacerholderCantFreezeMetadata(); /// @notice The caller must own the token or be an approved operator. error ApprovalCallerNotOwnerNorApproved(); /// @notice The token does not exist. error ApprovalQueryForNonexistentToken(); /// @notice Cannot query the balance for the zero address. error BalanceQueryForZeroAddress(); /// @notice Cannot mint to the zero address. error MintToZeroAddress(); /// @notice The quantity of tokens minted must be more than zero. error MintZeroQuantity(); /// @notice The token does not exist. error OwnerQueryForNonexistentToken(); /// @notice The caller must own the token or be an approved operator. error TransferCallerNotOwnerNorApproved(); /// @notice The token must be owned by `from`. error TransferFromIncorrectOwner(); /// @notice Cannot safely transfer to a contract that does not implement the ERC721Receiver interface. error TransferToNonERC721ReceiverImplementer(); /// @notice Cannot transfer to the zero address. error TransferToZeroAddress(); /// @notice The caller must own the token or be an approved operator. error TransferFromFailed(); /// @notice Initializer for the contract function initialize008joDSK ( string calldata name, string calldata symbol, uint256 mintPrice, bytes32 baseURIorPlaceholderCIDHash, bytes32 packedData, bytes calldata extraCollectionInformation ) external payable; /// @notice A descriptive name for a collection of NFTs in this contract function name() external view returns (string memory); /// @notice An abbreviated name for NFTs in this contract /// @return the collection symbol function symbol() external view returns (string memory); /// @notice Mints `amount` of NFTs to `to` address with optional specified tokenIds. This function must be called only if a valid `signature` is given during a whitelisting/presale. /// @param toWihtExtra To address packed with extra information. /// @param customFee Zero is fee is different from `mintingPrice`. /// @param signature Valid `signature` for the presale/whitelist. function mintWhitelist( bytes32 toWihtExtra, uint256 customFee, bytes calldata signature, uint256[] calldata tokenIds) payable external; /// @notice returns the merkle root of the current whitelist function merkleRoot() external view returns (bytes32); /// @notice sets the merkle root for the current whitelist function setMerkleRoot(bytes32 merkleRoot_) external payable; /// @notice returns 'true' if the given address is allowlisted function allowListed(address _wallet, bytes32[] calldata _proof) external view returns (bool); /// @notice mint `amount` of NFTs if the msg.sender is allowlisted function mintAllowlist(uint256 amount, bytes32[] calldata _proof) external payable; /// @notice Returns the minting fee of `amount` NFT. /// @return Mint price for `amount` NFTs in native coin or ERC-20. function mintFee(uint256 amount) external view returns (uint256); /// @notice Returns the platform fee of one NFT. /// @return Platform for one NFT in native coin. function protocolFee() external view returns (uint256); /// @notice Returns the current total supply. /// @return Current total supply. function totalSupply() external view returns (uint256); /// @notice Returns the amount of burned tokens. /// @return Burned tokens. function burnedTokens() external view returns (uint256); /// @notice Max amount of NFTs to be hold per address. /// @return Max per address allowed. function maxPerAddress() external view returns (uint256); /// @notice Returns true if the metadata is fixed and immutable. If the metadata hasn't been fixed yet it will return false. Once fixed, it can't be changed by anyone. function isMetadataFixed() external view returns (bool); function setBaseURI(string memory baseURIString, bytes32 baseURICIDHash, bool isPlaceholder, bool freezeMetadata) external payable; function changeMintFee(uint256 newMintFee, bool isDynamic) external payable; function contractURI() external view returns (string calldata); function setContractURI(bytes32 newContractURIMetadataCIDHash) external payable; function setAffiliatesPercentageAndDiscount(uint16 userDiscount, uint16 affiliatePercentage, address affiliateAddress) external; function affiliateWithdraw(address affiliate) external payable; function withdrawERC20(address erc20Address) external payable; function withdraw() external payable; function setPhase(SalePhase newPhase) external payable; function setDropAndEndDate(uint256 dropDateTimestamp, uint256 endDateTimestamp) external payable; function setMaxPerAddress(uint16 newMaxPerAddress) external payable; function isOperatorFilterRegistryEnabled() external view returns (bool); function whitelistOperators(address[] calldata operators) external payable; function disableOperatorFilterRegistry() external payable; function reserveTokens(uint16 amount) external payable; function unreserveTokens(uint16 amount) external payable; function reservedTokens() external view returns (uint256); function collectionSize() external view returns (uint256); function affiliatesInfo(address affiliate) external view returns (bool enabled, uint16 affiliatePercentage, uint16 userDiscount); function changeRoyaltyFee(uint16 newFee) external payable; function royaltyFee() external view returns (uint256); function changeERC20PaymentAddress(address newErc20PaymentAddress) external payable; function currentPhase() external view returns (SalePhase); function mintingType() external view returns (MintingType); function saleDates() external view returns (uint256 dropDateTimestamp, uint256 endDateTimestamp); function isOpen() external view returns (bool); function ownershipTransferred(address from, address to) external payable; function ownerMaxRevenue() external view returns (uint256); function removeProtocolFee(bytes calldata signature, uint256 fee, address feeReceiver) external payable; function setTraitsPermissions(bytes32[] calldata ownerCanUpdateTraitKeys, bytes32[] calldata notOnlyOnceTraitKeys) external payable; function setTraitMetadataURI(string calldata uri) external payable; function withdrawnAmount() external view returns (uint256); function pendingTotalAffiliatesBalance() external view returns (uint256); function erc20PaymentAddress() external view returns (address); function owner() external view returns (address collectionOwner); function transferOwnership(address to) external payable; function reduceCollectionSize(uint32 newCollectionSize) external payable; }
/** ---------------------------------------------------------------------------- // * // * Smart contract generated by https://nfts2me.com // * // * .::. // * ...... // * .... ::. // * .:.. :: ... // * ..:. :: ... // * ::. ..:-- ::. ... // * .: ..:::::-==: :::::.. : // * .: :::::::-====: :::::::: : // * .: :::::::-======. :::::::: : // * .: :::::::-=======-:::::::: : // * .: :::::::-========-::::::: : // * .: ::::::::========-::::::: : // * .: :::::::. .======-::::::: : // * .: :::::::. :====-::::::: : // * .: .:::::. -==-:::::. : // * .:. .:. .--:.. ... // * .:. :. ... // * .... :. .... // * .:. .:. // * .::::. // * :--. // * // * // * NFTs2Me. Make an NFT Collection. // * With ZERO Coding Skills. // * // * NFTs2Me is not associated or affiliated with this project. // * NFTs2Me is not liable for any bugs or issues associated with this contract. // * NFTs2Me Terms of Service: https://nfts2me.com/terms-of-service/ // * More info at: https://docs.nfts2me.com/ // * ----------------------------------------------------------------------------- */ /// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.27; import "../important/README.sol"; interface IN2MCommonStorage is Readme { struct RevenueAddress { address to; uint16 percentage; } struct AffiliateInformation { bool enabled; uint16 affiliatePercentage; uint16 userDiscount; } struct TokenApprovalRef { address value; } enum SalePhase { PUBLIC, CLOSED, PRESALE, DROP_DATE, DROP_AND_END_DATE, END_DATE } enum MintingType { SEQUENTIAL, RANDOM, SPECIFY, CUSTOM_URI, SEQUENTIAL_EDITIONS } enum OperatorFilterStatus { DISABLED, ENABLED_ONLY_WHITELISTED } function withdrawnERC20Amount(address erc20) external view returns (uint256); function pendingAffiliateBalance(address affiliate) external view returns (uint256); function whitelistedOperators(address operator) external view returns (bool); }
/** ---------------------------------------------------------------------------- // * // * Smart contract generated by https://nfts2me.com // * // * .::. // * ...... // * .... ::. // * .:.. :: ... // * ..:. :: ... // * ::. ..:-- ::. ... // * .: ..:::::-==: :::::.. : // * .: :::::::-====: :::::::: : // * .: :::::::-======. :::::::: : // * .: :::::::-=======-:::::::: : // * .: :::::::-========-::::::: : // * .: ::::::::========-::::::: : // * .: :::::::. .======-::::::: : // * .: :::::::. :====-::::::: : // * .: .:::::. -==-:::::. : // * .:. .:. .--:.. ... // * .:. :. ... // * .... :. .... // * .:. .:. // * .::::. // * :--. // * // * // * NFTs2Me. Make an NFT Collection. // * With ZERO Coding Skills. // * // * NFTs2Me is not associated or affiliated with this project. // * NFTs2Me is not liable for any bugs or issues associated with this contract. // * NFTs2Me Terms of Service: https://nfts2me.com/terms-of-service/ // * More info at: https://docs.nfts2me.com/ // * ----------------------------------------------------------------------------- */ /// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.27; interface IN2MCrossFactory { function ownerOf(uint256 tokenId) external view returns (address); function getIPFSURI(bytes32 cidHash) external pure returns (string memory); function transferCollectionOwnership(address to) external payable; }
/** ---------------------------------------------------------------------------- // * // * Smart contract generated by https://nfts2me.com // * // * .::. // * ...... // * .... ::. // * .:.. :: ... // * ..:. :: ... // * ::. ..:-- ::. ... // * .: ..:::::-==: :::::.. : // * .: :::::::-====: :::::::: : // * .: :::::::-======. :::::::: : // * .: :::::::-=======-:::::::: : // * .: :::::::-========-::::::: : // * .: ::::::::========-::::::: : // * .: :::::::. .======-::::::: : // * .: :::::::. :====-::::::: : // * .: .:::::. -==-:::::. : // * .:. .:. .--:.. ... // * .:. :. ... // * .... :. .... // * .:. .:. // * .::::. // * :--. // * // * // * Smart contract generated by https://nfts2me.com // * // * NFTs2Me. Make an NFT Collection. // * With ZERO Coding Skills. // * // * NFTs2Me is not associated or affiliated with this project. // * NFTs2Me is not liable for any bugs or issues associated with this contract. // * NFTs2Me Terms of Service: https://nfts2me.com/terms-of-service/ // * ----------------------------------------------------------------------------- */ /// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.27; import '../important/README.sol'; import './IN2MCommon.sol'; interface IN2MFactory is Readme { error InvalidSignature(); error FailedToDeploy(); error FactoryBalanceDecreased(); error InvalidLengths(); error BalanceInvariant(); function createCollectionN2M_000oEFvt( bytes calldata collectionInformation, bytes32 collectionId, bytes32 implementationType ) payable external; function createCollection( bytes calldata collectionInformation, bytes32 collectionId, bytes32 implementationType ) payable external; function delegatedCreation( bytes calldata collectionInformation, address owner, bytes32 collectionId, bytes32 implementationType, bytes calldata signature ) external payable; function createNewDynamic( address dynamicAddress, bytes32 salt, bytes calldata initInformation ) external payable; function multicallN2M_001Taw5z(uint256 collectionAndSelfcalls, bytes[] calldata data) external payable; function multicall(uint256 collectionAndSelfcalls, bytes[] calldata data) external payable; function multicallMulticollection(uint256[] calldata collectionsAndCalls, uint256[] calldata collectionsValues, bytes[] calldata data) external payable; function predictDeterministicAddress(bytes32 implementationType, bytes32 collectionId) external view returns (address); function getImplementation(bytes32 implementationType) external view returns (address); }
/** ---------------------------------------------------------------------------- // * // * Smart contract generated by https://nfts2me.com // * // * .::. // * ...... // * .... ::. // * .:.. :: ... // * ..:. :: ... // * ::. ..:-- ::. ... // * .: ..:::::-==: :::::.. : // * .: :::::::-====: :::::::: : // * .: :::::::-======. :::::::: : // * .: :::::::-=======-:::::::: : // * .: :::::::-========-::::::: : // * .: ::::::::========-::::::: : // * .: :::::::. .======-::::::: : // * .: :::::::. :====-::::::: : // * .: .:::::. -==-:::::. : // * .:. .:. .--:.. ... // * .:. :. ... // * .... :. .... // * .:. .:. // * .::::. // * :--. // * // * // * NFTs2Me. Make an NFT Collection. // * With ZERO Coding Skills. // * // * NFTs2Me is not associated or affiliated with this project. // * NFTs2Me is not liable for any bugs or issues associated with this contract. // * NFTs2Me Terms of Service: https://nfts2me.com/terms-of-service/ // * More info at: https://docs.nfts2me.com/ // * ----------------------------------------------------------------------------- */ /// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.27; import "./important/README.sol"; /// @title NFTs2Me.com Smart Contracts Version /// @author The NFTs2Me Team /// @notice Read our terms of service /// @custom:security-contact [email protected] /// @custom:terms-of-service https://nfts2me.com/terms-of-service/ /// @custom:website https://nfts2me.com/ abstract contract N2MVersion is Readme { /// @notice Current version of the nfts2me.com contracts. function n2mVersion() virtual external pure returns (uint256) { return 2030; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC2981.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol"; /** * @dev Interface for the NFT Royalty Standard. * * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal * support for royalty payments across all NFT marketplaces and ecosystem participants. */ interface IERC2981 is IERC165 { /** * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of * exchange. The royalty amount is denominated and should be paid in that same unit of exchange. */ function royaltyInfo( uint256 tokenId, uint256 salePrice ) external view returns (address receiver, uint256 royaltyAmount); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "../token/ERC721/IERC721.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/ERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "./IERC721.sol"; import {IERC721Receiver} from "./IERC721Receiver.sol"; import {IERC721Metadata} from "./extensions/IERC721Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {Strings} from "../../utils/Strings.sol"; import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol"; import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors { using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; mapping(uint256 tokenId => address) private _owners; mapping(address owner => uint256) private _balances; mapping(uint256 tokenId => address) private _tokenApprovals; mapping(address owner => mapping(address operator => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual returns (uint256) { if (owner == address(0)) { revert ERC721InvalidOwner(address(0)); } return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual returns (address) { return _requireOwned(tokenId); } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual returns (string memory) { _requireOwned(tokenId); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual { _approve(to, tokenId, _msgSender()); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual returns (address) { _requireOwned(tokenId); return _getApproved(tokenId); } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom(address from, address to, uint256 tokenId) public virtual { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here. address previousOwner = _update(to, tokenId, _msgSender()); if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual { transferFrom(from, to, tokenId); _checkOnERC721Received(from, to, tokenId, data); } /** * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist * * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the * core ERC721 logic MUST be matched with the use of {_increaseBalance} to keep balances * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`. */ function _ownerOf(uint256 tokenId) internal view virtual returns (address) { return _owners[tokenId]; } /** * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted. */ function _getApproved(uint256 tokenId) internal view virtual returns (address) { return _tokenApprovals[tokenId]; } /** * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in * particular (ignoring whether it is owned by `owner`). * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) { return spender != address(0) && (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender); } /** * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner. * Reverts if `spender` does not have approval from the provided `owner` for the given token or for all its assets * the `spender` for the specific `tokenId`. * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual { if (!_isAuthorized(owner, spender, tokenId)) { if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } else { revert ERC721InsufficientApproval(spender, tokenId); } } } /** * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override. * * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that * a uint256 would ever overflow from increments when these increments are bounded to uint128 values. * * WARNING: Increasing an account's balance using this function tends to be paired with an override of the * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership * remain consistent with one another. */ function _increaseBalance(address account, uint128 value) internal virtual { unchecked { _balances[account] += value; } } /** * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update. * * The `auth` argument is optional. If the value passed is non 0, then this function will check that * `auth` is either the owner of the token, or approved to operate on the token (by the owner). * * Emits a {Transfer} event. * * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}. */ function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) { address from = _ownerOf(tokenId); // Perform (optional) operator check if (auth != address(0)) { _checkAuthorized(from, auth, tokenId); } // Execute the update if (from != address(0)) { // Clear approval. No need to re-authorize or emit the Approval event _approve(address(0), tokenId, address(0), false); unchecked { _balances[from] -= 1; } } if (to != address(0)) { unchecked { _balances[to] += 1; } } _owners[tokenId] = to; emit Transfer(from, to, tokenId); return from; } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner != address(0)) { revert ERC721InvalidSender(address(0)); } } /** * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual { _mint(to, tokenId); _checkOnERC721Received(address(0), to, tokenId, data); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * This is an internal function that does not check if the sender is authorized to operate on the token. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal { address previousOwner = _update(address(0), tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } else if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients * are aware of the ERC721 standard to prevent tokens from being forever locked. * * `data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is like {safeTransferFrom} in the sense that it invokes * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `tokenId` token must exist and be owned by `from`. * - `to` cannot be the zero address. * - `from` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId) internal { _safeTransfer(from, to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual { _transfer(from, to, tokenId); _checkOnERC721Received(from, to, tokenId, data); } /** * @dev Approve `to` to operate on `tokenId` * * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is * either the owner of the token, or approved to operate on all tokens held by this owner. * * Emits an {Approval} event. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address to, uint256 tokenId, address auth) internal { _approve(to, tokenId, auth, true); } /** * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not * emitted in the context of transfers. */ function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual { // Avoid reading the owner unless necessary if (emitEvent || auth != address(0)) { address owner = _requireOwned(tokenId); // We do not use _isAuthorized because single-token approvals should not be able to call approve if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) { revert ERC721InvalidApprover(auth); } if (emitEvent) { emit Approval(owner, to, tokenId); } } _tokenApprovals[tokenId] = to; } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Requirements: * - operator can't be the address zero. * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll(address owner, address operator, bool approved) internal virtual { if (operator == address(0)) { revert ERC721InvalidOperator(operator); } _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned). * Returns the owner. * * Overrides to ownership logic should be done to {_ownerOf}. */ function _requireOwned(uint256 tokenId) internal view returns (address) { address owner = _ownerOf(tokenId); if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } return owner; } /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target address. This will revert if the * recipient doesn't accept the token transfer. The call is not executed if the target address is not a contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param data bytes optional data to send along with the call */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory data) private { if (to.code.length > 0) { try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) { if (retval != IERC721Receiver.onERC721Received.selector) { revert ERC721InvalidReceiver(to); } } catch (bytes memory reason) { if (reason.length == 0) { revert ERC721InvalidReceiver(to); } else { /// @solidity memory-safe-assembly assembly { revert(add(32, reason), mload(reason)) } } } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.20; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be * reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple single owner authorization mixin. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol) /// /// @dev Note: /// This implementation does NOT auto-initialize the owner to `msg.sender`. /// You MUST call the `_initializeOwner` in the constructor / initializer. /// /// While the ownable portion follows /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility, /// the nomenclature for the 2-step ownership handover may be unique to this codebase. abstract contract Ownable { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The caller is not authorized to call the function. error Unauthorized(); /// @dev The `newOwner` cannot be the zero address. error NewOwnerIsZeroAddress(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ownership is transferred from `oldOwner` to `newOwner`. /// This event is intentionally kept the same as OpenZeppelin's Ownable to be /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173), /// despite it not being as lightweight as a single argument event. event OwnershipTransferred(address indexed oldOwner, address indexed newOwner); /// @dev An ownership handover to `pendingOwner` has been requested. event OwnershipHandoverRequested(address indexed pendingOwner); /// @dev The ownership handover to `pendingOwner` has been canceled. event OwnershipHandoverCanceled(address indexed pendingOwner); /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`. uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE = 0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The owner slot is given by: /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`. /// It is intentionally chosen to be a high value /// to avoid collision with lower slots. /// The choice of manual storage layout is to enable compatibility /// with both regular and upgradeable contracts. bytes32 internal constant _OWNER_SLOT = 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927; /// The ownership handover slot of `newOwner` is given by: /// ``` /// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED)) /// let handoverSlot := keccak256(0x00, 0x20) /// ``` /// It stores the expiry timestamp of the two-step ownership handover. uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Override to return true to make `_initializeOwner` prevent double-initialization. function _guardInitializeOwner() internal pure virtual returns (bool guard) {} /// @dev Initializes the owner directly without authorization guard. /// This function must be called upon initialization, /// regardless of whether the contract is upgradeable or not. /// This is to enable generalization to both regular and upgradeable contracts, /// and to save gas in case the initial owner is not the caller. /// For performance reasons, this function will not check if there /// is an existing owner. function _initializeOwner(address newOwner) internal virtual { if (_guardInitializeOwner()) { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT if sload(ownerSlot) { mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`. revert(0x1c, 0x04) } // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner)))) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } else { /// @solidity memory-safe-assembly assembly { // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(_OWNER_SLOT, newOwner) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } } /// @dev Sets the owner directly without authorization guard. function _setOwner(address newOwner) internal virtual { if (_guardInitializeOwner()) { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner)))) } } else { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, newOwner) } } } /// @dev Throws if the sender is not the owner. function _checkOwner() internal view virtual { /// @solidity memory-safe-assembly assembly { // If the caller is not the stored owner, revert. if iszero(eq(caller(), sload(_OWNER_SLOT))) { mstore(0x00, 0x82b42900) // `Unauthorized()`. revert(0x1c, 0x04) } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC UPDATE FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Allows the owner to transfer the ownership to `newOwner`. function transferOwnership(address newOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { if iszero(shl(96, newOwner)) { mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`. revert(0x1c, 0x04) } } _setOwner(newOwner); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC READ FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the owner of the contract. function owner() public view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { result := sload(_OWNER_SLOT) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MODIFIERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Marks a function as only callable by the owner. modifier onlyOwner() virtual { _checkOwner(); _; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Deterministic deployments agnostic to the initialization code. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/CREATE3.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/CREATE3.sol) /// @author Modified from 0xSequence (https://github.com/0xSequence/create3/blob/master/contracts/Create3.sol) library CREATE3 { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Unable to deploy the contract. error DeploymentFailed(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTECODE CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /** * -------------------------------------------------------------------+ * Opcode | Mnemonic | Stack | Memory | * -------------------------------------------------------------------| * 36 | CALLDATASIZE | cds | | * 3d | RETURNDATASIZE | 0 cds | | * 3d | RETURNDATASIZE | 0 0 cds | | * 37 | CALLDATACOPY | | [0..cds): calldata | * 36 | CALLDATASIZE | cds | [0..cds): calldata | * 3d | RETURNDATASIZE | 0 cds | [0..cds): calldata | * 34 | CALLVALUE | value 0 cds | [0..cds): calldata | * f0 | CREATE | newContract | [0..cds): calldata | * -------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * -------------------------------------------------------------------| * 67 bytecode | PUSH8 bytecode | bytecode | | * 3d | RETURNDATASIZE | 0 bytecode | | * 52 | MSTORE | | [0..8): bytecode | * 60 0x08 | PUSH1 0x08 | 0x08 | [0..8): bytecode | * 60 0x18 | PUSH1 0x18 | 0x18 0x08 | [0..8): bytecode | * f3 | RETURN | | [0..8): bytecode | * -------------------------------------------------------------------+ */ /// @dev The proxy initialization code. uint256 private constant _PROXY_INITCODE = 0x67363d3d37363d34f03d5260086018f3; /// @dev Hash of the `_PROXY_INITCODE`. /// Equivalent to `keccak256(abi.encodePacked(hex"67363d3d37363d34f03d5260086018f3"))`. bytes32 internal constant PROXY_INITCODE_HASH = 0x21c35dbe1b344a2488cf3321d6ce542f8e9f305544ff09e4993a62319a497c1f; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CREATE3 OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Deploys `initCode` deterministically with a `salt`. /// Returns the deterministic address of the deployed contract, /// which solely depends on `salt`. function deployDeterministic(bytes memory initCode, bytes32 salt) internal returns (address deployed) { deployed = deployDeterministic(0, initCode, salt); } /// @dev Deploys `initCode` deterministically with a `salt`. /// The deployed contract is funded with `value` (in wei) ETH. /// Returns the deterministic address of the deployed contract, /// which solely depends on `salt`. function deployDeterministic(uint256 value, bytes memory initCode, bytes32 salt) internal returns (address deployed) { /// @solidity memory-safe-assembly assembly { mstore(0x00, _PROXY_INITCODE) // Store the `_PROXY_INITCODE`. let proxy := create2(0, 0x10, 0x10, salt) if iszero(proxy) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x14, proxy) // Store the proxy's address. // 0xd6 = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x01). // 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex). mstore(0x00, 0xd694) mstore8(0x34, 0x01) // Nonce of the proxy contract (1). deployed := keccak256(0x1e, 0x17) if iszero( mul( // The arguments of `mul` are evaluated last to first. extcodesize(deployed), call(gas(), proxy, value, add(initCode, 0x20), mload(initCode), 0x00, 0x00) ) ) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /// @dev Returns the deterministic address for `salt`. function predictDeterministicAddress(bytes32 salt) internal view returns (address deployed) { deployed = predictDeterministicAddress(salt, address(this)); } /// @dev Returns the deterministic address for `salt` with `deployer`. function predictDeterministicAddress(bytes32 salt, address deployer) internal pure returns (address deployed) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, deployer) // Store `deployer`. mstore8(0x0b, 0xff) // Store the prefix. mstore(0x20, salt) // Store the salt. mstore(0x40, PROXY_INITCODE_HASH) // Store the bytecode hash. mstore(0x14, keccak256(0x0b, 0x55)) // Store the proxy's address. mstore(0x40, m) // Restore the free memory pointer. // 0xd6 = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x01). // 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex). mstore(0x00, 0xd694) mstore8(0x34, 0x01) // Nonce of the proxy contract (1). deployed := keccak256(0x1e, 0x17) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Gas optimized ECDSA wrapper. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol) /// /// @dev Note: /// - The recovery functions use the ecrecover precompile (0x1). /// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure. /// This is for more safety by default. /// Use the `tryRecover` variants if you need to get the zero address back /// upon recovery failure instead. /// - As of Solady version 0.0.134, all `bytes signature` variants accept both /// regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures. /// See: https://eips.ethereum.org/EIPS/eip-2098 /// This is for calldata efficiency on smart accounts prevalent on L2s. /// /// WARNING! Do NOT directly use signatures as unique identifiers: /// - The recovery operations do NOT check if a signature is non-malleable. /// - Use a nonce in the digest to prevent replay attacks on the same contract. /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts. /// EIP-712 also enables readable signing of typed data for better user safety. /// - If you need a unique hash from a signature, please use the `canonicalHash` functions. library ECDSA { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The order of the secp256k1 elliptic curve. uint256 internal constant N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141; /// @dev `N/2 + 1`. Used for checking the malleability of the signature. uint256 private constant _HALF_N_PLUS_1 = 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a1; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The signature is invalid. error InvalidSignature(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RECOVERY OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function recover(bytes32 hash, bytes memory signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { result := 1 let m := mload(0x40) // Cache the free memory pointer. for {} 1 {} { mstore(0x00, hash) mstore(0x40, mload(add(signature, 0x20))) // `r`. if eq(mload(signature), 64) { let vs := mload(add(signature, 0x40)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x60, shr(1, shl(1, vs))) // `s`. break } if eq(mload(signature), 65) { mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`. mstore(0x60, mload(add(signature, 0x40))) // `s`. break } result := 0 break } result := mload( staticcall( gas(), // Amount of gas left for the transaction. result, // Address of `ecrecover`. 0x00, // Start of input. 0x80, // Size of input. 0x01, // Start of output. 0x20 // Size of output. ) ) // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if iszero(returndatasize()) { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function recoverCalldata(bytes32 hash, bytes calldata signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { result := 1 let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) for {} 1 {} { if eq(signature.length, 64) { let vs := calldataload(add(signature.offset, 0x20)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, calldataload(signature.offset)) // `r`. mstore(0x60, shr(1, shl(1, vs))) // `s`. break } if eq(signature.length, 65) { mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`. calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`. break } result := 0 break } result := mload( staticcall( gas(), // Amount of gas left for the transaction. result, // Address of `ecrecover`. 0x00, // Start of input. 0x80, // Size of input. 0x01, // Start of output. 0x20 // Size of output. ) ) // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if iszero(returndatasize()) { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the EIP-2098 short form signature defined by `r` and `vs`. function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, r) mstore(0x60, shr(1, shl(1, vs))) // `s`. result := mload( staticcall( gas(), // Amount of gas left for the transaction. 1, // Address of `ecrecover`. 0x00, // Start of input. 0x80, // Size of input. 0x01, // Start of output. 0x20 // Size of output. ) ) // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if iszero(returndatasize()) { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the signature defined by `v`, `r`, `s`. function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, and(v, 0xff)) mstore(0x40, r) mstore(0x60, s) result := mload( staticcall( gas(), // Amount of gas left for the transaction. 1, // Address of `ecrecover`. 0x00, // Start of input. 0x80, // Size of input. 0x01, // Start of output. 0x20 // Size of output. ) ) // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. if iszero(returndatasize()) { mstore(0x00, 0x8baa579f) // `InvalidSignature()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot. mstore(0x40, m) // Restore the free memory pointer. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* TRY-RECOVER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // WARNING! // These functions will NOT revert upon recovery failure. // Instead, they will return the zero address upon recovery failure. // It is critical that the returned address is NEVER compared against // a zero address (e.g. an uninitialized address variable). /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function tryRecover(bytes32 hash, bytes memory signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { result := 1 let m := mload(0x40) // Cache the free memory pointer. for {} 1 {} { mstore(0x00, hash) mstore(0x40, mload(add(signature, 0x20))) // `r`. if eq(mload(signature), 64) { let vs := mload(add(signature, 0x40)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x60, shr(1, shl(1, vs))) // `s`. break } if eq(mload(signature), 65) { mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`. mstore(0x60, mload(add(signature, 0x40))) // `s`. break } result := 0 break } pop( staticcall( gas(), // Amount of gas left for the transaction. result, // Address of `ecrecover`. 0x00, // Start of input. 0x80, // Size of input. 0x40, // Start of output. 0x20 // Size of output. ) ) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`. function tryRecoverCalldata(bytes32 hash, bytes calldata signature) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { result := 1 let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) for {} 1 {} { if eq(signature.length, 64) { let vs := calldataload(add(signature.offset, 0x20)) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, calldataload(signature.offset)) // `r`. mstore(0x60, shr(1, shl(1, vs))) // `s`. break } if eq(signature.length, 65) { mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`. calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`. break } result := 0 break } pop( staticcall( gas(), // Amount of gas left for the transaction. result, // Address of `ecrecover`. 0x00, // Start of input. 0x80, // Size of input. 0x40, // Start of output. 0x20 // Size of output. ) ) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the EIP-2098 short form signature defined by `r` and `vs`. function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, add(shr(255, vs), 27)) // `v`. mstore(0x40, r) mstore(0x60, shr(1, shl(1, vs))) // `s`. pop( staticcall( gas(), // Amount of gas left for the transaction. 1, // Address of `ecrecover`. 0x00, // Start of input. 0x80, // Size of input. 0x40, // Start of output. 0x20 // Size of output. ) ) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Recovers the signer's address from a message digest `hash`, /// and the signature defined by `v`, `r`, `s`. function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x00, hash) mstore(0x20, and(v, 0xff)) mstore(0x40, r) mstore(0x60, s) pop( staticcall( gas(), // Amount of gas left for the transaction. 1, // Address of `ecrecover`. 0x00, // Start of input. 0x80, // Size of input. 0x40, // Start of output. 0x20 // Size of output. ) ) mstore(0x60, 0) // Restore the zero slot. // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise. result := mload(xor(0x60, returndatasize())) mstore(0x40, m) // Restore the free memory pointer. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HASHING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns an Ethereum Signed Message, created from a `hash`. /// This produces a hash corresponding to the one signed with the /// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign) /// JSON-RPC method as part of EIP-191. function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { mstore(0x20, hash) // Store into scratch space for keccak256. mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32") // 28 bytes. result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`. } } /// @dev Returns an Ethereum Signed Message, created from `s`. /// This produces a hash corresponding to the one signed with the /// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign) /// JSON-RPC method as part of EIP-191. /// Note: Supports lengths of `s` up to 999999 bytes. function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let sLength := mload(s) let o := 0x20 mstore(o, "\x19Ethereum Signed Message:\n") // 26 bytes, zero-right-padded. mstore(0x00, 0x00) // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`. for { let temp := sLength } 1 {} { o := sub(o, 1) mstore8(o, add(48, mod(temp, 10))) temp := div(temp, 10) if iszero(temp) { break } } let n := sub(0x3a, o) // Header length: `26 + 32 - o`. // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes. returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20)) mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header. result := keccak256(add(s, sub(0x20, n)), add(n, sLength)) mstore(s, sLength) // Restore the length. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CANONICAL HASH FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // The following functions returns the hash of the signature in it's canonicalized format, // which is the 65-byte `abi.encodePacked(r, s, uint8(v))`, where `v` is either 27 or 28. // If `s` is greater than `N / 2` then it will be converted to `N - s` // and the `v` value will be flipped. // If the signature has an invalid length, or if `v` is invalid, // a uniquely corrupt hash will be returned. // These functions are useful for "poor-mans-VRF". /// @dev Returns the canonical hash of `signature`. function canonicalHash(bytes memory signature) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { let l := mload(signature) for {} 1 {} { mstore(0x00, mload(add(signature, 0x20))) // `r`. let s := mload(add(signature, 0x40)) let v := mload(add(signature, 0x41)) if eq(l, 64) { v := add(shr(255, s), 27) s := shr(1, shl(1, s)) } if iszero(lt(s, _HALF_N_PLUS_1)) { v := xor(v, 7) s := sub(N, s) } mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. break } // If the length is neither 64 nor 65, return a uniquely corrupted hash. if iszero(lt(sub(l, 64), 2)) { // `bytes4(keccak256("InvalidSignatureLength"))`. result := xor(keccak256(add(signature, 0x20), l), 0xd62f1ab2) } } } /// @dev Returns the canonical hash of `signature`. function canonicalHashCalldata(bytes calldata signature) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { let l := signature.length for {} 1 {} { mstore(0x00, calldataload(signature.offset)) // `r`. let s := calldataload(add(signature.offset, 0x20)) let v := calldataload(add(signature.offset, 0x21)) if eq(l, 64) { v := add(shr(255, s), 27) s := shr(1, shl(1, s)) } if iszero(lt(s, _HALF_N_PLUS_1)) { v := xor(v, 7) s := sub(N, s) } mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. break } // If the length is neither 64 nor 65, return a uniquely corrupted hash. if iszero(lt(sub(l, 64), 2)) { calldatacopy(mload(0x40), signature.offset, l) // `bytes4(keccak256("InvalidSignatureLength"))`. result := xor(keccak256(mload(0x40), l), 0xd62f1ab2) } } } /// @dev Returns the canonical hash of `signature`. function canonicalHash(bytes32 r, bytes32 vs) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { mstore(0x00, r) // `r`. let v := add(shr(255, vs), 27) let s := shr(1, shl(1, vs)) mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the canonical hash of `signature`. function canonicalHash(uint8 v, bytes32 r, bytes32 s) internal pure returns (bytes32 result) { // @solidity memory-safe-assembly assembly { mstore(0x00, r) // `r`. if iszero(lt(s, _HALF_N_PLUS_1)) { v := xor(v, 7) s := sub(N, s) } mstore(0x21, v) mstore(0x20, s) result := keccak256(0x00, 0x41) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EMPTY CALLDATA HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns an empty calldata bytes. function emptySignature() internal pure returns (bytes calldata signature) { /// @solidity memory-safe-assembly assembly { signature.length := 0 } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Minimal proxy library. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibClone.sol) /// @author Minimal proxy by 0age (https://github.com/0age) /// @author Clones with immutable args by wighawag, zefram.eth, Saw-mon & Natalie /// (https://github.com/Saw-mon-and-Natalie/clones-with-immutable-args) /// @author Minimal ERC1967 proxy by jtriley-eth (https://github.com/jtriley-eth/minimum-viable-proxy) /// /// @dev Minimal proxy: /// Although the sw0nt pattern saves 5 gas over the ERC1167 pattern during runtime, /// it is not supported out-of-the-box on Etherscan. Hence, we choose to use the 0age pattern, /// which saves 4 gas over the ERC1167 pattern during runtime, and has the smallest bytecode. /// - Automatically verified on Etherscan. /// /// @dev Minimal proxy (PUSH0 variant): /// This is a new minimal proxy that uses the PUSH0 opcode introduced during Shanghai. /// It is optimized first for minimal runtime gas, then for minimal bytecode. /// The PUSH0 clone functions are intentionally postfixed with a jarring "_PUSH0" as /// many EVM chains may not support the PUSH0 opcode in the early months after Shanghai. /// Please use with caution. /// - Automatically verified on Etherscan. /// /// @dev Clones with immutable args (CWIA): /// The implementation of CWIA here is does NOT append the immutable args into the calldata /// passed into delegatecall. It is simply an ERC1167 minimal proxy with the immutable arguments /// appended to the back of the runtime bytecode. /// - Uses the identity precompile (0x4) to copy args during deployment. /// /// @dev Minimal ERC1967 proxy: /// An minimal ERC1967 proxy, intended to be upgraded with UUPS. /// This is NOT the same as ERC1967Factory's transparent proxy, which includes admin logic. /// - Automatically verified on Etherscan. /// /// @dev Minimal ERC1967 proxy with immutable args: /// - Uses the identity precompile (0x4) to copy args during deployment. /// - Automatically verified on Etherscan. /// /// @dev ERC1967I proxy: /// An variant of the minimal ERC1967 proxy, with a special code path that activates /// if `calldatasize() == 1`. This code path skips the delegatecall and directly returns the /// `implementation` address. The returned implementation is guaranteed to be valid if the /// keccak256 of the proxy's code is equal to `ERC1967I_CODE_HASH`. /// /// @dev ERC1967I proxy with immutable args: /// An variant of the minimal ERC1967 proxy, with a special code path that activates /// if `calldatasize() == 1`. This code path skips the delegatecall and directly returns the /// - Uses the identity precompile (0x4) to copy args during deployment. /// /// @dev Minimal ERC1967 beacon proxy: /// A minimal beacon proxy, intended to be upgraded with an upgradable beacon. /// - Automatically verified on Etherscan. /// /// @dev Minimal ERC1967 beacon proxy with immutable args: /// - Uses the identity precompile (0x4) to copy args during deployment. /// - Automatically verified on Etherscan. /// /// @dev ERC1967I beacon proxy: /// An variant of the minimal ERC1967 beacon proxy, with a special code path that activates /// if `calldatasize() == 1`. This code path skips the delegatecall and directly returns the /// `implementation` address. The returned implementation is guaranteed to be valid if the /// keccak256 of the proxy's code is equal to `ERC1967I_CODE_HASH`. /// /// @dev ERC1967I proxy with immutable args: /// An variant of the minimal ERC1967 beacon proxy, with a special code path that activates /// if `calldatasize() == 1`. This code path skips the delegatecall and directly returns the /// - Uses the identity precompile (0x4) to copy args during deployment. library LibClone { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The keccak256 of deployed code for the clone proxy, /// with the implementation set to `address(0)`. bytes32 internal constant CLONE_CODE_HASH = 0x48db2cfdb2853fce0b464f1f93a1996469459df3ab6c812106074c4106a1eb1f; /// @dev The keccak256 of deployed code for the PUSH0 proxy, /// with the implementation set to `address(0)`. bytes32 internal constant PUSH0_CLONE_CODE_HASH = 0x67bc6bde1b84d66e267c718ba44cf3928a615d29885537955cb43d44b3e789dc; /// @dev The keccak256 of deployed code for the ERC-1167 CWIA proxy, /// with the implementation set to `address(0)`. bytes32 internal constant CWIA_CODE_HASH = 0x3cf92464268225a4513da40a34d967354684c32cd0edd67b5f668dfe3550e940; /// @dev The keccak256 of the deployed code for the ERC1967 proxy. bytes32 internal constant ERC1967_CODE_HASH = 0xaaa52c8cc8a0e3fd27ce756cc6b4e70c51423e9b597b11f32d3e49f8b1fc890d; /// @dev The keccak256 of the deployed code for the ERC1967I proxy. bytes32 internal constant ERC1967I_CODE_HASH = 0xce700223c0d4cea4583409accfc45adac4a093b3519998a9cbbe1504dadba6f7; /// @dev The keccak256 of the deployed code for the ERC1967 beacon proxy. bytes32 internal constant ERC1967_BEACON_PROXY_CODE_HASH = 0x14044459af17bc4f0f5aa2f658cb692add77d1302c29fe2aebab005eea9d1162; /// @dev The keccak256 of the deployed code for the ERC1967 beacon proxy. bytes32 internal constant ERC1967I_BEACON_PROXY_CODE_HASH = 0xf8c46d2793d5aa984eb827aeaba4b63aedcab80119212fce827309788735519a; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Unable to deploy the clone. error DeploymentFailed(); /// @dev The salt must start with either the zero address or `by`. error SaltDoesNotStartWith(); /// @dev The ETH transfer has failed. error ETHTransferFailed(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MINIMAL PROXY OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Deploys a clone of `implementation`. function clone(address implementation) internal returns (address instance) { instance = clone(0, implementation); } /// @dev Deploys a clone of `implementation`. /// Deposits `value` ETH during deployment. function clone(uint256 value, address implementation) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { /** * --------------------------------------------------------------------------+ * CREATION (9 bytes) | * --------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * --------------------------------------------------------------------------| * 60 runSize | PUSH1 runSize | r | | * 3d | RETURNDATASIZE | 0 r | | * 81 | DUP2 | r 0 r | | * 60 offset | PUSH1 offset | o r 0 r | | * 3d | RETURNDATASIZE | 0 o r 0 r | | * 39 | CODECOPY | 0 r | [0..runSize): runtime code | * f3 | RETURN | | [0..runSize): runtime code | * --------------------------------------------------------------------------| * RUNTIME (44 bytes) | * --------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * --------------------------------------------------------------------------| * | * ::: keep some values in stack ::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | 0 | | * 3d | RETURNDATASIZE | 0 0 | | * 3d | RETURNDATASIZE | 0 0 0 | | * 3d | RETURNDATASIZE | 0 0 0 0 | | * | * ::: copy calldata to memory ::::::::::::::::::::::::::::::::::::::::::::: | * 36 | CALLDATASIZE | cds 0 0 0 0 | | * 3d | RETURNDATASIZE | 0 cds 0 0 0 0 | | * 3d | RETURNDATASIZE | 0 0 cds 0 0 0 0 | | * 37 | CALLDATACOPY | 0 0 0 0 | [0..cds): calldata | * | * ::: delegate call to the implementation contract :::::::::::::::::::::::: | * 36 | CALLDATASIZE | cds 0 0 0 0 | [0..cds): calldata | * 3d | RETURNDATASIZE | 0 cds 0 0 0 0 | [0..cds): calldata | * 73 addr | PUSH20 addr | addr 0 cds 0 0 0 0 | [0..cds): calldata | * 5a | GAS | gas addr 0 cds 0 0 0 0 | [0..cds): calldata | * f4 | DELEGATECALL | success 0 0 | [0..cds): calldata | * | * ::: copy return data to memory :::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds success 0 0 | [0..cds): calldata | * 3d | RETURNDATASIZE | rds rds success 0 0 | [0..cds): calldata | * 93 | SWAP4 | 0 rds success 0 rds | [0..cds): calldata | * 80 | DUP1 | 0 0 rds success 0 rds | [0..cds): calldata | * 3e | RETURNDATACOPY | success 0 rds | [0..rds): returndata | * | * 60 0x2a | PUSH1 0x2a | 0x2a success 0 rds | [0..rds): returndata | * 57 | JUMPI | 0 rds | [0..rds): returndata | * | * ::: revert :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: | * fd | REVERT | | [0..rds): returndata | * | * ::: return :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: | * 5b | JUMPDEST | 0 rds | [0..rds): returndata | * f3 | RETURN | | [0..rds): returndata | * --------------------------------------------------------------------------+ */ mstore(0x21, 0x5af43d3d93803e602a57fd5bf3) mstore(0x14, implementation) mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73) instance := create(value, 0x0c, 0x35) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Deploys a deterministic clone of `implementation` with `salt`. function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { instance = cloneDeterministic(0, implementation, salt); } /// @dev Deploys a deterministic clone of `implementation` with `salt`. /// Deposits `value` ETH during deployment. function cloneDeterministic(uint256 value, address implementation, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { mstore(0x21, 0x5af43d3d93803e602a57fd5bf3) mstore(0x14, implementation) mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73) instance := create2(value, 0x0c, 0x35, salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the initialization code of the clone of `implementation`. function initCode(address implementation) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) mstore(add(c, 0x40), 0x5af43d3d93803e602a57fd5bf30000000000000000000000) mstore(add(c, 0x28), implementation) mstore(add(c, 0x14), 0x602c3d8160093d39f33d3d3d3d363d3d37363d73) mstore(c, 0x35) // Store the length. mstore(0x40, add(c, 0x60)) // Allocate memory. } } /// @dev Returns the initialization code hash of the clone of `implementation`. function initCodeHash(address implementation) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { mstore(0x21, 0x5af43d3d93803e602a57fd5bf3) mstore(0x14, implementation) mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73) hash := keccak256(0x0c, 0x35) mstore(0x21, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the address of the clone of `implementation`, with `salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddress(address implementation, bytes32 salt, address deployer) internal pure returns (address predicted) { bytes32 hash = initCodeHash(implementation); predicted = predictDeterministicAddress(hash, salt, deployer); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MINIMAL PROXY OPERATIONS (PUSH0 VARIANT) */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Deploys a PUSH0 clone of `implementation`. function clone_PUSH0(address implementation) internal returns (address instance) { instance = clone_PUSH0(0, implementation); } /// @dev Deploys a PUSH0 clone of `implementation`. /// Deposits `value` ETH during deployment. function clone_PUSH0(uint256 value, address implementation) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { /** * --------------------------------------------------------------------------+ * CREATION (9 bytes) | * --------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * --------------------------------------------------------------------------| * 60 runSize | PUSH1 runSize | r | | * 5f | PUSH0 | 0 r | | * 81 | DUP2 | r 0 r | | * 60 offset | PUSH1 offset | o r 0 r | | * 5f | PUSH0 | 0 o r 0 r | | * 39 | CODECOPY | 0 r | [0..runSize): runtime code | * f3 | RETURN | | [0..runSize): runtime code | * --------------------------------------------------------------------------| * RUNTIME (45 bytes) | * --------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * --------------------------------------------------------------------------| * | * ::: keep some values in stack ::::::::::::::::::::::::::::::::::::::::::: | * 5f | PUSH0 | 0 | | * 5f | PUSH0 | 0 0 | | * | * ::: copy calldata to memory ::::::::::::::::::::::::::::::::::::::::::::: | * 36 | CALLDATASIZE | cds 0 0 | | * 5f | PUSH0 | 0 cds 0 0 | | * 5f | PUSH0 | 0 0 cds 0 0 | | * 37 | CALLDATACOPY | 0 0 | [0..cds): calldata | * | * ::: delegate call to the implementation contract :::::::::::::::::::::::: | * 36 | CALLDATASIZE | cds 0 0 | [0..cds): calldata | * 5f | PUSH0 | 0 cds 0 0 | [0..cds): calldata | * 73 addr | PUSH20 addr | addr 0 cds 0 0 | [0..cds): calldata | * 5a | GAS | gas addr 0 cds 0 0 | [0..cds): calldata | * f4 | DELEGATECALL | success | [0..cds): calldata | * | * ::: copy return data to memory :::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds success | [0..cds): calldata | * 5f | PUSH0 | 0 rds success | [0..cds): calldata | * 5f | PUSH0 | 0 0 rds success | [0..cds): calldata | * 3e | RETURNDATACOPY | success | [0..rds): returndata | * | * 60 0x29 | PUSH1 0x29 | 0x29 success | [0..rds): returndata | * 57 | JUMPI | | [0..rds): returndata | * | * ::: revert :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds | [0..rds): returndata | * 5f | PUSH0 | 0 rds | [0..rds): returndata | * fd | REVERT | | [0..rds): returndata | * | * ::: return :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: | * 5b | JUMPDEST | | [0..rds): returndata | * 3d | RETURNDATASIZE | rds | [0..rds): returndata | * 5f | PUSH0 | 0 rds | [0..rds): returndata | * f3 | RETURN | | [0..rds): returndata | * --------------------------------------------------------------------------+ */ mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16 mstore(0x14, implementation) // 20 mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9 instance := create(value, 0x0e, 0x36) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x24, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Deploys a deterministic PUSH0 clone of `implementation` with `salt`. function cloneDeterministic_PUSH0(address implementation, bytes32 salt) internal returns (address instance) { instance = cloneDeterministic_PUSH0(0, implementation, salt); } /// @dev Deploys a deterministic PUSH0 clone of `implementation` with `salt`. /// Deposits `value` ETH during deployment. function cloneDeterministic_PUSH0(uint256 value, address implementation, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16 mstore(0x14, implementation) // 20 mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9 instance := create2(value, 0x0e, 0x36, salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x24, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the initialization code of the PUSH0 clone of `implementation`. function initCode_PUSH0(address implementation) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) mstore(add(c, 0x40), 0x5af43d5f5f3e6029573d5ffd5b3d5ff300000000000000000000) // 16 mstore(add(c, 0x26), implementation) // 20 mstore(add(c, 0x12), 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9 mstore(c, 0x36) // Store the length. mstore(0x40, add(c, 0x60)) // Allocate memory. } } /// @dev Returns the initialization code hash of the PUSH0 clone of `implementation`. function initCodeHash_PUSH0(address implementation) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16 mstore(0x14, implementation) // 20 mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9 hash := keccak256(0x0e, 0x36) mstore(0x24, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the address of the PUSH0 clone of `implementation`, with `salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddress_PUSH0( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes32 hash = initCodeHash_PUSH0(implementation); predicted = predictDeterministicAddress(hash, salt, deployer); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CLONES WITH IMMUTABLE ARGS OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Deploys a clone of `implementation` with immutable arguments encoded in `args`. function clone(address implementation, bytes memory args) internal returns (address instance) { instance = clone(0, implementation, args); } /// @dev Deploys a clone of `implementation` with immutable arguments encoded in `args`. /// Deposits `value` ETH during deployment. function clone(uint256 value, address implementation, bytes memory args) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { /** * ---------------------------------------------------------------------------+ * CREATION (10 bytes) | * ---------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------------------------------| * 61 runSize | PUSH2 runSize | r | | * 3d | RETURNDATASIZE | 0 r | | * 81 | DUP2 | r 0 r | | * 60 offset | PUSH1 offset | o r 0 r | | * 3d | RETURNDATASIZE | 0 o r 0 r | | * 39 | CODECOPY | 0 r | [0..runSize): runtime code | * f3 | RETURN | | [0..runSize): runtime code | * ---------------------------------------------------------------------------| * RUNTIME (45 bytes + extraLength) | * ---------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------------------------------| * | * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::: | * 36 | CALLDATASIZE | cds | | * 3d | RETURNDATASIZE | 0 cds | | * 3d | RETURNDATASIZE | 0 0 cds | | * 37 | CALLDATACOPY | | [0..cds): calldata | * | * ::: delegate call to the implementation contract ::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | 0 | [0..cds): calldata | * 3d | RETURNDATASIZE | 0 0 | [0..cds): calldata | * 3d | RETURNDATASIZE | 0 0 0 | [0..cds): calldata | * 36 | CALLDATASIZE | cds 0 0 0 | [0..cds): calldata | * 3d | RETURNDATASIZE | 0 cds 0 0 0 0 | [0..cds): calldata | * 73 addr | PUSH20 addr | addr 0 cds 0 0 0 0 | [0..cds): calldata | * 5a | GAS | gas addr 0 cds 0 0 0 0 | [0..cds): calldata | * f4 | DELEGATECALL | success 0 0 | [0..cds): calldata | * | * ::: copy return data to memory ::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds success 0 | [0..cds): calldata | * 82 | DUP3 | 0 rds success 0 | [0..cds): calldata | * 80 | DUP1 | 0 0 rds success 0 | [0..cds): calldata | * 3e | RETURNDATACOPY | success 0 | [0..rds): returndata | * 90 | SWAP1 | 0 success | [0..rds): returndata | * 3d | RETURNDATASIZE | rds 0 success | [0..rds): returndata | * 91 | SWAP2 | success 0 rds | [0..rds): returndata | * | * 60 0x2b | PUSH1 0x2b | 0x2b success 0 rds | [0..rds): returndata | * 57 | JUMPI | 0 rds | [0..rds): returndata | * | * ::: revert ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: | * fd | REVERT | | [0..rds): returndata | * | * ::: return ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: | * 5b | JUMPDEST | 0 rds | [0..rds): returndata | * f3 | RETURN | | [0..rds): returndata | * ---------------------------------------------------------------------------+ */ let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x43), n)) mstore(add(m, 0x23), 0x5af43d82803e903d91602b57fd5bf3) mstore(add(m, 0x14), implementation) mstore(m, add(0xfe61002d3d81600a3d39f3363d3d373d3d3d363d73, shl(0x88, n))) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x2d = 0xffd2`. instance := create(value, add(m, add(0x0b, lt(n, 0xffd3))), add(n, 0x37)) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } // 0,0x5e17b14ADd6c386305A32928F985b29bbA34Eff5, hex"01020304" /// @dev Deploys a deterministic clone of `implementation` /// with immutable arguments encoded in `args` and `salt`. function cloneDeterministic(address implementation, bytes memory args, bytes32 salt) internal returns (address instance) { instance = cloneDeterministic(0, implementation, args, salt); } /// @dev Deploys a deterministic clone of `implementation` /// with immutable arguments encoded in `args` and `salt`. function cloneDeterministic( uint256 value, address implementation, bytes memory args, bytes32 salt ) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x43), n)) mstore(add(m, 0x23), 0x5af43d82803e903d91602b57fd5bf3) mstore(add(m, 0x14), implementation) mstore(m, add(0xfe61002d3d81600a3d39f3363d3d373d3d3d363d73, shl(0x88, n))) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x2d = 0xffd2`. instance := create2(value, add(m, add(0x0b, lt(n, 0xffd3))), add(n, 0x37), salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /// @dev Returns the initialization code hash of the clone of `implementation` /// using immutable arguments encoded in `args`. function initCode(address implementation, bytes memory args) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) let n := mload(args) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x2d = 0xffd2`. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffd2)) for { let i := 0 } lt(i, n) { i := add(i, 0x20) } { mstore(add(add(c, 0x57), i), mload(add(add(args, 0x20), i))) } mstore(add(c, 0x37), 0x5af43d82803e903d91602b57fd5bf3) mstore(add(c, 0x28), implementation) mstore(add(c, 0x14), add(0x61002d3d81600a3d39f3363d3d373d3d3d363d73, shl(0x88, n))) mstore(c, add(0x37, n)) // Store the length. mstore(add(c, add(n, 0x57)), 0) // Zeroize the slot after the bytes. mstore(0x40, add(c, add(n, 0x77))) // Allocate memory. } } /// @dev Returns the initialization code hash of the clone of `implementation` /// using immutable arguments encoded in `args`. function initCodeHash(address implementation, bytes memory args) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x2d = 0xffd2`. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffd2)) for { let i := 0 } lt(i, n) { i := add(i, 0x20) } { mstore(add(add(m, 0x43), i), mload(add(add(args, 0x20), i))) } mstore(add(m, 0x23), 0x5af43d82803e903d91602b57fd5bf3) mstore(add(m, 0x14), implementation) mstore(m, add(0x61002d3d81600a3d39f3363d3d373d3d3d363d73, shl(0x88, n))) hash := keccak256(add(m, 0x0c), add(n, 0x37)) } } /// @dev Returns the address of the clone of /// `implementation` using immutable arguments encoded in `args`, with `salt`, by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddress( address implementation, bytes memory data, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes32 hash = initCodeHash(implementation, data); predicted = predictDeterministicAddress(hash, salt, deployer); } /// @dev Equivalent to `argsOnClone(instance, 0, 2 ** 256 - 1)`. function argsOnClone(address instance) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) mstore(args, sub(extcodesize(instance), 0x2d)) // Store the length. extcodecopy(instance, add(args, 0x20), 0x2d, add(mload(args), 0x20)) mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory. } } /// @dev Equivalent to `argsOnClone(instance, start, 2 ** 256 - 1)`. function argsOnClone(address instance, uint256 start) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) let n := sub(extcodesize(instance), 0x2d) extcodecopy(instance, add(args, 0x20), add(start, 0x2d), add(n, 0x20)) mstore(args, mul(sub(n, start), lt(start, n))) // Store the length. mstore(0x40, add(args, add(0x40, mload(args)))) // Allocate memory. } } /// @dev Returns a slice of the immutable arguments on `instance` from `start` to `end`. /// `start` and `end` will be clamped to the range `[0, args.length]`. /// The `instance` MUST be deployed via the clone with immutable args functions. /// Otherwise, the behavior is undefined. /// Out-of-gas reverts if `instance` does not have any code. function argsOnClone(address instance, uint256 start, uint256 end) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) if iszero(lt(end, 0xffff)) { end := 0xffff } let d := mul(sub(end, start), lt(start, end)) extcodecopy(instance, args, add(start, 0x0d), add(d, 0x20)) if iszero(and(0xff, mload(add(args, d)))) { let n := sub(extcodesize(instance), 0x2d) returndatacopy(returndatasize(), returndatasize(), shr(64, n)) d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n)))) } mstore(args, d) // Store the length. mstore(add(add(args, 0x20), d), 0) // Zeroize the slot after the bytes. mstore(0x40, add(add(args, 0x40), d)) // Allocate memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MINIMAL ERC1967 PROXY OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // Note: The ERC1967 proxy here is intended to be upgraded with UUPS. // This is NOT the same as ERC1967Factory's transparent proxy, which includes admin logic. /// @dev Deploys a minimal ERC1967 proxy with `implementation`. function deployERC1967(address implementation) internal returns (address instance) { instance = deployERC1967(0, implementation); } /// @dev Deploys a minimal ERC1967 proxy with `implementation`. /// Deposits `value` ETH during deployment. function deployERC1967(uint256 value, address implementation) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { /** * ---------------------------------------------------------------------------------+ * CREATION (34 bytes) | * ---------------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------------------------------------| * 60 runSize | PUSH1 runSize | r | | * 3d | RETURNDATASIZE | 0 r | | * 81 | DUP2 | r 0 r | | * 60 offset | PUSH1 offset | o r 0 r | | * 3d | RETURNDATASIZE | 0 o r 0 r | | * 39 | CODECOPY | 0 r | [0..runSize): runtime code | * 73 impl | PUSH20 impl | impl 0 r | [0..runSize): runtime code | * 60 slotPos | PUSH1 slotPos | slotPos impl 0 r | [0..runSize): runtime code | * 51 | MLOAD | slot impl 0 r | [0..runSize): runtime code | * 55 | SSTORE | 0 r | [0..runSize): runtime code | * f3 | RETURN | | [0..runSize): runtime code | * ---------------------------------------------------------------------------------| * RUNTIME (61 bytes) | * ---------------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------------------------------------| * | * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::: | * 36 | CALLDATASIZE | cds | | * 3d | RETURNDATASIZE | 0 cds | | * 3d | RETURNDATASIZE | 0 0 cds | | * 37 | CALLDATACOPY | | [0..calldatasize): calldata | * | * ::: delegatecall to implementation ::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | 0 | | * 3d | RETURNDATASIZE | 0 0 | | * 36 | CALLDATASIZE | cds 0 0 | [0..calldatasize): calldata | * 3d | RETURNDATASIZE | 0 cds 0 0 | [0..calldatasize): calldata | * 7f slot | PUSH32 slot | s 0 cds 0 0 | [0..calldatasize): calldata | * 54 | SLOAD | i 0 cds 0 0 | [0..calldatasize): calldata | * 5a | GAS | g i 0 cds 0 0 | [0..calldatasize): calldata | * f4 | DELEGATECALL | succ | [0..calldatasize): calldata | * | * ::: copy returndata to memory :::::::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds succ | [0..calldatasize): calldata | * 60 0x00 | PUSH1 0x00 | 0 rds succ | [0..calldatasize): calldata | * 80 | DUP1 | 0 0 rds succ | [0..calldatasize): calldata | * 3e | RETURNDATACOPY | succ | [0..returndatasize): returndata | * | * ::: branch on delegatecall status :::::::::::::::::::::::::::::::::::::::::::::: | * 60 0x38 | PUSH1 0x38 | dest succ | [0..returndatasize): returndata | * 57 | JUMPI | | [0..returndatasize): returndata | * | * ::: delegatecall failed, revert :::::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds | [0..returndatasize): returndata | * 60 0x00 | PUSH1 0x00 | 0 rds | [0..returndatasize): returndata | * fd | REVERT | | [0..returndatasize): returndata | * | * ::: delegatecall succeeded, return ::::::::::::::::::::::::::::::::::::::::::::: | * 5b | JUMPDEST | | [0..returndatasize): returndata | * 3d | RETURNDATASIZE | rds | [0..returndatasize): returndata | * 60 0x00 | PUSH1 0x00 | 0 rds | [0..returndatasize): returndata | * f3 | RETURN | | [0..returndatasize): returndata | * ---------------------------------------------------------------------------------+ */ let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3) mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076) mstore(0x20, 0x6009) mstore(0x1e, implementation) mstore(0x0a, 0x603d3d8160223d3973) instance := create(value, 0x21, 0x5f) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation` and `salt`. function deployDeterministicERC1967(address implementation, bytes32 salt) internal returns (address instance) { instance = deployDeterministicERC1967(0, implementation, salt); } /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation` and `salt`. /// Deposits `value` ETH during deployment. function deployDeterministicERC1967(uint256 value, address implementation, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3) mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076) mstore(0x20, 0x6009) mstore(0x1e, implementation) mstore(0x0a, 0x603d3d8160223d3973) instance := create2(value, 0x21, 0x5f, salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation` and `salt`. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967(address implementation, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { return createDeterministicERC1967(0, implementation, salt); } /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation` and `salt`. /// Deposits `value` ETH during deployment. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967(uint256 value, address implementation, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3) mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076) mstore(0x20, 0x6009) mstore(0x1e, implementation) mstore(0x0a, 0x603d3d8160223d3973) // Compute and store the bytecode hash. mstore(add(m, 0x35), keccak256(0x21, 0x5f)) mstore(m, shl(88, address())) mstore8(m, 0xff) // Write the prefix. mstore(add(m, 0x15), salt) instance := keccak256(m, 0x55) for {} 1 {} { if iszero(extcodesize(instance)) { instance := create2(value, 0x21, 0x5f, salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } break } alreadyDeployed := 1 if iszero(value) { break } if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } break } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Returns the initialization code of the minimal ERC1967 proxy of `implementation`. function initCodeERC1967(address implementation) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) mstore(add(c, 0x60), 0x3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f300) mstore(add(c, 0x40), 0x55f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076cc) mstore(add(c, 0x20), or(shl(24, implementation), 0x600951)) mstore(add(c, 0x09), 0x603d3d8160223d3973) mstore(c, 0x5f) // Store the length. mstore(0x40, add(c, 0x80)) // Allocate memory. } } /// @dev Returns the initialization code hash of the minimal ERC1967 proxy of `implementation`. function initCodeHashERC1967(address implementation) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3) mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076) mstore(0x20, 0x6009) mstore(0x1e, implementation) mstore(0x0a, 0x603d3d8160223d3973) hash := keccak256(0x21, 0x5f) mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Returns the address of the ERC1967 proxy of `implementation`, with `salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddressERC1967( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes32 hash = initCodeHashERC1967(implementation); predicted = predictDeterministicAddress(hash, salt, deployer); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MINIMAL ERC1967 PROXY WITH IMMUTABLE ARGS OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Deploys a minimal ERC1967 proxy with `implementation` and `args`. function deployERC1967(address implementation, bytes memory args) internal returns (address instance) { instance = deployERC1967(0, implementation, args); } /// @dev Deploys a minimal ERC1967 proxy with `implementation` and `args`. /// Deposits `value` ETH during deployment. function deployERC1967(uint256 value, address implementation, bytes memory args) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x60), n)) mstore(add(m, 0x40), 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3) mstore(add(m, 0x20), 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076) mstore(0x16, 0x6009) mstore(0x14, implementation) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x3d = 0xffc2`. mstore(gt(n, 0xffc2), add(0xfe61003d3d8160233d3973, shl(56, n))) mstore(m, mload(0x16)) instance := create(value, m, add(n, 0x60)) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation`, `args` and `salt`. function deployDeterministicERC1967(address implementation, bytes memory args, bytes32 salt) internal returns (address instance) { instance = deployDeterministicERC1967(0, implementation, args, salt); } /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation`, `args` and `salt`. /// Deposits `value` ETH during deployment. function deployDeterministicERC1967( uint256 value, address implementation, bytes memory args, bytes32 salt ) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x60), n)) mstore(add(m, 0x40), 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3) mstore(add(m, 0x20), 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076) mstore(0x16, 0x6009) mstore(0x14, implementation) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x3d = 0xffc2`. mstore(gt(n, 0xffc2), add(0xfe61003d3d8160233d3973, shl(56, n))) mstore(m, mload(0x16)) instance := create2(value, m, add(n, 0x60), salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation`, `args` and `salt`. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967(address implementation, bytes memory args, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { return createDeterministicERC1967(0, implementation, args, salt); } /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation`, `args` and `salt`. /// Deposits `value` ETH during deployment. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967( uint256 value, address implementation, bytes memory args, bytes32 salt ) internal returns (bool alreadyDeployed, address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x60), n)) mstore(add(m, 0x40), 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3) mstore(add(m, 0x20), 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076) mstore(0x16, 0x6009) mstore(0x14, implementation) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x3d = 0xffc2`. mstore(gt(n, 0xffc2), add(0xfe61003d3d8160233d3973, shl(56, n))) mstore(m, mload(0x16)) // Compute and store the bytecode hash. mstore8(0x00, 0xff) // Write the prefix. mstore(0x35, keccak256(m, add(n, 0x60))) mstore(0x01, shl(96, address())) mstore(0x15, salt) instance := keccak256(0x00, 0x55) for {} 1 {} { if iszero(extcodesize(instance)) { instance := create2(value, m, add(n, 0x60), salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } break } alreadyDeployed := 1 if iszero(value) { break } if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } break } mstore(0x35, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the initialization code of the minimal ERC1967 proxy of `implementation` and `args`. function initCodeERC1967(address implementation, bytes memory args) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) let n := mload(args) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x3d = 0xffc2`. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffc2)) for { let i := 0 } lt(i, n) { i := add(i, 0x20) } { mstore(add(add(c, 0x80), i), mload(add(add(args, 0x20), i))) } mstore(add(c, 0x60), 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3) mstore(add(c, 0x40), 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076) mstore(add(c, 0x20), 0x6009) mstore(add(c, 0x1e), implementation) mstore(add(c, 0x0a), add(0x61003d3d8160233d3973, shl(56, n))) mstore(c, add(n, 0x60)) // Store the length. mstore(add(c, add(n, 0x80)), 0) // Zeroize the slot after the bytes. mstore(0x40, add(c, add(n, 0xa0))) // Allocate memory. } } /// @dev Returns the initialization code hash of the minimal ERC1967 proxy of `implementation` and `args`. function initCodeHashERC1967(address implementation, bytes memory args) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x3d = 0xffc2`. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffc2)) for { let i := 0 } lt(i, n) { i := add(i, 0x20) } { mstore(add(add(m, 0x60), i), mload(add(add(args, 0x20), i))) } mstore(add(m, 0x40), 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3) mstore(add(m, 0x20), 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076) mstore(0x16, 0x6009) mstore(0x14, implementation) mstore(0x00, add(0x61003d3d8160233d3973, shl(56, n))) mstore(m, mload(0x16)) hash := keccak256(m, add(n, 0x60)) } } /// @dev Returns the address of the ERC1967 proxy of `implementation`, `args`, with `salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddressERC1967( address implementation, bytes memory args, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes32 hash = initCodeHashERC1967(implementation, args); predicted = predictDeterministicAddress(hash, salt, deployer); } /// @dev Equivalent to `argsOnERC1967(instance, start, 2 ** 256 - 1)`. function argsOnERC1967(address instance) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) mstore(args, sub(extcodesize(instance), 0x3d)) // Store the length. extcodecopy(instance, add(args, 0x20), 0x3d, add(mload(args), 0x20)) mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory. } } /// @dev Equivalent to `argsOnERC1967(instance, start, 2 ** 256 - 1)`. function argsOnERC1967(address instance, uint256 start) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) let n := sub(extcodesize(instance), 0x3d) extcodecopy(instance, add(args, 0x20), add(start, 0x3d), add(n, 0x20)) mstore(args, mul(sub(n, start), lt(start, n))) // Store the length. mstore(0x40, add(args, add(0x40, mload(args)))) // Allocate memory. } } /// @dev Returns a slice of the immutable arguments on `instance` from `start` to `end`. /// `start` and `end` will be clamped to the range `[0, args.length]`. /// The `instance` MUST be deployed via the ERC1967 with immutable args functions. /// Otherwise, the behavior is undefined. /// Out-of-gas reverts if `instance` does not have any code. function argsOnERC1967(address instance, uint256 start, uint256 end) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) if iszero(lt(end, 0xffff)) { end := 0xffff } let d := mul(sub(end, start), lt(start, end)) extcodecopy(instance, args, add(start, 0x1d), add(d, 0x20)) if iszero(and(0xff, mload(add(args, d)))) { let n := sub(extcodesize(instance), 0x3d) returndatacopy(returndatasize(), returndatasize(), shr(64, n)) d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n)))) } mstore(args, d) // Store the length. mstore(add(add(args, 0x20), d), 0) // Zeroize the slot after the bytes. mstore(0x40, add(add(args, 0x40), d)) // Allocate memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC1967I PROXY OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // Note: This proxy has a special code path that activates if `calldatasize() == 1`. // This code path skips the delegatecall and directly returns the `implementation` address. // The returned implementation is guaranteed to be valid if the keccak256 of the // proxy's code is equal to `ERC1967I_CODE_HASH`. /// @dev Deploys a ERC1967I proxy with `implementation`. function deployERC1967I(address implementation) internal returns (address instance) { instance = deployERC1967I(0, implementation); } /// @dev Deploys a ERC1967I proxy with `implementation`. /// Deposits `value` ETH during deployment. function deployERC1967I(uint256 value, address implementation) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { /** * ---------------------------------------------------------------------------------+ * CREATION (34 bytes) | * ---------------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------------------------------------| * 60 runSize | PUSH1 runSize | r | | * 3d | RETURNDATASIZE | 0 r | | * 81 | DUP2 | r 0 r | | * 60 offset | PUSH1 offset | o r 0 r | | * 3d | RETURNDATASIZE | 0 o r 0 r | | * 39 | CODECOPY | 0 r | [0..runSize): runtime code | * 73 impl | PUSH20 impl | impl 0 r | [0..runSize): runtime code | * 60 slotPos | PUSH1 slotPos | slotPos impl 0 r | [0..runSize): runtime code | * 51 | MLOAD | slot impl 0 r | [0..runSize): runtime code | * 55 | SSTORE | 0 r | [0..runSize): runtime code | * f3 | RETURN | | [0..runSize): runtime code | * ---------------------------------------------------------------------------------| * RUNTIME (82 bytes) | * ---------------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------------------------------------| * | * ::: check calldatasize ::::::::::::::::::::::::::::::::::::::::::::::::::::::::: | * 36 | CALLDATASIZE | cds | | * 58 | PC | 1 cds | | * 14 | EQ | eqs | | * 60 0x43 | PUSH1 0x43 | dest eqs | | * 57 | JUMPI | | | * | * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::: | * 36 | CALLDATASIZE | cds | | * 3d | RETURNDATASIZE | 0 cds | | * 3d | RETURNDATASIZE | 0 0 cds | | * 37 | CALLDATACOPY | | [0..calldatasize): calldata | * | * ::: delegatecall to implementation ::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | 0 | | * 3d | RETURNDATASIZE | 0 0 | | * 36 | CALLDATASIZE | cds 0 0 | [0..calldatasize): calldata | * 3d | RETURNDATASIZE | 0 cds 0 0 | [0..calldatasize): calldata | * 7f slot | PUSH32 slot | s 0 cds 0 0 | [0..calldatasize): calldata | * 54 | SLOAD | i 0 cds 0 0 | [0..calldatasize): calldata | * 5a | GAS | g i 0 cds 0 0 | [0..calldatasize): calldata | * f4 | DELEGATECALL | succ | [0..calldatasize): calldata | * | * ::: copy returndata to memory :::::::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds succ | [0..calldatasize): calldata | * 60 0x00 | PUSH1 0x00 | 0 rds succ | [0..calldatasize): calldata | * 80 | DUP1 | 0 0 rds succ | [0..calldatasize): calldata | * 3e | RETURNDATACOPY | succ | [0..returndatasize): returndata | * | * ::: branch on delegatecall status :::::::::::::::::::::::::::::::::::::::::::::: | * 60 0x3E | PUSH1 0x3E | dest succ | [0..returndatasize): returndata | * 57 | JUMPI | | [0..returndatasize): returndata | * | * ::: delegatecall failed, revert :::::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds | [0..returndatasize): returndata | * 60 0x00 | PUSH1 0x00 | 0 rds | [0..returndatasize): returndata | * fd | REVERT | | [0..returndatasize): returndata | * | * ::: delegatecall succeeded, return ::::::::::::::::::::::::::::::::::::::::::::: | * 5b | JUMPDEST | | [0..returndatasize): returndata | * 3d | RETURNDATASIZE | rds | [0..returndatasize): returndata | * 60 0x00 | PUSH1 0x00 | 0 rds | [0..returndatasize): returndata | * f3 | RETURN | | [0..returndatasize): returndata | * | * ::: implementation , return :::::::::::::::::::::::::::::::::::::::::::::::::::: | * 5b | JUMPDEST | | | * 60 0x20 | PUSH1 0x20 | 32 | | * 60 0x0F | PUSH1 0x0F | o 32 | | * 3d | RETURNDATASIZE | 0 o 32 | | * 39 | CODECOPY | | [0..32): implementation slot | * 3d | RETURNDATASIZE | 0 | [0..32): implementation slot | * 51 | MLOAD | slot | [0..32): implementation slot | * 54 | SLOAD | impl | [0..32): implementation slot | * 3d | RETURNDATASIZE | 0 impl | [0..32): implementation slot | * 52 | MSTORE | | [0..32): implementation address | * 59 | MSIZE | 32 | [0..32): implementation address | * 3d | RETURNDATASIZE | 0 32 | [0..32): implementation address | * f3 | RETURN | | [0..32): implementation address | * ---------------------------------------------------------------------------------+ */ let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3) mstore(0x40, 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4) mstore(0x20, 0x600f5155f3365814604357363d3d373d3d363d7f360894) mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, implementation)))) instance := create(value, 0x0c, 0x74) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Deploys a deterministic ERC1967I proxy with `implementation` and `salt`. function deployDeterministicERC1967I(address implementation, bytes32 salt) internal returns (address instance) { instance = deployDeterministicERC1967I(0, implementation, salt); } /// @dev Deploys a deterministic ERC1967I proxy with `implementation` and `salt`. /// Deposits `value` ETH during deployment. function deployDeterministicERC1967I(uint256 value, address implementation, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3) mstore(0x40, 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4) mstore(0x20, 0x600f5155f3365814604357363d3d373d3d363d7f360894) mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, implementation)))) instance := create2(value, 0x0c, 0x74, salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Creates a deterministic ERC1967I proxy with `implementation` and `salt`. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967I(address implementation, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { return createDeterministicERC1967I(0, implementation, salt); } /// @dev Creates a deterministic ERC1967I proxy with `implementation` and `salt`. /// Deposits `value` ETH during deployment. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967I(uint256 value, address implementation, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3) mstore(0x40, 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4) mstore(0x20, 0x600f5155f3365814604357363d3d373d3d363d7f360894) mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, implementation)))) // Compute and store the bytecode hash. mstore(add(m, 0x35), keccak256(0x0c, 0x74)) mstore(m, shl(88, address())) mstore8(m, 0xff) // Write the prefix. mstore(add(m, 0x15), salt) instance := keccak256(m, 0x55) for {} 1 {} { if iszero(extcodesize(instance)) { instance := create2(value, 0x0c, 0x74, salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } break } alreadyDeployed := 1 if iszero(value) { break } if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } break } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Returns the initialization code of the ERC1967I proxy of `implementation`. function initCodeERC1967I(address implementation) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) mstore(add(c, 0x74), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3) mstore(add(c, 0x54), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4) mstore(add(c, 0x34), 0x600f5155f3365814604357363d3d373d3d363d7f360894) mstore(add(c, 0x1d), implementation) mstore(add(c, 0x09), 0x60523d8160223d3973) mstore(add(c, 0x94), 0) mstore(c, 0x74) // Store the length. mstore(0x40, add(c, 0xa0)) // Allocate memory. } } /// @dev Returns the initialization code hash of the ERC1967I proxy of `implementation`. function initCodeHashERC1967I(address implementation) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3) mstore(0x40, 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4) mstore(0x20, 0x600f5155f3365814604357363d3d373d3d363d7f360894) mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, implementation)))) hash := keccak256(0x0c, 0x74) mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Returns the address of the ERC1967I proxy of `implementation`, with `salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddressERC1967I( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes32 hash = initCodeHashERC1967I(implementation); predicted = predictDeterministicAddress(hash, salt, deployer); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC1967I PROXY WITH IMMUTABLE ARGS OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Deploys a minimal ERC1967I proxy with `implementation` and `args`. function deployERC1967I(address implementation, bytes memory args) internal returns (address) { return deployERC1967I(0, implementation, args); } /// @dev Deploys a minimal ERC1967I proxy with `implementation` and `args`. /// Deposits `value` ETH during deployment. function deployERC1967I(uint256 value, address implementation, bytes memory args) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x8b), n)) mstore(add(m, 0x6b), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3) mstore(add(m, 0x4b), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4) mstore(add(m, 0x2b), 0x600f5155f3365814604357363d3d373d3d363d7f360894) mstore(add(m, 0x14), implementation) mstore(m, add(0xfe6100523d8160233d3973, shl(56, n))) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`. instance := create(value, add(m, add(0x15, lt(n, 0xffae))), add(0x75, n)) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /// @dev Deploys a deterministic ERC1967I proxy with `implementation`, `args`, and `salt`. function deployDeterministicERC1967I(address implementation, bytes memory args, bytes32 salt) internal returns (address instance) { instance = deployDeterministicERC1967I(0, implementation, args, salt); } /// @dev Deploys a deterministic ERC1967I proxy with `implementation`,`args`, and `salt`. /// Deposits `value` ETH during deployment. function deployDeterministicERC1967I( uint256 value, address implementation, bytes memory args, bytes32 salt ) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x8b), n)) mstore(add(m, 0x6b), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3) mstore(add(m, 0x4b), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4) mstore(add(m, 0x2b), 0x600f5155f3365814604357363d3d373d3d363d7f360894) mstore(add(m, 0x14), implementation) mstore(m, add(0xfe6100523d8160233d3973, shl(56, n))) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`. instance := create2(value, add(m, add(0x15, lt(n, 0xffae))), add(0x75, n), salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /// @dev Creates a deterministic ERC1967I proxy with `implementation`, `args` and `salt`. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967I(address implementation, bytes memory args, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { return createDeterministicERC1967I(0, implementation, args, salt); } /// @dev Creates a deterministic ERC1967I proxy with `implementation`,`args` and `salt`. /// Deposits `value` ETH during deployment. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967I( uint256 value, address implementation, bytes memory args, bytes32 salt ) internal returns (bool alreadyDeployed, address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x75), n)) mstore(add(m, 0x55), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3) mstore(add(m, 0x35), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4) mstore(add(m, 0x15), 0x5155f3365814604357363d3d373d3d363d7f360894) mstore(0x16, 0x600f) mstore(0x14, implementation) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`. mstore(gt(n, 0xffad), add(0xfe6100523d8160233d3973, shl(56, n))) mstore(m, mload(0x16)) // Compute and store the bytecode hash. mstore8(0x00, 0xff) // Write the prefix. mstore(0x35, keccak256(m, add(n, 0x75))) mstore(0x01, shl(96, address())) mstore(0x15, salt) instance := keccak256(0x00, 0x55) for {} 1 {} { if iszero(extcodesize(instance)) { instance := create2(value, m, add(0x75, n), salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } break } alreadyDeployed := 1 if iszero(value) { break } if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } break } mstore(0x35, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the initialization code of the ERC1967I proxy of `implementation`and `args`. function initCodeERC1967I(address implementation, bytes memory args) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) let n := mload(args) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffad)) for { let i := 0 } lt(i, n) { i := add(i, 0x20) } { mstore(add(add(c, 0x95), i), mload(add(add(args, 0x20), i))) } mstore(add(c, 0x75), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3) mstore(add(c, 0x55), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4) mstore(add(c, 0x35), 0x600f5155f3365814604357363d3d373d3d363d7f360894) mstore(add(c, 0x1e), implementation) mstore(add(c, 0x0a), add(0x6100523d8160233d3973, shl(56, n))) mstore(add(c, add(n, 0x95)), 0) mstore(c, add(0x75, n)) // Store the length. mstore(0x40, add(c, add(n, 0xb5))) // Allocate memory. } } /// @dev Returns the initialization code hash of the ERC1967I proxy of `implementation` and `args. function initCodeHashERC1967I(address implementation, bytes memory args) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. let n := mload(args) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffad)) for { let i := 0 } lt(i, n) { i := add(i, 0x20) } { mstore(add(add(m, 0x75), i), mload(add(add(args, 0x20), i))) } mstore(add(m, 0x55), 0x3d6000803e603e573d6000fd5b3d6000f35b6020600f3d393d51543d52593df3) mstore(add(m, 0x35), 0xa13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc545af4) mstore(add(m, 0x15), 0x5155f3365814604357363d3d373d3d363d7f360894) mstore(0x16, 0x600f) mstore(0x14, implementation) mstore(0x00, add(0x6100523d8160233d3973, shl(56, n))) mstore(m, mload(0x16)) hash := keccak256(m, add(0x75, n)) } } /// @dev Returns the address of the ERC1967I proxy of `implementation`, 'args` with `salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddressERC1967I( address implementation, bytes memory args, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes32 hash = initCodeHashERC1967I(implementation, args); predicted = predictDeterministicAddress(hash, salt, deployer); } /// @dev Equivalent to `argsOnERC1967I(instance, start, 2 ** 256 - 1)`. function argsOnERC1967I(address instance) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) mstore(args, sub(extcodesize(instance), 0x52)) // Store the length. extcodecopy(instance, add(args, 0x20), 0x52, add(mload(args), 0x20)) mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory. } } /// @dev Equivalent to `argsOnERC1967I(instance, start, 2 ** 256 - 1)`. function argsOnERC1967I(address instance, uint256 start) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) let n := sub(extcodesize(instance), 0x52) extcodecopy(instance, add(args, 0x20), add(start, 0x52), add(n, 0x20)) mstore(args, mul(sub(n, start), lt(start, n))) // Store the length. mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory. } } /// @dev Returns a slice of the immutable arguments on `instance` from `start` to `end`. /// `start` and `end` will be clamped to the range `[0, args.length]`. /// The `instance` MUST be deployed via the ERC1967 with immutable args functions. /// Otherwise, the behavior is undefined. /// Out-of-gas reverts if `instance` does not have any code. function argsOnERC1967I(address instance, uint256 start, uint256 end) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) if iszero(lt(end, 0xffff)) { end := 0xffff } let d := mul(sub(end, start), lt(start, end)) extcodecopy(instance, args, add(start, 0x32), add(d, 0x20)) if iszero(and(0xff, mload(add(args, d)))) { let n := sub(extcodesize(instance), 0x52) returndatacopy(returndatasize(), returndatasize(), shr(64, n)) d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n)))) } mstore(args, d) // Store the length. mstore(add(add(args, 0x20), d), 0) // Zeroize the slot after the bytes. mstore(0x40, add(add(args, 0x40), d)) // Allocate memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANT ERC1967 BOOTSTRAP OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // Note: This enables an ERC1967 proxy to be deployed at a deterministic address // independent of the implementation: // ``` // address bootstrap = LibClone.constantERC1967Bootstrap(); // address instance = LibClone.deployDeterministicERC1967(0, bootstrap, salt); // LibClone.bootstrapConstantERC1967(bootstrap, implementation); // ``` /// @dev Deploys the constant ERC1967 bootstrap if it has not been deployed. function constantERC1967Bootstrap() internal returns (address bootstrap) { bootstrap = constantERC1967BootstrapAddress(); /// @solidity memory-safe-assembly assembly { if iszero(extcodesize(bootstrap)) { mstore(0x20, 0x0894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc55) mstore(0x00, 0x60258060093d393df358357f36) if iszero(create2(0, 0x13, 0x2e, 0)) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } } /// @dev Returns the implementation address of the ERC1967 bootstrap for this contract. function constantERC1967BootstrapAddress() internal view returns (address bootstrap) { bytes32 hash = 0xfe1a42b9c571a6a8c083c94ac67b9cfd74e2582923426aa3b762e3431d717cd1; bootstrap = predictDeterministicAddress(hash, bytes32(0), address(this)); } /// @dev Replaces the implementation at `instance`. function bootstrapERC1967(address instance, address implementation) internal { /// @solidity memory-safe-assembly assembly { mstore(0x00, shr(96, shl(96, implementation))) if iszero(call(gas(), instance, 0, 0x00, 0x20, codesize(), 0x00)) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MINIMAL ERC1967 BEACON PROXY OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // Note: If you use this proxy, you MUST make sure that the beacon is a // valid ERC1967 beacon. This means that the beacon must always return a valid // address upon a staticcall to `implementation()`, given sufficient gas. // For performance, the deployment operations and the proxy assumes that the // beacon is always valid and will NOT validate it. /// @dev Deploys a minimal ERC1967 beacon proxy. function deployERC1967BeaconProxy(address beacon) internal returns (address instance) { instance = deployERC1967BeaconProxy(0, beacon); } /// @dev Deploys a minimal ERC1967 beacon proxy. /// Deposits `value` ETH during deployment. function deployERC1967BeaconProxy(uint256 value, address beacon) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { /** * ---------------------------------------------------------------------------------+ * CREATION (34 bytes) | * ---------------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------------------------------------| * 60 runSize | PUSH1 runSize | r | | * 3d | RETURNDATASIZE | 0 r | | * 81 | DUP2 | r 0 r | | * 60 offset | PUSH1 offset | o r 0 r | | * 3d | RETURNDATASIZE | 0 o r 0 r | | * 39 | CODECOPY | 0 r | [0..runSize): runtime code | * 73 beac | PUSH20 beac | beac 0 r | [0..runSize): runtime code | * 60 slotPos | PUSH1 slotPos | slotPos beac 0 r | [0..runSize): runtime code | * 51 | MLOAD | slot beac 0 r | [0..runSize): runtime code | * 55 | SSTORE | 0 r | [0..runSize): runtime code | * f3 | RETURN | | [0..runSize): runtime code | * ---------------------------------------------------------------------------------| * RUNTIME (82 bytes) | * ---------------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------------------------------------| * | * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::: | * 36 | CALLDATASIZE | cds | | * 3d | RETURNDATASIZE | 0 cds | | * 3d | RETURNDATASIZE | 0 0 cds | | * 37 | CALLDATACOPY | | [0..calldatasize): calldata | * | * ::: delegatecall to implementation ::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | 0 | | * 3d | RETURNDATASIZE | 0 0 | | * 36 | CALLDATASIZE | cds 0 0 | [0..calldatasize): calldata | * 3d | RETURNDATASIZE | 0 cds 0 0 | [0..calldatasize): calldata | * | * ~~~~~~~ beacon staticcall sub procedure ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | * 60 0x20 | PUSH1 0x20 | 32 | | * 36 | CALLDATASIZE | cds 32 | | * 60 0x04 | PUSH1 0x04 | 4 cds 32 | | * 36 | CALLDATASIZE | cds 4 cds 32 | | * 63 0x5c60da1b | PUSH4 0x5c60da1b | 0x5c60da1b cds 4 cds 32 | | * 60 0xe0 | PUSH1 0xe0 | 224 0x5c60da1b cds 4 cds 32 | | * 1b | SHL | sel cds 4 cds 32 | | * 36 | CALLDATASIZE | cds sel cds 4 cds 32 | | * 52 | MSTORE | cds 4 cds 32 | sel | * 7f slot | PUSH32 slot | s cds 4 cds 32 | sel | * 54 | SLOAD | beac cds 4 cds 32 | sel | * 5a | GAS | g beac cds 4 cds 32 | sel | * fa | STATICCALL | succ | impl | * 50 | POP | | impl | * 36 | CALLDATASIZE | cds | impl | * 51 | MLOAD | impl | impl | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | * 5a | GAS | g impl 0 cds 0 0 | [0..calldatasize): calldata | * f4 | DELEGATECALL | succ | [0..calldatasize): calldata | * | * ::: copy returndata to memory :::::::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds succ | [0..calldatasize): calldata | * 60 0x00 | PUSH1 0x00 | 0 rds succ | [0..calldatasize): calldata | * 80 | DUP1 | 0 0 rds succ | [0..calldatasize): calldata | * 3e | RETURNDATACOPY | succ | [0..returndatasize): returndata | * | * ::: branch on delegatecall status :::::::::::::::::::::::::::::::::::::::::::::: | * 60 0x4d | PUSH1 0x4d | dest succ | [0..returndatasize): returndata | * 57 | JUMPI | | [0..returndatasize): returndata | * | * ::: delegatecall failed, revert :::::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds | [0..returndatasize): returndata | * 60 0x00 | PUSH1 0x00 | 0 rds | [0..returndatasize): returndata | * fd | REVERT | | [0..returndatasize): returndata | * | * ::: delegatecall succeeded, return ::::::::::::::::::::::::::::::::::::::::::::: | * 5b | JUMPDEST | | [0..returndatasize): returndata | * 3d | RETURNDATASIZE | rds | [0..returndatasize): returndata | * 60 0x00 | PUSH1 0x00 | 0 rds | [0..returndatasize): returndata | * f3 | RETURN | | [0..returndatasize): returndata | * ---------------------------------------------------------------------------------+ */ let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3) mstore(0x40, 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c) mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da) mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, beacon)))) instance := create(value, 0x0c, 0x74) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Deploys a deterministic minimal ERC1967 beacon proxy with `salt`. function deployDeterministicERC1967BeaconProxy(address beacon, bytes32 salt) internal returns (address instance) { instance = deployDeterministicERC1967BeaconProxy(0, beacon, salt); } /// @dev Deploys a deterministic minimal ERC1967 beacon proxy with `salt`. /// Deposits `value` ETH during deployment. function deployDeterministicERC1967BeaconProxy(uint256 value, address beacon, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3) mstore(0x40, 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c) mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da) mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, beacon)))) instance := create2(value, 0x0c, 0x74, salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Creates a deterministic minimal ERC1967 beacon proxy with `salt`. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967BeaconProxy(address beacon, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { return createDeterministicERC1967BeaconProxy(0, beacon, salt); } /// @dev Creates a deterministic minimal ERC1967 beacon proxy with `salt`. /// Deposits `value` ETH during deployment. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967BeaconProxy(uint256 value, address beacon, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3) mstore(0x40, 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c) mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da) mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, beacon)))) // Compute and store the bytecode hash. mstore(add(m, 0x35), keccak256(0x0c, 0x74)) mstore(m, shl(88, address())) mstore8(m, 0xff) // Write the prefix. mstore(add(m, 0x15), salt) instance := keccak256(m, 0x55) for {} 1 {} { if iszero(extcodesize(instance)) { instance := create2(value, 0x0c, 0x74, salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } break } alreadyDeployed := 1 if iszero(value) { break } if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } break } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Returns the initialization code of the minimal ERC1967 beacon proxy. function initCodeERC1967BeaconProxy(address beacon) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) mstore(add(c, 0x74), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3) mstore(add(c, 0x54), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c) mstore(add(c, 0x34), 0x60195155f3363d3d373d3d363d602036600436635c60da) mstore(add(c, 0x1d), beacon) mstore(add(c, 0x09), 0x60523d8160223d3973) mstore(add(c, 0x94), 0) mstore(c, 0x74) // Store the length. mstore(0x40, add(c, 0xa0)) // Allocate memory. } } /// @dev Returns the initialization code hash of the minimal ERC1967 beacon proxy. function initCodeHashERC1967BeaconProxy(address beacon) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3) mstore(0x40, 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c) mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da) mstore(0x09, or(shl(160, 0x60523d8160223d3973), shr(96, shl(96, beacon)))) hash := keccak256(0x0c, 0x74) mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Returns the address of the ERC1967 beacon proxy, with `salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddressERC1967BeaconProxy( address beacon, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes32 hash = initCodeHashERC1967BeaconProxy(beacon); predicted = predictDeterministicAddress(hash, salt, deployer); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC1967 BEACON PROXY WITH IMMUTABLE ARGS OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Deploys a minimal ERC1967 beacon proxy with `args`. function deployERC1967BeaconProxy(address beacon, bytes memory args) internal returns (address instance) { instance = deployERC1967BeaconProxy(0, beacon, args); } /// @dev Deploys a minimal ERC1967 beacon proxy with `args`. /// Deposits `value` ETH during deployment. function deployERC1967BeaconProxy(uint256 value, address beacon, bytes memory args) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x8b), n)) mstore(add(m, 0x6b), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3) mstore(add(m, 0x4b), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c) mstore(add(m, 0x2b), 0x60195155f3363d3d373d3d363d602036600436635c60da) mstore(add(m, 0x14), beacon) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`. mstore(add(m, gt(n, 0xffad)), add(0xfe6100523d8160233d3973, shl(56, n))) instance := create(value, add(m, 0x16), add(n, 0x75)) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /// @dev Deploys a deterministic minimal ERC1967 beacon proxy with `args` and `salt`. function deployDeterministicERC1967BeaconProxy(address beacon, bytes memory args, bytes32 salt) internal returns (address instance) { instance = deployDeterministicERC1967BeaconProxy(0, beacon, args, salt); } /// @dev Deploys a deterministic minimal ERC1967 beacon proxy with `args` and `salt`. /// Deposits `value` ETH during deployment. function deployDeterministicERC1967BeaconProxy( uint256 value, address beacon, bytes memory args, bytes32 salt ) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x8b), n)) mstore(add(m, 0x6b), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3) mstore(add(m, 0x4b), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c) mstore(add(m, 0x2b), 0x60195155f3363d3d373d3d363d602036600436635c60da) mstore(add(m, 0x14), beacon) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`. mstore(add(m, gt(n, 0xffad)), add(0xfe6100523d8160233d3973, shl(56, n))) instance := create2(value, add(m, 0x16), add(n, 0x75), salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /// @dev Creates a deterministic minimal ERC1967 beacon proxy with `args` and `salt`. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967BeaconProxy(address beacon, bytes memory args, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { return createDeterministicERC1967BeaconProxy(0, beacon, args, salt); } /// @dev Creates a deterministic minimal ERC1967 beacon proxy with `args` and `salt`. /// Deposits `value` ETH during deployment. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967BeaconProxy( uint256 value, address beacon, bytes memory args, bytes32 salt ) internal returns (bool alreadyDeployed, address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x8b), n)) mstore(add(m, 0x6b), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3) mstore(add(m, 0x4b), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c) mstore(add(m, 0x2b), 0x60195155f3363d3d373d3d363d602036600436635c60da) mstore(add(m, 0x14), beacon) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`. mstore(add(m, gt(n, 0xffad)), add(0xfe6100523d8160233d3973, shl(56, n))) // Compute and store the bytecode hash. mstore8(0x00, 0xff) // Write the prefix. mstore(0x35, keccak256(add(m, 0x16), add(n, 0x75))) mstore(0x01, shl(96, address())) mstore(0x15, salt) instance := keccak256(0x00, 0x55) for {} 1 {} { if iszero(extcodesize(instance)) { instance := create2(value, add(m, 0x16), add(n, 0x75), salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } break } alreadyDeployed := 1 if iszero(value) { break } if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } break } mstore(0x35, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the initialization code of the minimal ERC1967 beacon proxy. function initCodeERC1967BeaconProxy(address beacon, bytes memory args) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) let n := mload(args) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffad)) for { let i := 0 } lt(i, n) { i := add(i, 0x20) } { mstore(add(add(c, 0x95), i), mload(add(add(args, 0x20), i))) } mstore(add(c, 0x75), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3) mstore(add(c, 0x55), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c) mstore(add(c, 0x35), 0x60195155f3363d3d373d3d363d602036600436635c60da) mstore(add(c, 0x1e), beacon) mstore(add(c, 0x0a), add(0x6100523d8160233d3973, shl(56, n))) mstore(c, add(n, 0x75)) // Store the length. mstore(add(c, add(n, 0x95)), 0) // Zeroize the slot after the bytes. mstore(0x40, add(c, add(n, 0xb5))) // Allocate memory. } } /// @dev Returns the initialization code hash of the minimal ERC1967 beacon proxy with `args`. function initCodeHashERC1967BeaconProxy(address beacon, bytes memory args) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x52 = 0xffad`. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffad)) for { let i := 0 } lt(i, n) { i := add(i, 0x20) } { mstore(add(add(m, 0x8b), i), mload(add(add(args, 0x20), i))) } mstore(add(m, 0x6b), 0xb3582b35133d50545afa5036515af43d6000803e604d573d6000fd5b3d6000f3) mstore(add(m, 0x4b), 0x1b60e01b36527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6c) mstore(add(m, 0x2b), 0x60195155f3363d3d373d3d363d602036600436635c60da) mstore(add(m, 0x14), beacon) mstore(m, add(0x6100523d8160233d3973, shl(56, n))) hash := keccak256(add(m, 0x16), add(n, 0x75)) } } /// @dev Returns the address of the ERC1967 beacon proxy with `args`, with `salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddressERC1967BeaconProxy( address beacon, bytes memory args, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes32 hash = initCodeHashERC1967BeaconProxy(beacon, args); predicted = predictDeterministicAddress(hash, salt, deployer); } /// @dev Equivalent to `argsOnERC1967BeaconProxy(instance, start, 2 ** 256 - 1)`. function argsOnERC1967BeaconProxy(address instance) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) mstore(args, sub(extcodesize(instance), 0x52)) // Store the length. extcodecopy(instance, add(args, 0x20), 0x52, add(mload(args), 0x20)) mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory. } } /// @dev Equivalent to `argsOnERC1967BeaconProxy(instance, start, 2 ** 256 - 1)`. function argsOnERC1967BeaconProxy(address instance, uint256 start) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) let n := sub(extcodesize(instance), 0x52) extcodecopy(instance, add(args, 0x20), add(start, 0x52), add(n, 0x20)) mstore(args, mul(sub(n, start), lt(start, n))) // Store the length. mstore(0x40, add(args, add(0x40, mload(args)))) // Allocate memory. } } /// @dev Returns a slice of the immutable arguments on `instance` from `start` to `end`. /// `start` and `end` will be clamped to the range `[0, args.length]`. /// The `instance` MUST be deployed via the ERC1967 beacon proxy with immutable args functions. /// Otherwise, the behavior is undefined. /// Out-of-gas reverts if `instance` does not have any code. function argsOnERC1967BeaconProxy(address instance, uint256 start, uint256 end) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) if iszero(lt(end, 0xffff)) { end := 0xffff } let d := mul(sub(end, start), lt(start, end)) extcodecopy(instance, args, add(start, 0x32), add(d, 0x20)) if iszero(and(0xff, mload(add(args, d)))) { let n := sub(extcodesize(instance), 0x52) returndatacopy(returndatasize(), returndatasize(), shr(64, n)) d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n)))) } mstore(args, d) // Store the length. mstore(add(add(args, 0x20), d), 0) // Zeroize the slot after the bytes. mstore(0x40, add(add(args, 0x40), d)) // Allocate memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC1967I BEACON PROXY OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // Note: This proxy has a special code path that activates if `calldatasize() == 1`. // This code path skips the delegatecall and directly returns the `implementation` address. // The returned implementation is guaranteed to be valid if the keccak256 of the // proxy's code is equal to `ERC1967_BEACON_PROXY_CODE_HASH`. // // If you use this proxy, you MUST make sure that the beacon is a // valid ERC1967 beacon. This means that the beacon must always return a valid // address upon a staticcall to `implementation()`, given sufficient gas. // For performance, the deployment operations and the proxy assumes that the // beacon is always valid and will NOT validate it. /// @dev Deploys a ERC1967I beacon proxy. function deployERC1967IBeaconProxy(address beacon) internal returns (address instance) { instance = deployERC1967IBeaconProxy(0, beacon); } /// @dev Deploys a ERC1967I beacon proxy. /// Deposits `value` ETH during deployment. function deployERC1967IBeaconProxy(uint256 value, address beacon) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { /** * ---------------------------------------------------------------------------------+ * CREATION (34 bytes) | * ---------------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------------------------------------| * 60 runSize | PUSH1 runSize | r | | * 3d | RETURNDATASIZE | 0 r | | * 81 | DUP2 | r 0 r | | * 60 offset | PUSH1 offset | o r 0 r | | * 3d | RETURNDATASIZE | 0 o r 0 r | | * 39 | CODECOPY | 0 r | [0..runSize): runtime code | * 73 beac | PUSH20 beac | beac 0 r | [0..runSize): runtime code | * 60 slotPos | PUSH1 slotPos | slotPos beac 0 r | [0..runSize): runtime code | * 51 | MLOAD | slot beac 0 r | [0..runSize): runtime code | * 55 | SSTORE | 0 r | [0..runSize): runtime code | * f3 | RETURN | | [0..runSize): runtime code | * ---------------------------------------------------------------------------------| * RUNTIME (87 bytes) | * ---------------------------------------------------------------------------------| * Opcode | Mnemonic | Stack | Memory | * ---------------------------------------------------------------------------------| * | * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::: | * 36 | CALLDATASIZE | cds | | * 3d | RETURNDATASIZE | 0 cds | | * 3d | RETURNDATASIZE | 0 0 cds | | * 37 | CALLDATACOPY | | [0..calldatasize): calldata | * | * ::: delegatecall to implementation ::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | 0 | | * 3d | RETURNDATASIZE | 0 0 | | * 36 | CALLDATASIZE | cds 0 0 | [0..calldatasize): calldata | * 3d | RETURNDATASIZE | 0 cds 0 0 | [0..calldatasize): calldata | * | * ~~~~~~~ beacon staticcall sub procedure ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | * 60 0x20 | PUSH1 0x20 | 32 | | * 36 | CALLDATASIZE | cds 32 | | * 60 0x04 | PUSH1 0x04 | 4 cds 32 | | * 36 | CALLDATASIZE | cds 4 cds 32 | | * 63 0x5c60da1b | PUSH4 0x5c60da1b | 0x5c60da1b cds 4 cds 32 | | * 60 0xe0 | PUSH1 0xe0 | 224 0x5c60da1b cds 4 cds 32 | | * 1b | SHL | sel cds 4 cds 32 | | * 36 | CALLDATASIZE | cds sel cds 4 cds 32 | | * 52 | MSTORE | cds 4 cds 32 | sel | * 7f slot | PUSH32 slot | s cds 4 cds 32 | sel | * 54 | SLOAD | beac cds 4 cds 32 | sel | * 5a | GAS | g beac cds 4 cds 32 | sel | * fa | STATICCALL | succ | impl | * ~~~~~~ check calldatasize ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | * 36 | CALLDATASIZE | cds succ | | * 14 | EQ | | impl | * 60 0x52 | PUSH1 0x52 | | impl | * 57 | JUMPI | | impl | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | * 36 | CALLDATASIZE | cds | impl | * 51 | MLOAD | impl | impl | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | * 5a | GAS | g impl 0 cds 0 0 | [0..calldatasize): calldata | * f4 | DELEGATECALL | succ | [0..calldatasize): calldata | * | * ::: copy returndata to memory :::::::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds succ | [0..calldatasize): calldata | * 60 0x00 | PUSH1 0x00 | 0 rds succ | [0..calldatasize): calldata | * 60 0x01 | PUSH1 0x01 | 1 0 rds succ | [0..calldatasize): calldata | * 3e | RETURNDATACOPY | succ | [1..returndatasize): returndata | * | * ::: branch on delegatecall status :::::::::::::::::::::::::::::::::::::::::::::: | * 60 0x52 | PUSH1 0x52 | dest succ | [1..returndatasize): returndata | * 57 | JUMPI | | [1..returndatasize): returndata | * | * ::: delegatecall failed, revert :::::::::::::::::::::::::::::::::::::::::::::::: | * 3d | RETURNDATASIZE | rds | [1..returndatasize): returndata | * 60 0x01 | PUSH1 0x01 | 1 rds | [1..returndatasize): returndata | * fd | REVERT | | [1..returndatasize): returndata | * | * ::: delegatecall succeeded, return ::::::::::::::::::::::::::::::::::::::::::::: | * 5b | JUMPDEST | | [1..returndatasize): returndata | * 3d | RETURNDATASIZE | rds | [1..returndatasize): returndata | * 60 0x01 | PUSH1 0x01 | 1 rds | [1..returndatasize): returndata | * f3 | RETURN | | [1..returndatasize): returndata | * ---------------------------------------------------------------------------------+ */ let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3) mstore(0x40, 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513) mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36) mstore(0x04, or(shl(160, 0x60573d8160223d3973), shr(96, shl(96, beacon)))) instance := create(value, 0x07, 0x79) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Deploys a deterministic ERC1967I beacon proxy with `salt`. function deployDeterministicERC1967IBeaconProxy(address beacon, bytes32 salt) internal returns (address instance) { instance = deployDeterministicERC1967IBeaconProxy(0, beacon, salt); } /// @dev Deploys a deterministic ERC1967I beacon proxy with `salt`. /// Deposits `value` ETH during deployment. function deployDeterministicERC1967IBeaconProxy(uint256 value, address beacon, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3) mstore(0x40, 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513) mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36) mstore(0x04, or(shl(160, 0x60573d8160223d3973), shr(96, shl(96, beacon)))) instance := create2(value, 0x07, 0x79, salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Creates a deterministic ERC1967I beacon proxy with `salt`. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967IBeaconProxy(address beacon, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { return createDeterministicERC1967IBeaconProxy(0, beacon, salt); } /// @dev Creates a deterministic ERC1967I beacon proxy with `salt`. /// Deposits `value` ETH during deployment. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967IBeaconProxy(uint256 value, address beacon, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3) mstore(0x40, 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513) mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36) mstore(0x04, or(shl(160, 0x60573d8160223d3973), shr(96, shl(96, beacon)))) // Compute and store the bytecode hash. mstore(add(m, 0x35), keccak256(0x07, 0x79)) mstore(m, shl(88, address())) mstore8(m, 0xff) // Write the prefix. mstore(add(m, 0x15), salt) instance := keccak256(m, 0x55) for {} 1 {} { if iszero(extcodesize(instance)) { instance := create2(value, 0x07, 0x79, salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } break } alreadyDeployed := 1 if iszero(value) { break } if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } break } mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Returns the initialization code of the ERC1967I beacon proxy. function initCodeERC1967IBeaconProxy(address beacon) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) mstore(add(c, 0x79), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3) mstore(add(c, 0x59), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513) mstore(add(c, 0x39), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36) mstore(add(c, 0x1d), beacon) mstore(add(c, 0x09), 0x60573d8160223d3973) mstore(add(c, 0x99), 0) mstore(c, 0x79) // Store the length. mstore(0x40, add(c, 0xa0)) // Allocate memory. } } /// @dev Returns the initialization code hash of the ERC1967I beacon proxy. function initCodeHashERC1967IBeaconProxy(address beacon) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3) mstore(0x40, 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513) mstore(0x20, 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36) mstore(0x04, or(shl(160, 0x60573d8160223d3973), shr(96, shl(96, beacon)))) hash := keccak256(0x07, 0x79) mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero slot. } } /// @dev Returns the address of the ERC1967I beacon proxy, with `salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddressERC1967IBeaconProxy( address beacon, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes32 hash = initCodeHashERC1967IBeaconProxy(beacon); predicted = predictDeterministicAddress(hash, salt, deployer); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC1967I BEACON PROXY WITH IMMUTABLE ARGS OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Deploys a ERC1967I beacon proxy with `args. function deployERC1967IBeaconProxy(address beacon, bytes memory args) internal returns (address instance) { instance = deployERC1967IBeaconProxy(0, beacon, args); } /// @dev Deploys a ERC1967I beacon proxy with `args. /// Deposits `value` ETH during deployment. function deployERC1967IBeaconProxy(uint256 value, address beacon, bytes memory args) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x90), n)) mstore(add(m, 0x70), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3) mstore(add(m, 0x50), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513) mstore(add(m, 0x30), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36) mstore(add(m, 0x14), beacon) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x57 = 0xffa8`. mstore(add(m, gt(n, 0xffa8)), add(0xfe6100573d8160233d3973, shl(56, n))) instance := create(value, add(m, 0x16), add(n, 0x7a)) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /// @dev Deploys a deterministic ERC1967I beacon proxy with `args` and `salt`. function deployDeterministicERC1967IBeaconProxy(address beacon, bytes memory args, bytes32 salt) internal returns (address instance) { instance = deployDeterministicERC1967IBeaconProxy(0, beacon, args, salt); } /// @dev Deploys a deterministic ERC1967I beacon proxy with `args` and `salt`. /// Deposits `value` ETH during deployment. function deployDeterministicERC1967IBeaconProxy( uint256 value, address beacon, bytes memory args, bytes32 salt ) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x90), n)) mstore(add(m, 0x70), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3) mstore(add(m, 0x50), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513) mstore(add(m, 0x30), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36) mstore(add(m, 0x14), beacon) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x57 = 0xffa8`. mstore(add(m, gt(n, 0xffa8)), add(0xfe6100573d8160233d3973, shl(56, n))) instance := create2(value, add(m, 0x16), add(n, 0x7a), salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } } } /// @dev Creates a deterministic ERC1967I beacon proxy with `args` and `salt`. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967IBeaconProxy(address beacon, bytes memory args, bytes32 salt) internal returns (bool alreadyDeployed, address instance) { return createDeterministicERC1967IBeaconProxy(0, beacon, args, salt); } /// @dev Creates a deterministic ERC1967I beacon proxy with `args` and `salt`. /// Deposits `value` ETH during deployment. /// Note: This method is intended for use in ERC4337 factories, /// which are expected to NOT revert if the proxy is already deployed. function createDeterministicERC1967IBeaconProxy( uint256 value, address beacon, bytes memory args, bytes32 salt ) internal returns (bool alreadyDeployed, address instance) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) let n := mload(args) pop(staticcall(gas(), 4, add(args, 0x20), n, add(m, 0x90), n)) mstore(add(m, 0x70), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3) mstore(add(m, 0x50), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513) mstore(add(m, 0x30), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36) mstore(add(m, 0x14), beacon) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x57 = 0xffa8`. mstore(add(m, gt(n, 0xffa8)), add(0xfe6100573d8160233d3973, shl(56, n))) // Compute and store the bytecode hash. mstore8(0x00, 0xff) // Write the prefix. mstore(0x35, keccak256(add(m, 0x16), add(n, 0x7a))) mstore(0x01, shl(96, address())) mstore(0x15, salt) instance := keccak256(0x00, 0x55) for {} 1 {} { if iszero(extcodesize(instance)) { instance := create2(value, add(m, 0x16), add(n, 0x7a), salt) if iszero(instance) { mstore(0x00, 0x30116425) // `DeploymentFailed()`. revert(0x1c, 0x04) } break } alreadyDeployed := 1 if iszero(value) { break } if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } break } mstore(0x35, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the initialization code of the ERC1967I beacon proxy with `args`. function initCodeERC1967IBeaconProxy(address beacon, bytes memory args) internal pure returns (bytes memory c) { /// @solidity memory-safe-assembly assembly { c := mload(0x40) let n := mload(args) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x57 = 0xffa8`. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffa8)) for { let i := 0 } lt(i, n) { i := add(i, 0x20) } { mstore(add(add(c, 0x9a), i), mload(add(add(args, 0x20), i))) } mstore(add(c, 0x7a), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3) mstore(add(c, 0x5a), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513) mstore(add(c, 0x3a), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36) mstore(add(c, 0x1e), beacon) mstore(add(c, 0x0a), add(0x6100573d8160233d3973, shl(56, n))) mstore(add(c, add(n, 0x9a)), 0) mstore(c, add(n, 0x7a)) // Store the length. mstore(0x40, add(c, add(n, 0xba))) // Allocate memory. } } /// @dev Returns the initialization code hash of the ERC1967I beacon proxy with `args`. function initCodeHashERC1967IBeaconProxy(address beacon, bytes memory args) internal pure returns (bytes32 hash) { /// @solidity memory-safe-assembly assembly { let c := mload(0x40) // Cache the free memory pointer. let n := mload(args) // Do a out-of-gas revert if `n` is greater than `0xffff - 0x57 = 0xffa8`. returndatacopy(returndatasize(), returndatasize(), gt(n, 0xffa8)) for { let i := 0 } lt(i, n) { i := add(i, 0x20) } { mstore(add(add(c, 0x90), i), mload(add(add(args, 0x20), i))) } mstore(add(c, 0x70), 0x3d50545afa361460525736515af43d600060013e6052573d6001fd5b3d6001f3) mstore(add(c, 0x50), 0x527fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b3513) mstore(add(c, 0x30), 0x60195155f3363d3d373d3d363d602036600436635c60da1b60e01b36) mstore(add(c, 0x14), beacon) mstore(c, add(0x6100573d8160233d3973, shl(56, n))) hash := keccak256(add(c, 0x16), add(n, 0x7a)) } } /// @dev Returns the address of the ERC1967I beacon proxy, with `args` and salt` by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddressERC1967IBeaconProxy( address beacon, bytes memory args, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes32 hash = initCodeHashERC1967IBeaconProxy(beacon, args); predicted = predictDeterministicAddress(hash, salt, deployer); } /// @dev Equivalent to `argsOnERC1967IBeaconProxy(instance, start, 2 ** 256 - 1)`. function argsOnERC1967IBeaconProxy(address instance) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) mstore(args, sub(extcodesize(instance), 0x57)) // Store the length. extcodecopy(instance, add(args, 0x20), 0x57, add(mload(args), 0x20)) mstore(0x40, add(mload(args), add(args, 0x40))) // Allocate memory. } } /// @dev Equivalent to `argsOnERC1967IBeaconProxy(instance, start, 2 ** 256 - 1)`. function argsOnERC1967IBeaconProxy(address instance, uint256 start) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) let n := sub(extcodesize(instance), 0x57) extcodecopy(instance, add(args, 0x20), add(start, 0x57), add(n, 0x20)) mstore(args, mul(sub(n, start), lt(start, n))) // Store the length. mstore(0x40, add(args, add(0x40, mload(args)))) // Allocate memory. } } /// @dev Returns a slice of the immutable arguments on `instance` from `start` to `end`. /// `start` and `end` will be clamped to the range `[0, args.length]`. /// The `instance` MUST be deployed via the ERC1967I beacon proxy with immutable args functions. /// Otherwise, the behavior is undefined. /// Out-of-gas reverts if `instance` does not have any code. function argsOnERC1967IBeaconProxy(address instance, uint256 start, uint256 end) internal view returns (bytes memory args) { /// @solidity memory-safe-assembly assembly { args := mload(0x40) if iszero(lt(end, 0xffff)) { end := 0xffff } let d := mul(sub(end, start), lt(start, end)) extcodecopy(instance, args, add(start, 0x37), add(d, 0x20)) if iszero(and(0xff, mload(add(args, d)))) { let n := sub(extcodesize(instance), 0x57) returndatacopy(returndatasize(), returndatasize(), shr(64, n)) d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n)))) } mstore(args, d) // Store the length. mstore(add(add(args, 0x20), d), 0) // Zeroize the slot after the bytes. mstore(0x40, add(add(args, 0x40), d)) // Allocate memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* OTHER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `address(0)` if the implementation address cannot be determined. function implementationOf(address instance) internal view returns (address result) { /// @solidity memory-safe-assembly assembly { for { extcodecopy(instance, 0x00, 0x00, 0x57) } 1 {} { if mload(0x2d) { // ERC1967I and ERC1967IBeaconProxy detection. if or( eq(keccak256(0x00, 0x52), ERC1967I_CODE_HASH), eq(keccak256(0x00, 0x57), ERC1967I_BEACON_PROXY_CODE_HASH) ) { pop(staticcall(gas(), instance, 0x00, 0x01, 0x00, 0x20)) result := mload(0x0c) break } } // 0age clone detection. result := mload(0x0b) codecopy(0x0b, codesize(), 0x14) // Zeroize the 20 bytes for the address. if iszero(xor(keccak256(0x00, 0x2c), CLONE_CODE_HASH)) { break } mstore(0x0b, result) // Restore the zeroized memory. // CWIA detection. result := mload(0x0a) codecopy(0x0a, codesize(), 0x14) // Zeroize the 20 bytes for the address. if iszero(xor(keccak256(0x00, 0x2d), CWIA_CODE_HASH)) { break } mstore(0x0a, result) // Restore the zeroized memory. // PUSH0 clone detection. result := mload(0x09) codecopy(0x09, codesize(), 0x14) // Zeroize the 20 bytes for the address. result := shr(xor(keccak256(0x00, 0x2d), PUSH0_CLONE_CODE_HASH), result) break } result := shr(96, result) mstore(0x37, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Returns the address when a contract with initialization code hash, /// `hash`, is deployed with `salt`, by `deployer`. /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly. function predictDeterministicAddress(bytes32 hash, bytes32 salt, address deployer) internal pure returns (address predicted) { /// @solidity memory-safe-assembly assembly { // Compute and store the bytecode hash. mstore8(0x00, 0xff) // Write the prefix. mstore(0x35, hash) mstore(0x01, shl(96, deployer)) mstore(0x15, salt) predicted := keccak256(0x00, 0x55) mstore(0x35, 0) // Restore the overwritten part of the free memory pointer. } } /// @dev Requires that `salt` starts with either the zero address or `by`. function checkStartsWith(bytes32 salt, address by) internal pure { /// @solidity memory-safe-assembly assembly { // If the salt does not start with the zero address or `by`. if iszero(or(iszero(shr(96, salt)), eq(shr(96, shl(96, by)), shr(96, salt)))) { mstore(0x00, 0x0c4549ef) // `SaltDoesNotStartWith()`. revert(0x1c, 0x04) } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for converting numbers into strings and other string operations. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol) /// /// @dev Note: /// For performance and bytecode compactness, most of the string operations are restricted to /// byte strings (7-bit ASCII), except where otherwise specified. /// Usage of byte string operations on charsets with runes spanning two or more bytes /// can lead to undefined behavior. library LibString { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The length of the output is too small to contain all the hex digits. error HexLengthInsufficient(); /// @dev The length of the string is more than 32 bytes. error TooBigForSmallString(); /// @dev The input string must be a 7-bit ASCII. error StringNot7BitASCII(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The constant returned when the `search` is not found in the string. uint256 internal constant NOT_FOUND = type(uint256).max; /// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. uint128 internal constant ALPHANUMERIC_7_BIT_ASCII = 0x7fffffe07fffffe03ff000000000000; /// @dev Lookup for 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. uint128 internal constant LETTERS_7_BIT_ASCII = 0x7fffffe07fffffe0000000000000000; /// @dev Lookup for 'abcdefghijklmnopqrstuvwxyz'. uint128 internal constant LOWERCASE_7_BIT_ASCII = 0x7fffffe000000000000000000000000; /// @dev Lookup for 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. uint128 internal constant UPPERCASE_7_BIT_ASCII = 0x7fffffe0000000000000000; /// @dev Lookup for '0123456789'. uint128 internal constant DIGITS_7_BIT_ASCII = 0x3ff000000000000; /// @dev Lookup for '0123456789abcdefABCDEF'. uint128 internal constant HEXDIGITS_7_BIT_ASCII = 0x7e0000007e03ff000000000000; /// @dev Lookup for '01234567'. uint128 internal constant OCTDIGITS_7_BIT_ASCII = 0xff000000000000; /// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'. uint128 internal constant PRINTABLE_7_BIT_ASCII = 0x7fffffffffffffffffffffff00003e00; /// @dev Lookup for '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'. uint128 internal constant PUNCTUATION_7_BIT_ASCII = 0x78000001f8000001fc00fffe00000000; /// @dev Lookup for ' \t\n\r\x0b\x0c'. uint128 internal constant WHITESPACE_7_BIT_ASCII = 0x100003e00; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* DECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the base 10 decimal representation of `value`. function toString(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. str := add(mload(0x40), 0x80) mstore(0x40, add(str, 0x20)) // Allocate the memory. mstore(str, 0) // Zeroize the slot after the string. let end := str // Cache the end of the memory to calculate the length later. let w := not(0) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := add(str, w) // `sub(str, 1)`. // Store the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) temp := div(temp, 10) // Keep dividing `temp` until zero. if iszero(temp) { break } } let length := sub(end, str) str := sub(str, 0x20) // Move the pointer 32 bytes back to make room for the length. mstore(str, length) // Store the length. } } /// @dev Returns the base 10 decimal representation of `value`. function toString(int256 value) internal pure returns (string memory str) { if (value >= 0) return toString(uint256(value)); unchecked { str = toString(~uint256(value) + 1); } /// @solidity memory-safe-assembly assembly { // We still have some spare memory space on the left, // as we have allocated 3 words (96 bytes) for up to 78 digits. let length := mload(str) // Load the string length. mstore(str, 0x2d) // Store the '-' character. str := sub(str, 1) // Move back the string pointer by a byte. mstore(str, add(length, 1)) // Update the string length. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HEXADECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2 + 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) { str = toHexStringNoPrefix(value, length); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Store the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexStringNoPrefix(uint256 value, uint256 length) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length. // We add 0x20 to the total and round down to a multiple of 0x20. // (0x20 + 0x20 + 0x02 + 0x20) = 0x62. str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f))) mstore(0x40, add(str, 0x20)) // Allocate the memory. mstore(str, 0) // Zeroize the slot after the string. let end := str // Cache the end to calculate the length later. // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let start := sub(str, add(length, length)) let w := not(1) // Tsk. let temp := value // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for {} 1 {} { str := add(str, w) // `sub(str, 2)`. mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(xor(str, start)) { break } } if temp { mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`. revert(0x1c, 0x04) } let strLength := sub(end, str) str := sub(str, 0x20) mstore(str, strLength) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2 + 2` bytes. function toHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Store the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x". /// The output excludes leading "0" from the `toHexString` output. /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`. function toMinimalHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present. let strLength := add(mload(str), 2) // Compute the length. mstore(add(str, o), 0x3078) // Store the "0x" prefix, accounting for leading zero. str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero. mstore(str, sub(strLength, o)) // Store the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output excludes leading "0" from the `toHexStringNoPrefix` output. /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`. function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present. let strLength := mload(str) // Get the length. str := add(str, o) // Move the pointer, accounting for leading zero. mstore(str, sub(strLength, o)) // Store the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2` bytes. function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x40 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0. str := add(mload(0x40), 0x80) mstore(0x40, add(str, 0x20)) // Allocate the memory. mstore(str, 0) // Zeroize the slot after the string. let end := str // Cache the end to calculate the length later. mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup. let w := not(1) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := add(str, w) // `sub(str, 2)`. mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(temp) { break } } let strLength := sub(end, str) str := sub(str, 0x20) mstore(str, strLength) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte, /// and the alphabets are capitalized conditionally according to /// https://eips.ethereum.org/EIPS/eip-55 function toHexStringChecksummed(address value) internal pure returns (string memory str) { str = toHexString(value); /// @solidity memory-safe-assembly assembly { let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...` let o := add(str, 0x22) let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... ` let t := shl(240, 136) // `0b10001000 << 240` for { let i := 0 } 1 {} { mstore(add(i, i), mul(t, byte(i, hashed))) i := add(i, 1) if eq(i, 20) { break } } mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask))))) o := add(o, 0x20) mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask))))) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. function toHexString(address value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Store the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(address value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { str := mload(0x40) // Allocate the memory. // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x28 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80. mstore(0x40, add(str, 0x80)) mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup. str := add(str, 2) mstore(str, 40) // Store the length. let o := add(str, 0x20) mstore(add(o, 40), 0) // Zeroize the slot after the string. value := shl(96, value) // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let i := 0 } 1 {} { let p := add(o, add(i, i)) let temp := byte(i, value) mstore8(add(p, 1), mload(and(temp, 15))) mstore8(p, mload(shr(4, temp))) i := add(i, 1) if eq(i, 20) { break } } } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexString(bytes memory raw) internal pure returns (string memory str) { str = toHexStringNoPrefix(raw); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Store the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Store the length. } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { let length := mload(raw) str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix. mstore(str, add(length, length)) // Store the length of the output. mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup. let o := add(str, 0x20) let end := add(raw, length) for {} iszero(eq(raw, end)) {} { raw := add(raw, 1) mstore8(add(o, 1), mload(and(mload(raw), 15))) mstore8(o, mload(and(shr(4, mload(raw)), 15))) o := add(o, 2) } mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate the memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RUNE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the number of UTF characters in the string. function runeCount(string memory s) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { mstore(0x00, div(not(0), 255)) mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506) let o := add(s, 0x20) let end := add(o, mload(s)) for { result := 1 } 1 { result := add(result, 1) } { o := add(o, byte(0, mload(shr(250, mload(o))))) if iszero(lt(o, end)) { break } } } } } /// @dev Returns if this string is a 7-bit ASCII string. /// (i.e. all characters codes are in [0..127]) function is7BitASCII(string memory s) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let mask := shl(7, div(not(0), 255)) result := 1 let n := mload(s) if n { let o := add(s, 0x20) let end := add(o, n) let last := mload(end) mstore(end, 0) for {} 1 {} { if and(mask, mload(o)) { result := 0 break } o := add(o, 0x20) if iszero(lt(o, end)) { break } } mstore(end, last) } } } /// @dev Returns if this string is a 7-bit ASCII string, /// AND all characters are in the `allowed` lookup. /// Note: If `s` is empty, returns true regardless of `allowed`. function is7BitASCII(string memory s, uint128 allowed) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := 1 if mload(s) { let allowed_ := shr(128, shl(128, allowed)) let o := add(s, 0x20) let end := add(o, mload(s)) for {} 1 {} { result := and(result, shr(byte(0, mload(o)), allowed_)) o := add(o, 1) if iszero(and(result, lt(o, end))) { break } } } } } /// @dev Converts the bytes in the 7-bit ASCII string `s` to /// an allowed lookup for use in `is7BitASCII(s, allowed)`. /// To save runtime gas, you can cache the result in an immutable variable. function to7BitASCIIAllowedLookup(string memory s) internal pure returns (uint128 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { let o := add(s, 0x20) let end := add(o, mload(s)) for {} 1 {} { result := or(result, shl(byte(0, mload(o)), 1)) o := add(o, 1) if iszero(lt(o, end)) { break } } if shr(128, result) { mstore(0x00, 0xc9807e0d) // `StringNot7BitASCII()`. revert(0x1c, 0x04) } } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // For performance and bytecode compactness, byte string operations are restricted // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets. // Usage of byte string operations on charsets with runes spanning two or more bytes // can lead to undefined behavior. /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`. function replace(string memory subject, string memory search, string memory replacement) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) let replacementLength := mload(replacement) subject := add(subject, 0x20) search := add(search, 0x20) replacement := add(replacement, 0x20) result := add(mload(0x40), 0x20) let subjectEnd := add(subject, subjectLength) if iszero(gt(searchLength, subjectLength)) { let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1) let h := 0 if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) } let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Copy the `replacement` one word at a time. for { let o := 0 } 1 {} { mstore(add(result, o), mload(add(replacement, o))) o := add(o, 0x20) if iszero(lt(o, replacementLength)) { break } } result := add(result, replacementLength) subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } } let resultRemainder := result result := add(mload(0x40), 0x20) let k := add(sub(resultRemainder, result), sub(subjectEnd, subject)) // Copy the rest of the string one word at a time. for {} lt(subject, subjectEnd) {} { mstore(resultRemainder, mload(subject)) resultRemainder := add(resultRemainder, 0x20) subject := add(subject, 0x20) } result := sub(result, 0x20) let last := add(add(result, 0x20), k) // Zeroize the slot after the string. mstore(last, 0) mstore(0x40, add(last, 0x20)) // Allocate the memory. mstore(result, k) // Store the length. } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for { let subjectLength := mload(subject) } 1 {} { if iszero(mload(search)) { if iszero(gt(from, subjectLength)) { result := from break } result := subjectLength break } let searchLength := mload(search) let subjectStart := add(subject, 0x20) result := not(0) // Initialize to `NOT_FOUND`. subject := add(subjectStart, from) let end := add(sub(add(subjectStart, subjectLength), searchLength), 1) let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(add(search, 0x20)) if iszero(and(lt(subject, end), lt(from, subjectLength))) { break } if iszero(lt(searchLength, 0x20)) { for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if iszero(shr(m, xor(mload(subject), s))) { if eq(keccak256(subject, searchLength), h) { result := sub(subject, subjectStart) break } } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } for {} 1 {} { if iszero(shr(m, xor(mload(subject), s))) { result := sub(subject, subjectStart) break } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = indexOf(subject, search, 0); } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { result := not(0) // Initialize to `NOT_FOUND`. let searchLength := mload(search) if gt(searchLength, mload(subject)) { break } let w := result let fromMax := sub(mload(subject), searchLength) if iszero(gt(fromMax, from)) { from := fromMax } let end := add(add(subject, 0x20), w) subject := add(add(subject, 0x20), from) if iszero(gt(subject, end)) { break } // As this function is not too often used, // we shall simply use keccak256 for smaller bytecode size. for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if eq(keccak256(subject, searchLength), h) { result := sub(subject, add(end, 1)) break } subject := add(subject, w) // `sub(subject, 1)`. if iszero(gt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = lastIndexOf(subject, search, uint256(int256(-1))); } /// @dev Returns true if `search` is found in `subject`, false otherwise. function contains(string memory subject, string memory search) internal pure returns (bool) { return indexOf(subject, search) != NOT_FOUND; } /// @dev Returns whether `subject` starts with `search`. function startsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( iszero(gt(searchLength, mload(subject))), eq( keccak256(add(subject, 0x20), searchLength), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns whether `subject` ends with `search`. function endsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) let subjectLength := mload(subject) // Whether `search` is not longer than `subject`. let withinRange := iszero(gt(searchLength, subjectLength)) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( withinRange, eq( keccak256( // `subject + 0x20 + max(subjectLength - searchLength, 0)`. add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))), searchLength ), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns `subject` repeated `times`. function repeat(string memory subject, uint256 times) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(or(iszero(times), iszero(subjectLength))) { subject := add(subject, 0x20) result := mload(0x40) let output := add(result, 0x20) for {} 1 {} { // Copy the `subject` one word at a time. for { let o := 0 } 1 {} { mstore(add(output, o), mload(add(subject, o))) o := add(o, 0x20) if iszero(lt(o, subjectLength)) { break } } output := add(output, subjectLength) times := sub(times, 1) if iszero(times) { break } } mstore(output, 0) // Zeroize the slot after the string. let resultLength := sub(output, add(result, 0x20)) mstore(result, resultLength) // Store the length. mstore(0x40, add(result, add(resultLength, 0x40))) // Allocate the memory. } } } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. function slice(string memory subject, uint256 start, uint256 end) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(gt(subjectLength, end)) { end := subjectLength } if iszero(gt(subjectLength, start)) { start := subjectLength } if lt(start, end) { result := mload(0x40) let resultLength := sub(end, start) mstore(result, resultLength) subject := add(subject, start) let w := not(0x1f) // Copy the `subject` one word at a time, backwards. for { let o := and(add(resultLength, 0x1f), w) } 1 {} { mstore(add(result, o), mload(add(subject, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(result, 0x20), resultLength), 0) mstore(0x40, add(result, add(resultLength, 0x40))) // Allocate the memory. } } } /// @dev Returns a copy of `subject` sliced from `start` to the end of the string. /// `start` is a byte offset. function slice(string memory subject, uint256 start) internal pure returns (string memory result) { result = slice(subject, start, uint256(int256(-1))); } /// @dev Returns all the indices of `search` in `subject`. /// The indices are byte offsets. function indicesOf(string memory subject, string memory search) internal pure returns (uint256[] memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) if iszero(gt(searchLength, subjectLength)) { subject := add(subject, 0x20) search := add(search, 0x20) result := add(mload(0x40), 0x20) let subjectStart := subject let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1) let h := 0 if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) } let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Append to `result`. mstore(result, sub(subject, subjectStart)) result := add(result, 0x20) // Advance `subject` by `searchLength`. subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } let resultEnd := result // Assign `result` to the free memory pointer. result := mload(0x40) // Store the length of `result`. mstore(result, shr(5, sub(resultEnd, add(result, 0x20)))) // Allocate memory for result. // We allocate one more word, so this array can be recycled for {split}. mstore(0x40, add(resultEnd, 0x20)) } } } /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string. function split(string memory subject, string memory delimiter) internal pure returns (string[] memory result) { uint256[] memory indices = indicesOf(subject, delimiter); /// @solidity memory-safe-assembly assembly { let w := not(0x1f) let indexPtr := add(indices, 0x20) let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1))) mstore(add(indicesEnd, w), mload(subject)) mstore(indices, add(mload(indices), 1)) let prevIndex := 0 for {} 1 {} { let index := mload(indexPtr) mstore(indexPtr, 0x60) if iszero(eq(index, prevIndex)) { let element := mload(0x40) let elementLength := sub(index, prevIndex) mstore(element, elementLength) // Copy the `subject` one word at a time, backwards. for { let o := and(add(elementLength, 0x1f), w) } 1 {} { mstore(add(element, o), mload(add(add(subject, prevIndex), o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(element, 0x20), elementLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(element, and(add(elementLength, 0x3f), w))) // Store the `element` into the array. mstore(indexPtr, element) } prevIndex := add(index, mload(delimiter)) indexPtr := add(indexPtr, 0x20) if iszero(lt(indexPtr, indicesEnd)) { break } } result := indices if iszero(mload(delimiter)) { result := add(indices, 0x20) mstore(result, sub(mload(indices), 2)) } } } /// @dev Returns a concatenated string of `a` and `b`. /// Cheaper than `string.concat()` and does not de-align the free memory pointer. function concat(string memory a, string memory b) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let w := not(0x1f) result := mload(0x40) let aLength := mload(a) // Copy `a` one word at a time, backwards. for { let o := and(add(aLength, 0x20), w) } 1 {} { mstore(add(result, o), mload(add(a, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let bLength := mload(b) let output := add(result, aLength) // Copy `b` one word at a time, backwards. for { let o := and(add(bLength, 0x20), w) } 1 {} { mstore(add(output, o), mload(add(b, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let totalLength := add(aLength, bLength) let last := add(add(result, 0x20), totalLength) mstore(last, 0) // Zeroize the slot after the string. mstore(result, totalLength) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Returns a copy of the string in either lowercase or UPPERCASE. /// WARNING! This function is only compatible with 7-bit ASCII strings. function toCase(string memory subject, bool toUpper) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let length := mload(subject) if length { result := add(mload(0x40), 0x20) subject := add(subject, 1) let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff) let w := not(0) for { let o := length } 1 {} { o := add(o, w) let b := and(0xff, mload(add(subject, o))) mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20))) if iszero(o) { break } } result := mload(0x40) mstore(result, length) // Store the length. let last := add(add(result, 0x20), length) mstore(last, 0) // Zeroize the slot after the string. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } } /// @dev Returns a string from a small bytes32 string. /// `s` must be null-terminated, or behavior will be undefined. function fromSmallString(bytes32 s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let n := 0 for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'. mstore(result, n) // Store the length. let o := add(result, 0x20) mstore(o, s) // Store the bytes of the string. mstore(add(o, n), 0) // Zeroize the slot after the string. mstore(0x40, add(result, 0x40)) // Allocate the memory. } } /// @dev Returns the small string, with all bytes after the first null byte zeroized. function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'. mstore(0x00, s) mstore(result, 0x00) result := mload(0x00) } } /// @dev Returns the string as a normalized null-terminated small string. function toSmallString(string memory s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { result := mload(s) if iszero(lt(result, 33)) { mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`. revert(0x1c, 0x04) } result := shl(shl(3, sub(32, result)), mload(add(s, result))) } } /// @dev Returns a lowercased copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function lower(string memory subject) internal pure returns (string memory result) { result = toCase(subject, false); } /// @dev Returns an UPPERCASED copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function upper(string memory subject) internal pure returns (string memory result) { result = toCase(subject, true); } /// @dev Escapes the string to be used within HTML tags. function escapeHTML(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) // Store the bytes of the packed offsets and strides into the scratch space. // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6. mstore(0x1f, 0x900094) mstore(0x08, 0xc0000000a6ab) // Store ""&'<>" into the scratch space. mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) // Not in `["\"","'","&","<",">"]`. if iszero(and(shl(c, 1), 0x500000c400000000)) { mstore8(result, c) result := add(result, 1) continue } let t := shr(248, mload(c)) mstore(result, mload(and(t, 0x1f))) result := add(result, shr(5, t)) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes. function escapeJSON(string memory s, bool addDoubleQuotes) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } // Store "\\u0000" in scratch space. // Store "0123456789abcdef" in scratch space. // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`. // into the scratch space. mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672) // Bitmask for detecting `["\"","\\"]`. let e := or(shl(0x22, 1), shl(0x5c, 1)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) if iszero(lt(c, 0x20)) { if iszero(and(shl(c, 1), e)) { // Not in `["\"","\\"]`. mstore8(result, c) result := add(result, 1) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), c) result := add(result, 2) continue } if iszero(and(shl(c, 1), 0x3700)) { // Not in `["\b","\t","\n","\f","\d"]`. mstore8(0x1d, mload(shr(4, c))) // Hex value. mstore8(0x1e, mload(and(c, 15))) // Hex value. mstore(result, mload(0x19)) // "\\u00XX". result := add(result, 6) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), mload(add(c, 8))) result := add(result, 2) } if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. function escapeJSON(string memory s) internal pure returns (string memory result) { result = escapeJSON(s, false); } /// @dev Returns whether `a` equals `b`. function eq(string memory a, string memory b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b))) } } /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string. function eqs(string memory a, bytes32 b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { // These should be evaluated on compile time, as far as possible. let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`. let x := not(or(m, or(b, add(m, and(b, m))))) let r := shl(7, iszero(iszero(shr(128, x)))) r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x)))))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))), xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20))))) } } /// @dev Packs a single string with its length into a single word. /// Returns `bytes32(0)` if the length is zero or greater than 31. function packOne(string memory a) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { // We don't need to zero right pad the string, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes. mload(add(a, 0x1f)), // `length != 0 && length < 32`. Abuses underflow. // Assumes that the length is valid and within the block gas limit. lt(sub(mload(a), 1), 0x1f) ) } } /// @dev Unpacks a string packed using {packOne}. /// Returns the empty string if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packOne}, the output behavior is undefined. function unpackOne(bytes32 packed) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) // Grab the free memory pointer. mstore(0x40, add(result, 0x40)) // Allocate 2 words (1 for the length, 1 for the bytes). mstore(result, 0) // Zeroize the length slot. mstore(add(result, 0x1f), packed) // Store the length and bytes. mstore(add(add(result, 0x20), mload(result)), 0) // Right pad with zeroes. } } /// @dev Packs two strings with their lengths into a single word. /// Returns `bytes32(0)` if combined length is zero or greater than 30. function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let aLength := mload(a) // We don't need to zero right pad the strings, // since this is our own custom non-standard packing scheme. result := mul( or( // Load the length and the bytes of `a` and `b`. shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))), mload(sub(add(b, 0x1e), aLength)) ), // `totalLength != 0 && totalLength < 31`. Abuses underflow. // Assumes that the lengths are valid and within the block gas limit. lt(sub(add(aLength, mload(b)), 1), 0x1e) ) } } /// @dev Unpacks strings packed using {packTwo}. /// Returns the empty strings if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packTwo}, the output behavior is undefined. function unpackTwo(bytes32 packed) internal pure returns (string memory resultA, string memory resultB) { /// @solidity memory-safe-assembly assembly { resultA := mload(0x40) // Grab the free memory pointer. resultB := add(resultA, 0x40) // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words. mstore(0x40, add(resultB, 0x40)) // Zeroize the length slots. mstore(resultA, 0) mstore(resultB, 0) // Store the lengths and bytes. mstore(add(resultA, 0x1f), packed) mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA)))) // Right pad with zeroes. mstore(add(add(resultA, 0x20), mload(resultA)), 0) mstore(add(add(resultB, 0x20), mload(resultB)), 0) } } /// @dev Directly returns `a` without copying. function directReturn(string memory a) internal pure { assembly { // Assumes that the string does not start from the scratch space. let retStart := sub(a, 0x20) let retUnpaddedSize := add(mload(a), 0x40) // Right pad with zeroes. Just in case the string is produced // by a method that doesn't zero right pad. mstore(add(retStart, retUnpaddedSize), 0) mstore(retStart, 0x20) // Store the return offset. // End the transaction, returning the string. return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize))) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol) /// /// @dev Note: /// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection. /// - For ERC20s, this implementation won't check that a token has code, /// responsibility is delegated to the caller. library SafeTransferLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ETH transfer has failed. error ETHTransferFailed(); /// @dev The ERC20 `transferFrom` has failed. error TransferFromFailed(); /// @dev The ERC20 `transfer` has failed. error TransferFailed(); /// @dev The ERC20 `approve` has failed. error ApproveFailed(); /// @dev The Permit2 operation has failed. error Permit2Failed(); /// @dev The Permit2 amount must be less than `2**160 - 1`. error Permit2AmountOverflow(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes. uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300; /// @dev Suggested gas stipend for contract receiving ETH to perform a few /// storage reads and writes, but low enough to prevent griefing. uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000; /// @dev The unique EIP-712 domain domain separator for the DAI token contract. bytes32 internal constant DAI_DOMAIN_SEPARATOR = 0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7; /// @dev The address for the WETH9 contract on Ethereum mainnet. address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; /// @dev The canonical Permit2 address. /// [Github](https://github.com/Uniswap/permit2) /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3) address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ETH OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants. // // The regular variants: // - Forwards all remaining gas to the target. // - Reverts if the target reverts. // - Reverts if the current contract has insufficient balance. // // The force variants: // - Forwards with an optional gas stipend // (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases). // - If the target reverts, or if the gas stipend is exhausted, // creates a temporary contract to force send the ETH via `SELFDESTRUCT`. // Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758. // - Reverts if the current contract has insufficient balance. // // The try variants: // - Forwards with a mandatory gas stipend. // - Instead of reverting, returns whether the transfer succeeded. /// @dev Sends `amount` (in wei) ETH to `to`. function safeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Sends all the ETH in the current contract to `to`. function safeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // Transfer all the ETH and check if it succeeded or not. if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`. function forceSafeTransferAllETH(address to, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // forgefmt: disable-next-item if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00) } } /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`. function trySafeTransferAllETH(address to, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for /// the current contract to manage. function safeTransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, amount) // Store the `amount` argument. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// /// The `from` account must have at least `amount` approved for the current contract to manage. function trySafeTransferFrom(address token, address from, address to, uint256 amount) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, amount) // Store the `amount` argument. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`. success := and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends all of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have their entire balance approved for the current contract to manage. function safeTransferAllFrom(address token, address from, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`. amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransfer(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sends all of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransferAll(address token, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`. mstore(0x20, address()) // Store the address of the current contract. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x14, to) // Store the `to` argument. amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// Reverts upon failure. function safeApprove(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// If the initial attempt to approve fails, attempts to reset the approved amount to zero, /// then retries the approval again (some tokens, e.g. USDT, requires this). /// Reverts upon failure. function safeApproveWithRetry(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, retrying upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x34, 0) // Store 0 for the `amount`. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval. mstore(0x34, amount) // Store back the original `amount`. // Retry the approval, reverting upon failure. if iszero( and( or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Returns the amount of ERC20 `token` owned by `account`. /// Returns zero if the `token` does not exist. function balanceOf(address token, address account) internal view returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x14, account) // Store the `account` argument. mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`. amount := mul( // The arguments of `mul` are evaluated from right to left. mload(0x20), and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20) ) ) } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// If the initial attempt fails, try to use Permit2 to transfer the token. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for the current contract to manage. function safeTransferFrom2(address token, address from, address to, uint256 amount) internal { if (!trySafeTransferFrom(token, from, to, amount)) { permit2TransferFrom(token, from, to, amount); } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2. /// Reverts upon failure. function permit2TransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) mstore(add(m, 0x74), shr(96, shl(96, token))) mstore(add(m, 0x54), amount) mstore(add(m, 0x34), to) mstore(add(m, 0x20), shl(96, from)) // `transferFrom(address,address,uint160,address)`. mstore(m, 0x36c78516000000000000000000000000) let p := PERMIT2 let exists := eq(chainid(), 1) if iszero(exists) { exists := iszero(iszero(extcodesize(p))) } if iszero(and(call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00), exists)) { mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`. revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04) } } } /// @dev Permit a user to spend a given amount of /// another user's tokens via native EIP-2612 permit if possible, falling /// back to Permit2 if native permit fails or is not implemented on the token. function permit2( address token, address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { bool success; /// @solidity memory-safe-assembly assembly { for {} shl(96, xor(token, WETH9)) {} { mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`. if iszero( and( // The arguments of `and` are evaluated from right to left. lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word. // Gas stipend to limit gas burn for tokens that don't refund gas when // an non-existing function is called. 5K should be enough for a SLOAD. staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20) ) ) { break } // After here, we can be sure that token is a contract. let m := mload(0x40) mstore(add(m, 0x34), spender) mstore(add(m, 0x20), shl(96, owner)) mstore(add(m, 0x74), deadline) if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) { mstore(0x14, owner) mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`. mstore(add(m, 0x94), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20)) mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`. // `nonces` is already at `add(m, 0x54)`. // `1` is already stored at `add(m, 0x94)`. mstore(add(m, 0xb4), and(0xff, v)) mstore(add(m, 0xd4), r) mstore(add(m, 0xf4), s) success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00) break } mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`. mstore(add(m, 0x54), amount) mstore(add(m, 0x94), and(0xff, v)) mstore(add(m, 0xb4), r) mstore(add(m, 0xd4), s) success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00) break } } if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s); } /// @dev Simple permit on the Permit2 contract. function simplePermit2( address token, address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) mstore(m, 0x927da105) // `allowance(address,address,address)`. { let addressMask := shr(96, not(0)) mstore(add(m, 0x20), and(addressMask, owner)) mstore(add(m, 0x40), and(addressMask, token)) mstore(add(m, 0x60), and(addressMask, spender)) mstore(add(m, 0xc0), and(addressMask, spender)) } let p := mul(PERMIT2, iszero(shr(160, amount))) if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`. staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60) ) ) { mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`. revert(add(0x18, shl(2, iszero(p))), 0x04) } mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant). // `owner` is already `add(m, 0x20)`. // `token` is already at `add(m, 0x40)`. mstore(add(m, 0x60), amount) mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`. // `nonce` is already at `add(m, 0xa0)`. // `spender` is already at `add(m, 0xc0)`. mstore(add(m, 0xe0), deadline) mstore(add(m, 0x100), 0x100) // `signature` offset. mstore(add(m, 0x120), 0x41) // `signature` length. mstore(add(m, 0x140), r) mstore(add(m, 0x160), s) mstore(add(m, 0x180), shl(248, v)) if iszero(call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00)) { mstore(0x00, 0x6b836e6b) // `Permit2Failed()`. revert(0x1c, 0x04) } } } }
{ "evmVersion": "cancun", "optimizer": { "enabled": true, "runs": 151 }, "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"delegatedCreationSigner","type":"address"},{"internalType":"bytes32","name":"type1","type":"bytes32"},{"internalType":"bytes32","name":"type2","type":"bytes32"},{"internalType":"address","name":"type1Address","type":"address"},{"internalType":"address","name":"type2Address","type":"address"}],"stateMutability":"payable","type":"constructor"},{"inputs":[],"name":"BalanceInvariant","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721IncorrectOwner","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721InsufficientApproval","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC721InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC721InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721InvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC721InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC721InvalidSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721NonexistentToken","type":"error"},{"inputs":[],"name":"FactoryBalanceDecreased","type":"error"},{"inputs":[],"name":"FailedToDeploy","type":"error"},{"inputs":[],"name":"InvalidLengths","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"bytes","name":"initCode","type":"bytes"}],"name":"create3","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes","name":"collectionInformation","type":"bytes"},{"internalType":"bytes32","name":"collectionId","type":"bytes32"},{"internalType":"bytes32","name":"implementationType","type":"bytes32"}],"name":"createCollection","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes","name":"collectionInformation","type":"bytes"},{"internalType":"bytes32","name":"collectionId","type":"bytes32"},{"internalType":"bytes32","name":"implementationType","type":"bytes32"}],"name":"createCollectionN2M_000oEFvt","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes","name":"collectionInformation","type":"bytes"},{"internalType":"bytes32","name":"collectionId","type":"bytes32"},{"internalType":"bytes32","name":"implementationType","type":"bytes32"}],"name":"createCrossCollection","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"dynamicAddress","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"bytes","name":"initData","type":"bytes"}],"name":"createNewDynamic","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes","name":"collectionInformation","type":"bytes"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"bytes32","name":"collectionId","type":"bytes32"},{"internalType":"bytes32","name":"implementationType","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"delegatedCreation","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"CIDHash","type":"bytes32"}],"name":"getIPFSURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"implementationType","type":"bytes32"}],"name":"getImplementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"collectionAndSelfcalls","type":"uint256"},{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicall","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"collectionsAndCalls","type":"uint256[]"},{"internalType":"uint256[]","name":"collectionsValues","type":"uint256[]"},{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicallMulticollection","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"collectionAndSelfcalls","type":"uint256"},{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicallN2M_001Taw5z","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"n2mVersion","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"implementationTypesAndAddresses","type":"bytes32[]"},{"internalType":"address","name":"delegatedCreationSigner_","type":"address"},{"internalType":"string","name":"ownerTokenURI","type":"string"}],"name":"newContractImplementationsAndSigner","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"implementationType","type":"bytes32"},{"internalType":"bytes32","name":"collectionId","type":"bytes32"}],"name":"predictDeterministicAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"royaltyAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"transferCollectionOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"address","name":"erc20","type":"address"}],"name":"withdrawTo","outputs":[],"stateMutability":"payable","type":"function"}]
Contract Creation Code
608060405261252460c081380391826100178161041d565b9384928339810103126104195761002d81610442565b9061003a60208201610442565b90604081015160608201519261005e60a061005760808601610442565b9401610442565b94610069602061041d565b5f8152610076602061041d565b5f8152815190916001600160401b03821161034a5781906100975f54610456565b601f81116103cc575b50602090601f8311600114610369575f9261035e575b50508160011b915f199060031b1c1916175f555b8051906001600160401b03821161034a5781906100e8600154610456565b601f81116102f1575b50602090601f831160011461028b575f92610280575b50508160011b915f199060031b1c1916176001555b610127600854610456565b601f8111610237575b50605f60089081555f9081527f68747470733a2f2f6d657461646174612e6e667473326d652e636f6d2f6170695f5160206125045f395f51905f52556e2f6f776e6572546f6b656e5552492f60881b7ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee4556001600160a01b0391909116638b78c6d819819055907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08180a3600780546001600160a01b03199081166001600160a01b03938416179091555f92835260066020526040808420805483169584169590951790945593825290829020805490931693169290921790555161205f90816104a58239f35b60085f5261027a90601f0160051c5f5160206125045f395f51905f52017ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee561048e565b5f610130565b015190505f80610107565b60015f9081528281209350601f198516905b8181106102d957509084600195949392106102c1575b505050811b0160015561011c565b01515f1960f88460031b161c191690555f80806102b3565b9293602060018192878601518155019501930161029d565b60015f5261033a907fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6601f850160051c81019160208610610340575b601f0160051c019061048e565b5f6100f1565b909150819061032d565b634e487b7160e01b5f52604160045260245ffd5b015190505f806100b6565b5f8080528281209350601f198516905b8181106103b4575090846001959493921061039c575b505050811b015f556100ca565b01515f1960f88460031b161c191690555f808061038f565b92936020600181928786015181550195019301610379565b5f8052610413907f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563601f850160051c8101916020861061034057601f0160051c019061048e565b5f6100a0565b5f80fd5b6040519190601f01601f191682016001600160401b0381118382101761034a57604052565b51906001600160a01b038216820361041957565b90600182811c92168015610484575b602083101461047057565b634e487b7160e01b5f52602260045260245ffd5b91607f1691610465565b818110610499575050565b5f815560010161048e56fe60806040526004361015610011575f80fd5b5f3560e01c80156101b757806001146101c657806301ffc9a71461020257806303f30d08146101fd57806304dad935146101f857806306fdde03146101f3578063081812fc146101ee578063095ea7b3146101e957806323b872dd146101e45780632a55205a146101df5780632af25238146101da57806338395f19146101d55780633c2e0828146101d057806342842e0e146101cb5780635ae401dc146101c65780636352211e146101c157806367c0e310146101bc5780636a064fce146101b75780636d07dbf8146101b25780636dce4ab0146101ad57806370a08231146101a85780637ce27a27146101a35780638da5cb5b1461019e57806395905e211461019957806395d89b4114610194578063a22cb4651461018f578063b88d4fde1461018a578063c87b56dd14610185578063c91df5cc14610180578063cb93c48f1461017b578063e985e9c5146101765763f2fde38b14610171575f80fd5b6112cc565b6112a0565b611284565b611200565b61110b565b6110bd565b611005565b610fb0565b610ec1565b610e95565b610d1d565b610ccc565b610c0b565b610b78565b61026e565b610afc565b610acc565b6102bf565b610aa3565b610a71565b6109b6565b610975565b610884565b61086d565b610759565b61071d565b6106c9565b610644565b61041d565b6103ec565b9181601f84011215610234578235916001600160401b038311610234576020838186019501011161023457565b5f80fd5b606060031982011261023457600435906001600160401b0382116102345761026291600401610207565b90916024359060443590565b61028d61027a36610238565b926102889291923384611978565b611377565b005b9181601f84011215610234578235916001600160401b038311610234576020808501948460051b01011161023457565b6040366003190112610234576004356024356001600160401b038111610234576102ed90369060040161028f565b5f926001600160a01b0381169060a01c5b80851061039f57508061030d57005b61033e610332610325835f52600260205260405f2090565b546001600160a01b031690565b6001600160a01b031690565b330361039157925b81811061034f57005b5f8061035c8385876113e6565b9061036c6040518093819361133b565b039082885af161037a611348565b90156103895750600101610346565b602081519101fd5b6282b42960e81b5f5260045ffd5b935f806103ad8386886113e6565b906103bd6040518093819361133b565b0390305af46103ca611348565b90156103895750600101936102fe565b6001600160e01b031981160361023457565b3461023457602036600319011261023457602061041360043561040e816103da565b61142c565b6040519015158152f35b6060366003190112610234576004356001600160401b0381116102345761044890369060040161028f565b6024356001600160401b0381116102345761046790369060040161028f565b92906044356001600160401b0381116102345761048890369060040161028f565b9290856105df575b5f925f955f5b8181106104bd575050505050036104ae57036104ae57005b631df89e8b60e01b5f5260045ffd5b6104c88183876114a1565b356001600160a01b0381169060a01c908061053557505f5b8181106104f35750506001905b01610496565b5f806105096105018b6114b1565b9a8c8a6113e6565b906105196040518093819361133b565b0390305af4610526611348565b901561038957506001016104e0565b61054d610332610325835f52600260205260405f2090565b3303610391579088915f5b82811061056b57505050506001906104ed565b909192985f908d8d106105c1575b5f916105918261058a8594916114b1565b9d8c6113e6565b906105a16040518093819361133b565b0391865af16105ae611348565b9015610389575060010190899291610558565b90508c6105cd8d6114b1565b9c6105d891896114a1565b3590610579565b6105e93447611494565b806105f5575b50610490565b5f80808093736db16927dbc38aa39f0ee2cb545e15efd813fb995af1505f6105ef565b600435906001600160a01b038216820361023457565b602435906001600160a01b038216820361023457565b602036600319011261023457610658610618565b6001600160a01b039061066c9033906119db565b161561067457005b637e27328960e01b5f523360045260245ffd5b5f91031261023457565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b9060206106c6928181520190610691565b90565b34610234575f366003190112610234576107196040516106ea6040826108ee565b600e81526d4e465473324d65204f776e65727360901b6020820152604051918291602083526020830190610691565b0390f35b346102345760203660031901126102345760043561073a81611b11565b505f526004602052602060018060a01b0360405f205416604051908152f35b3461023457604036600319011261023457610772610618565b6024359061077f82611b11565b33151580610820575b8061080f575b6107fa5761028d926107db9181906001600160a01b0385811691167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9255f80a45f52600460205260405f2090565b80546001600160a01b0319166001600160a01b03909216919091179055565b63a9fbf51f60e01b5f90815233600452602490fd5b5061081a33826118fc565b1561078e565b506001600160a01b038116331415610788565b6060906003190112610234576004356001600160a01b038116810361023457906024356001600160a01b0381168103610234579060443590565b346102345761028d61087e36610833565b916114bf565b34610234576040366003190112610234576024356101f48102908082046101f414901517156108d557604090612710825191736db16927dbc38aa39f0ee2cb545e15efd813fb998352046020820152f35b611480565b634e487b7160e01b5f52604160045260245ffd5b90601f801991011681019081106001600160401b0382111761090f57604052565b6108da565b6001600160401b03811161090f57601f01601f191660200190565b81601f820112156102345780359061094682610914565b9261095460405194856108ee565b8284526020838301011161023457815f926020809301838601378301015290565b6040366003190112610234576024356004356001600160401b038211610234576109a661028d92369060040161092f565b6109b03383611978565b34611b9e565b610a305f806109c436610238565b6109d2969293963383611978565b8452600660205260408085205481516c5af43d3d93803e602a57fd5bf360581b818401526001600160a01b03909116602882015273602c3d8160093d39f33d3d3d3d363d3d37363d7360148201526035815260608101909152611b45565b93610a406040518093819361133b565b039082855af190610a4f611348565b9115610a685761028d906001600160a01b03163361199e565b50602081519101fd5b34610234576020366003190112610234576004355f526006602052602060018060a01b0360405f205416604051908152f35b346102345761028d610ab436610833565b9060405192610ac46020856108ee565b5f84526116b7565b34610234576020366003190112610234576020610aea600435611b11565b6040516001600160a01b039091168152f35b606036600319011261023457610b10610618565b602435906044356001600160401b03811161023457610b36610b48913690600401610207565b939092610b433383611978565b611f13565b82610b4f57005b825f9392849360405192839283378101848152039134905af1610b70611348565b901561038957005b3461023457604036600319011261023457600435602435905f52600660205260018060a01b0360405f2054166c5af43d3d93803e602a57fd5bf360215260145273602c3d8160093d39f33d3d3d3d363d3d37363d735f526035600c205f60215260ff5f5360359081523060601b60015260159190915260555f90812091526040516001600160a01b039091168152602090f35b604036600319011261023457610c1f610618565b610c2761062e565b610c2f611be9565b5f80808047865af1506001600160a01b0381169182610c4a57005b610c8f92610c5b6020933090611c05565b60405163a9059cbb60e01b81526001600160a01b0390931660048401526024830152909283919082905f9082906044820190565b03925af18015610cc757610c9f57005b61028d9060203d602011610cc0575b610cb881836108ee565b810190611651565b503d610cae565b611666565b34610234576020366003190112610234576001600160a01b03610ced610618565b168015610d0a575f526003602052602060405f2054604051908152f35b6322718ad960e21b5f525f60045260245ffd5b60a0366003190112610234576004356001600160401b03811161023457610d48903690600401610207565b610d5061062e565b90604435606435916084356001600160401b03811161023457610d7a610de5913690600401610207565b90610d858786611978565b610de08886610db38a610da58b6040519485938c6020860198468a611671565b03601f1981018352826108ee565b5190206020527b19457468657265756d205369676e6564204d6573736167653a0a33325f52603c60042090565b611c2a565b600754610dfa906001600160a01b0316610332565b6001600160a01b03909116908114159081610e81575b50610e7257610e315f9392610b4361032586955f52600660205260405f2090565b94610e416040518093819361133b565b039082865af191610e50611348565b9215610e6a5761028d92506001600160a01b03169061199e565b825160208401fd5b638baa579f60e01b5f5260045ffd5b6001600160a01b038616141590505f610e10565b34610234575f36600319011261023457638b78c6d819546040516001600160a01b039091168152602090f35b6060366003190112610234576004356001600160401b03811161023457610eec90369060040161028f565b610ef461062e565b6044356001600160401b03811161023457610f13903690600401610207565b929093610f1e611be9565b5f5b828110610f6f575050506001600160a01b038116610f4a575b5080610f4157005b61028d91611d04565b600780546001600160a01b0319166001600160a01b039092169190911790555f610f39565b80610faa610f8060019386866114a1565b356107db610f8f8488886114a1565b3591858060a01b03169160a01c5f52600660205260405f2090565b01610f20565b34610234575f36600319011261023457610719604051610fd16040826108ee565b60098152684e324d4f776e65727360b81b6020820152604051918291602083526020830190610691565b8015150361023457565b346102345760403660031901126102345761101e610618565b60243561102a81610ffb565b6001600160a01b0382169182156110aa57335f9081526005602090815260408083206001600160a01b0390941683529290522060ff1981541660ff831515161790557f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31604051806110a5339482919091602081019215159052565b0390a3005b82630b61174360e31b5f5260045260245ffd5b34610234576080366003190112610234576110d6610618565b6110de61062e565b90604435606435926001600160401b0384116102345761110561028d94369060040161092f565b926116b7565b34610234576020366003190112610234576004356040516329ffa82360e11b81526020816004816001600160a01b0386165afa908115610cc7576020610da56111ba610719956111b46111ba6111b4976111c7975f916111d3575b506111b46111ba61117646611e2b565b956111b46111ba6111a66111a061119b61033261033261119588611e2b565b97611b11565b611e2b565b96611e2b565b986040519e8f9d8e016117f9565b90611880565b602f60f81b815260010190565b604051918291826106b5565b6111f39150873d89116111f9575b6111eb81836108ee565b8101906117b2565b5f611166565b503d6111e1565b3461023457602036600319011261023457604051620b809160e51b602082015260043560248201525f60448201526025815261123d6045826108ee565b611245611892565b905f5b603a811061125c576107196111c7846118c5565b8061127161126c60019385611e70565b611ed1565b5f1a61127d82866118b4565b5301611248565b34610234575f3660031901126102345760206040516107ee8152f35b346102345760403660031901126102345760206104136112be610618565b6112c661062e565b906118fc565b6020366003190112610234576112e0610618565b6112e8611be9565b8060601b1561132e5760018060a01b031680638b78c6d819547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3638b78c6d81955005b637448fbae5f526004601cfd5b908092918237015f815290565b3d15611372573d9061135982610914565b9161136760405193846108ee565b82523d5f602084013e565b606090565b92906113995f9384938452600660205260018060a01b03604085205416611f13565b938160405192839283378101838152039082855af16113b6611348565b901561038957506113d0906001600160a01b03163361199e565b565b634e487b7160e01b5f52603260045260245ffd5b91908110156114275760051b81013590601e19813603018212156102345701908135916001600160401b038311610234576020018236038113610234579190565b6113d2565b6001600160e01b0319166301ffc9a760e01b811461147a576307f5828d60e41b811461147a576380ac58cd60e01b811461147a57635b5e139f60e01b811461147a5763152a902d60e11b1490565b50600190565b634e487b7160e01b5f52601160045260245ffd5b919082039182116108d557565b91908110156114275760051b0190565b5f1981146108d55760010190565b9091906001600160a01b038316801561163e575f838152600260205260409020546001600160a01b0316933361162e575b6001600160a01b0385169485151580611602575b6001600160a01b0383165f90815260036020526040902060018154019055611538836107db885f52600260205260405f2090565b8560405194887fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4611597575b5050506001600160a01b031680830361157f57505050565b6364283d7b60e01b5f5260045260245260445260645ffd5b6001600160a01b038516803b1561023457637699c77f60e01b84526001600160a01b039182166004850152911660248301525f908290604490829084905af18015610cc7576115e8575b8080611567565b806115f65f6115fc936108ee565b80610687565b5f6115e1565b61160b86611f51565b6001600160a01b0382165f90815260036020526040902080545f19019055611504565b611639843387611f73565b6114f0565b633250574960e11b5f525f60045260245ffd5b9081602091031261023457516106c681610ffb565b6040513d5f823e3d90fd5b90928092607897959694637ce27a2760e01b84526004840152602483013701926bffffffffffffffffffffffff199060601b166024840152603883015260588201520190565b9092916116c58185846114bf565b833b6116d2575b50505050565b6020916116f46040519485938493630a85bd0160e11b85523360048601611dfa565b03815f6001600160a01b0387165af15f9181611781575b506117455750611719611348565b805191908261173e57633250574960e11b5f526001600160a01b03821660045260245ffd5b9050602001fd5b6001600160e01b03191663757a42ff60e11b0161176657505f8080806116cc565b633250574960e11b5f526001600160a01b031660045260245ffd5b6117a491925060203d6020116117ab575b61179c81836108ee565b810190611de5565b905f61170b565b503d611792565b90816020910312610234575190565b90600182811c921680156117ef575b60208310146117db57565b634e487b7160e01b5f52602260045260245ffd5b91607f16916117d0565b6008545f9291611808826117c1565b916001811690811561186e5750600114611820575050565b60085f90815292935090917ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee35b83821061185a5750500190565b60018160209254848601520191019061184d565b60ff1916825250811515909102019150565b805191908290602001825e015f815290565b604051606091906118a383826108ee565b603a815291601f1901366020840137565b908151811015611427570160200190565b906113d06118ee926040519384916734b833399d1797b160c11b60208401526028830190611880565b03601f1981018452836108ee565b6001600160a01b0382167388899dc0b84c6e726840e00dfb94abc6248825ec811461197057731e0049783f008a0085193e00003d00cd54003c7114611969576001600160a01b039081165f908152600560209081526040808320939094168252919091522060ff90541690565b5050600190565b505050600190565b60601c80156001600160a01b0390921614171561199157565b630c4549ef5f526004601cfd5b906001600160a01b0382161561163e576001600160a01b03916119c191906119db565b166119c857565b6339e3563760e11b5f525f60045260245ffd5b5f828152600260205260409020546001600160a01b03168015159392909190829085611ae5575b806001600160a01b03841680611ac2575b611a29856107db845f52600260205260405f2090565b604051957fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a48195611a5d5750505050565b6001600160a01b0316803b1561023457637699c77f60e01b84526001600160a01b039182166004850152911660248301525f908290604490829084905af18015610cc757611aae575b8080806116cc565b806115f65f611abc936108ee565b5f611aa6565b6001600160a01b0385165f90815260036020526040902060018154019055611a13565b611aee81611f51565b6001600160a01b0382165f90815260036020526040902080545f19019055611a02565b5f818152600260205260409020546001600160a01b0316908115611b33575090565b637e27328960e01b5f5260045260245ffd5b91906f67363d3d37363d34f03d5260086018f35f526010805ff5918215611b91575f80918460145261d694825260016034536017601e209482602083519301915af1823b0215611b9157565b63301164255f526004601cfd5b92916f67363d3d37363d34f03d5260086018f35f526010805ff58015611b91575f9181839260145261d694835260016034536017601e2095602083519301915af1823b0215611b9157565b638b78c6d819543303611bf857565b6382b429005f526004601cfd5b602460106020939284936014526370a0823160601b5f525afa601f3d11166020510290565b929190600191604051945f5260408114611c8a57604114611c705750506020600160805f805b5afa51913d15611c63575f606052604052565b638baa579f5f526004601cfd5b60805f602093604084816001960135841a87528137611c50565b5060805f6020938385600195013590601b8260ff1c01875235604052848060ff1b0316606052611c50565b601f8211611cc257505050565b5f5260205f20906020601f840160051c83019310611cfa575b601f0160051c01905b818110611cef575050565b5f8155600101611ce4565b9091508190611cdb565b91906001600160401b03811161090f57611d2a81611d236008546117c1565b6008611cb5565b5f601f8211600114611d68578190611d5893945f92611d5d575b50508160011b915f199060031b1c19161790565b600855565b013590505f80611d44565b60085f52601f198216937ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee3915f5b868110611dcd5750836001959610611db4575b505050811b01600855565b01355f19600384901b60f8161c191690555f8080611da9565b90926020600181928686013581550194019101611d96565b9081602091031261023457516106c6816103da565b6001600160a01b0391821681529116602082015260408101919091526080606082018190526106c692910190610691565b90604051600a608082019360a083016040525f8552935b5f190193603082820601855304928315611e5e57600a90611e42565b809350608091030191601f1901918252565b906005810290808204600514901517156108d557600381901c906001600160f81b0319611e9d83856118b4565b511691600181018091116108d557611eb960079160ff956118b4565b5160081c60f085901b169290921791161b60fb1c1690565b60ff16601a811015611ef85760610160ff81116108d55760f81b6001600160f81b03191690565b60180160ff81116108d55760f81b6001600160f81b03191690565b6c5af43d3d93803e602a57fd5bf360215260145273602c3d8160093d39f33d3d3d3d363d3d37363d735f526035600c5ff5908115611b91575f602152565b611f63905f52600460205260405f2090565b80546001600160a01b0319169055565b909190611f916001600160a01b0384168015159081611fd957501590565b611f9a57505050565b6001600160a01b0316611fb957637e27328960e01b5f5260045260245ffd5b63177e802f60e01b5f526001600160a01b0390911660045260245260445ffd5b6001600160a01b038416811491508115612017575b8115611ff957501590565b5f858152600460205260409020546001600160a01b03161415919050565b905061202385846118fc565b90611fee56fea264697066735822122036339cc180f6c07b8d3c0eab3d70a06b025d42bf8cc92d3f263a89967c1afc8b64736f6c634300081b0033f3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee3000000000000000000000000c5557771673109cab9d05358e1d280fab522597700000000000000000000000000000000156d54b85de04c897356026a5ff2cbc9000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000a492d5b29b3191f028d5a9a848911a0000000000000000000000000000000000bf54a35f528d67c62145161b25c55c
Deployed Bytecode
0x60806040526004361015610011575f80fd5b5f3560e01c80156101b757806001146101c657806301ffc9a71461020257806303f30d08146101fd57806304dad935146101f857806306fdde03146101f3578063081812fc146101ee578063095ea7b3146101e957806323b872dd146101e45780632a55205a146101df5780632af25238146101da57806338395f19146101d55780633c2e0828146101d057806342842e0e146101cb5780635ae401dc146101c65780636352211e146101c157806367c0e310146101bc5780636a064fce146101b75780636d07dbf8146101b25780636dce4ab0146101ad57806370a08231146101a85780637ce27a27146101a35780638da5cb5b1461019e57806395905e211461019957806395d89b4114610194578063a22cb4651461018f578063b88d4fde1461018a578063c87b56dd14610185578063c91df5cc14610180578063cb93c48f1461017b578063e985e9c5146101765763f2fde38b14610171575f80fd5b6112cc565b6112a0565b611284565b611200565b61110b565b6110bd565b611005565b610fb0565b610ec1565b610e95565b610d1d565b610ccc565b610c0b565b610b78565b61026e565b610afc565b610acc565b6102bf565b610aa3565b610a71565b6109b6565b610975565b610884565b61086d565b610759565b61071d565b6106c9565b610644565b61041d565b6103ec565b9181601f84011215610234578235916001600160401b038311610234576020838186019501011161023457565b5f80fd5b606060031982011261023457600435906001600160401b0382116102345761026291600401610207565b90916024359060443590565b61028d61027a36610238565b926102889291923384611978565b611377565b005b9181601f84011215610234578235916001600160401b038311610234576020808501948460051b01011161023457565b6040366003190112610234576004356024356001600160401b038111610234576102ed90369060040161028f565b5f926001600160a01b0381169060a01c5b80851061039f57508061030d57005b61033e610332610325835f52600260205260405f2090565b546001600160a01b031690565b6001600160a01b031690565b330361039157925b81811061034f57005b5f8061035c8385876113e6565b9061036c6040518093819361133b565b039082885af161037a611348565b90156103895750600101610346565b602081519101fd5b6282b42960e81b5f5260045ffd5b935f806103ad8386886113e6565b906103bd6040518093819361133b565b0390305af46103ca611348565b90156103895750600101936102fe565b6001600160e01b031981160361023457565b3461023457602036600319011261023457602061041360043561040e816103da565b61142c565b6040519015158152f35b6060366003190112610234576004356001600160401b0381116102345761044890369060040161028f565b6024356001600160401b0381116102345761046790369060040161028f565b92906044356001600160401b0381116102345761048890369060040161028f565b9290856105df575b5f925f955f5b8181106104bd575050505050036104ae57036104ae57005b631df89e8b60e01b5f5260045ffd5b6104c88183876114a1565b356001600160a01b0381169060a01c908061053557505f5b8181106104f35750506001905b01610496565b5f806105096105018b6114b1565b9a8c8a6113e6565b906105196040518093819361133b565b0390305af4610526611348565b901561038957506001016104e0565b61054d610332610325835f52600260205260405f2090565b3303610391579088915f5b82811061056b57505050506001906104ed565b909192985f908d8d106105c1575b5f916105918261058a8594916114b1565b9d8c6113e6565b906105a16040518093819361133b565b0391865af16105ae611348565b9015610389575060010190899291610558565b90508c6105cd8d6114b1565b9c6105d891896114a1565b3590610579565b6105e93447611494565b806105f5575b50610490565b5f80808093736db16927dbc38aa39f0ee2cb545e15efd813fb995af1505f6105ef565b600435906001600160a01b038216820361023457565b602435906001600160a01b038216820361023457565b602036600319011261023457610658610618565b6001600160a01b039061066c9033906119db565b161561067457005b637e27328960e01b5f523360045260245ffd5b5f91031261023457565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b9060206106c6928181520190610691565b90565b34610234575f366003190112610234576107196040516106ea6040826108ee565b600e81526d4e465473324d65204f776e65727360901b6020820152604051918291602083526020830190610691565b0390f35b346102345760203660031901126102345760043561073a81611b11565b505f526004602052602060018060a01b0360405f205416604051908152f35b3461023457604036600319011261023457610772610618565b6024359061077f82611b11565b33151580610820575b8061080f575b6107fa5761028d926107db9181906001600160a01b0385811691167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9255f80a45f52600460205260405f2090565b80546001600160a01b0319166001600160a01b03909216919091179055565b63a9fbf51f60e01b5f90815233600452602490fd5b5061081a33826118fc565b1561078e565b506001600160a01b038116331415610788565b6060906003190112610234576004356001600160a01b038116810361023457906024356001600160a01b0381168103610234579060443590565b346102345761028d61087e36610833565b916114bf565b34610234576040366003190112610234576024356101f48102908082046101f414901517156108d557604090612710825191736db16927dbc38aa39f0ee2cb545e15efd813fb998352046020820152f35b611480565b634e487b7160e01b5f52604160045260245ffd5b90601f801991011681019081106001600160401b0382111761090f57604052565b6108da565b6001600160401b03811161090f57601f01601f191660200190565b81601f820112156102345780359061094682610914565b9261095460405194856108ee565b8284526020838301011161023457815f926020809301838601378301015290565b6040366003190112610234576024356004356001600160401b038211610234576109a661028d92369060040161092f565b6109b03383611978565b34611b9e565b610a305f806109c436610238565b6109d2969293963383611978565b8452600660205260408085205481516c5af43d3d93803e602a57fd5bf360581b818401526001600160a01b03909116602882015273602c3d8160093d39f33d3d3d3d363d3d37363d7360148201526035815260608101909152611b45565b93610a406040518093819361133b565b039082855af190610a4f611348565b9115610a685761028d906001600160a01b03163361199e565b50602081519101fd5b34610234576020366003190112610234576004355f526006602052602060018060a01b0360405f205416604051908152f35b346102345761028d610ab436610833565b9060405192610ac46020856108ee565b5f84526116b7565b34610234576020366003190112610234576020610aea600435611b11565b6040516001600160a01b039091168152f35b606036600319011261023457610b10610618565b602435906044356001600160401b03811161023457610b36610b48913690600401610207565b939092610b433383611978565b611f13565b82610b4f57005b825f9392849360405192839283378101848152039134905af1610b70611348565b901561038957005b3461023457604036600319011261023457600435602435905f52600660205260018060a01b0360405f2054166c5af43d3d93803e602a57fd5bf360215260145273602c3d8160093d39f33d3d3d3d363d3d37363d735f526035600c205f60215260ff5f5360359081523060601b60015260159190915260555f90812091526040516001600160a01b039091168152602090f35b604036600319011261023457610c1f610618565b610c2761062e565b610c2f611be9565b5f80808047865af1506001600160a01b0381169182610c4a57005b610c8f92610c5b6020933090611c05565b60405163a9059cbb60e01b81526001600160a01b0390931660048401526024830152909283919082905f9082906044820190565b03925af18015610cc757610c9f57005b61028d9060203d602011610cc0575b610cb881836108ee565b810190611651565b503d610cae565b611666565b34610234576020366003190112610234576001600160a01b03610ced610618565b168015610d0a575f526003602052602060405f2054604051908152f35b6322718ad960e21b5f525f60045260245ffd5b60a0366003190112610234576004356001600160401b03811161023457610d48903690600401610207565b610d5061062e565b90604435606435916084356001600160401b03811161023457610d7a610de5913690600401610207565b90610d858786611978565b610de08886610db38a610da58b6040519485938c6020860198468a611671565b03601f1981018352826108ee565b5190206020527b19457468657265756d205369676e6564204d6573736167653a0a33325f52603c60042090565b611c2a565b600754610dfa906001600160a01b0316610332565b6001600160a01b03909116908114159081610e81575b50610e7257610e315f9392610b4361032586955f52600660205260405f2090565b94610e416040518093819361133b565b039082865af191610e50611348565b9215610e6a5761028d92506001600160a01b03169061199e565b825160208401fd5b638baa579f60e01b5f5260045ffd5b6001600160a01b038616141590505f610e10565b34610234575f36600319011261023457638b78c6d819546040516001600160a01b039091168152602090f35b6060366003190112610234576004356001600160401b03811161023457610eec90369060040161028f565b610ef461062e565b6044356001600160401b03811161023457610f13903690600401610207565b929093610f1e611be9565b5f5b828110610f6f575050506001600160a01b038116610f4a575b5080610f4157005b61028d91611d04565b600780546001600160a01b0319166001600160a01b039092169190911790555f610f39565b80610faa610f8060019386866114a1565b356107db610f8f8488886114a1565b3591858060a01b03169160a01c5f52600660205260405f2090565b01610f20565b34610234575f36600319011261023457610719604051610fd16040826108ee565b60098152684e324d4f776e65727360b81b6020820152604051918291602083526020830190610691565b8015150361023457565b346102345760403660031901126102345761101e610618565b60243561102a81610ffb565b6001600160a01b0382169182156110aa57335f9081526005602090815260408083206001600160a01b0390941683529290522060ff1981541660ff831515161790557f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31604051806110a5339482919091602081019215159052565b0390a3005b82630b61174360e31b5f5260045260245ffd5b34610234576080366003190112610234576110d6610618565b6110de61062e565b90604435606435926001600160401b0384116102345761110561028d94369060040161092f565b926116b7565b34610234576020366003190112610234576004356040516329ffa82360e11b81526020816004816001600160a01b0386165afa908115610cc7576020610da56111ba610719956111b46111ba6111b4976111c7975f916111d3575b506111b46111ba61117646611e2b565b956111b46111ba6111a66111a061119b61033261033261119588611e2b565b97611b11565b611e2b565b96611e2b565b986040519e8f9d8e016117f9565b90611880565b602f60f81b815260010190565b604051918291826106b5565b6111f39150873d89116111f9575b6111eb81836108ee565b8101906117b2565b5f611166565b503d6111e1565b3461023457602036600319011261023457604051620b809160e51b602082015260043560248201525f60448201526025815261123d6045826108ee565b611245611892565b905f5b603a811061125c576107196111c7846118c5565b8061127161126c60019385611e70565b611ed1565b5f1a61127d82866118b4565b5301611248565b34610234575f3660031901126102345760206040516107ee8152f35b346102345760403660031901126102345760206104136112be610618565b6112c661062e565b906118fc565b6020366003190112610234576112e0610618565b6112e8611be9565b8060601b1561132e5760018060a01b031680638b78c6d819547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3638b78c6d81955005b637448fbae5f526004601cfd5b908092918237015f815290565b3d15611372573d9061135982610914565b9161136760405193846108ee565b82523d5f602084013e565b606090565b92906113995f9384938452600660205260018060a01b03604085205416611f13565b938160405192839283378101838152039082855af16113b6611348565b901561038957506113d0906001600160a01b03163361199e565b565b634e487b7160e01b5f52603260045260245ffd5b91908110156114275760051b81013590601e19813603018212156102345701908135916001600160401b038311610234576020018236038113610234579190565b6113d2565b6001600160e01b0319166301ffc9a760e01b811461147a576307f5828d60e41b811461147a576380ac58cd60e01b811461147a57635b5e139f60e01b811461147a5763152a902d60e11b1490565b50600190565b634e487b7160e01b5f52601160045260245ffd5b919082039182116108d557565b91908110156114275760051b0190565b5f1981146108d55760010190565b9091906001600160a01b038316801561163e575f838152600260205260409020546001600160a01b0316933361162e575b6001600160a01b0385169485151580611602575b6001600160a01b0383165f90815260036020526040902060018154019055611538836107db885f52600260205260405f2090565b8560405194887fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a4611597575b5050506001600160a01b031680830361157f57505050565b6364283d7b60e01b5f5260045260245260445260645ffd5b6001600160a01b038516803b1561023457637699c77f60e01b84526001600160a01b039182166004850152911660248301525f908290604490829084905af18015610cc7576115e8575b8080611567565b806115f65f6115fc936108ee565b80610687565b5f6115e1565b61160b86611f51565b6001600160a01b0382165f90815260036020526040902080545f19019055611504565b611639843387611f73565b6114f0565b633250574960e11b5f525f60045260245ffd5b9081602091031261023457516106c681610ffb565b6040513d5f823e3d90fd5b90928092607897959694637ce27a2760e01b84526004840152602483013701926bffffffffffffffffffffffff199060601b166024840152603883015260588201520190565b9092916116c58185846114bf565b833b6116d2575b50505050565b6020916116f46040519485938493630a85bd0160e11b85523360048601611dfa565b03815f6001600160a01b0387165af15f9181611781575b506117455750611719611348565b805191908261173e57633250574960e11b5f526001600160a01b03821660045260245ffd5b9050602001fd5b6001600160e01b03191663757a42ff60e11b0161176657505f8080806116cc565b633250574960e11b5f526001600160a01b031660045260245ffd5b6117a491925060203d6020116117ab575b61179c81836108ee565b810190611de5565b905f61170b565b503d611792565b90816020910312610234575190565b90600182811c921680156117ef575b60208310146117db57565b634e487b7160e01b5f52602260045260245ffd5b91607f16916117d0565b6008545f9291611808826117c1565b916001811690811561186e5750600114611820575050565b60085f90815292935090917ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee35b83821061185a5750500190565b60018160209254848601520191019061184d565b60ff1916825250811515909102019150565b805191908290602001825e015f815290565b604051606091906118a383826108ee565b603a815291601f1901366020840137565b908151811015611427570160200190565b906113d06118ee926040519384916734b833399d1797b160c11b60208401526028830190611880565b03601f1981018452836108ee565b6001600160a01b0382167388899dc0b84c6e726840e00dfb94abc6248825ec811461197057731e0049783f008a0085193e00003d00cd54003c7114611969576001600160a01b039081165f908152600560209081526040808320939094168252919091522060ff90541690565b5050600190565b505050600190565b60601c80156001600160a01b0390921614171561199157565b630c4549ef5f526004601cfd5b906001600160a01b0382161561163e576001600160a01b03916119c191906119db565b166119c857565b6339e3563760e11b5f525f60045260245ffd5b5f828152600260205260409020546001600160a01b03168015159392909190829085611ae5575b806001600160a01b03841680611ac2575b611a29856107db845f52600260205260405f2090565b604051957fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a48195611a5d5750505050565b6001600160a01b0316803b1561023457637699c77f60e01b84526001600160a01b039182166004850152911660248301525f908290604490829084905af18015610cc757611aae575b8080806116cc565b806115f65f611abc936108ee565b5f611aa6565b6001600160a01b0385165f90815260036020526040902060018154019055611a13565b611aee81611f51565b6001600160a01b0382165f90815260036020526040902080545f19019055611a02565b5f818152600260205260409020546001600160a01b0316908115611b33575090565b637e27328960e01b5f5260045260245ffd5b91906f67363d3d37363d34f03d5260086018f35f526010805ff5918215611b91575f80918460145261d694825260016034536017601e209482602083519301915af1823b0215611b9157565b63301164255f526004601cfd5b92916f67363d3d37363d34f03d5260086018f35f526010805ff58015611b91575f9181839260145261d694835260016034536017601e2095602083519301915af1823b0215611b9157565b638b78c6d819543303611bf857565b6382b429005f526004601cfd5b602460106020939284936014526370a0823160601b5f525afa601f3d11166020510290565b929190600191604051945f5260408114611c8a57604114611c705750506020600160805f805b5afa51913d15611c63575f606052604052565b638baa579f5f526004601cfd5b60805f602093604084816001960135841a87528137611c50565b5060805f6020938385600195013590601b8260ff1c01875235604052848060ff1b0316606052611c50565b601f8211611cc257505050565b5f5260205f20906020601f840160051c83019310611cfa575b601f0160051c01905b818110611cef575050565b5f8155600101611ce4565b9091508190611cdb565b91906001600160401b03811161090f57611d2a81611d236008546117c1565b6008611cb5565b5f601f8211600114611d68578190611d5893945f92611d5d575b50508160011b915f199060031b1c19161790565b600855565b013590505f80611d44565b60085f52601f198216937ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee3915f5b868110611dcd5750836001959610611db4575b505050811b01600855565b01355f19600384901b60f8161c191690555f8080611da9565b90926020600181928686013581550194019101611d96565b9081602091031261023457516106c6816103da565b6001600160a01b0391821681529116602082015260408101919091526080606082018190526106c692910190610691565b90604051600a608082019360a083016040525f8552935b5f190193603082820601855304928315611e5e57600a90611e42565b809350608091030191601f1901918252565b906005810290808204600514901517156108d557600381901c906001600160f81b0319611e9d83856118b4565b511691600181018091116108d557611eb960079160ff956118b4565b5160081c60f085901b169290921791161b60fb1c1690565b60ff16601a811015611ef85760610160ff81116108d55760f81b6001600160f81b03191690565b60180160ff81116108d55760f81b6001600160f81b03191690565b6c5af43d3d93803e602a57fd5bf360215260145273602c3d8160093d39f33d3d3d3d363d3d37363d735f526035600c5ff5908115611b91575f602152565b611f63905f52600460205260405f2090565b80546001600160a01b0319169055565b909190611f916001600160a01b0384168015159081611fd957501590565b611f9a57505050565b6001600160a01b0316611fb957637e27328960e01b5f5260045260245ffd5b63177e802f60e01b5f526001600160a01b0390911660045260245260445ffd5b6001600160a01b038416811491508115612017575b8115611ff957501590565b5f858152600460205260409020546001600160a01b03161415919050565b905061202385846118fc565b90611fee56fea264697066735822122036339cc180f6c07b8d3c0eab3d70a06b025d42bf8cc92d3f263a89967c1afc8b64736f6c634300081b0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000c5557771673109cab9d05358e1d280fab522597700000000000000000000000000000000156d54b85de04c897356026a5ff2cbc9000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000a492d5b29b3191f028d5a9a848911a0000000000000000000000000000000000bf54a35f528d67c62145161b25c55c
-----Decoded View---------------
Arg [0] : owner (address): 0xC5557771673109CAB9d05358E1D280fab5225977
Arg [1] : delegatedCreationSigner (address): 0x00000000156D54b85de04c897356026a5ff2cBc9
Arg [2] : type1 (bytes32): 0x0000000000000000000000000000000000000000000000000000000000000000
Arg [3] : type2 (bytes32): 0x0000000000000000000000000000000000000000000000000000000000000001
Arg [4] : type1Address (address): 0x0000000000A492d5b29B3191f028D5A9A848911A
Arg [5] : type2Address (address): 0x0000000000Bf54A35f528D67c62145161B25C55C
-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 000000000000000000000000c5557771673109cab9d05358e1d280fab5225977
Arg [1] : 00000000000000000000000000000000156d54b85de04c897356026a5ff2cbc9
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [4] : 0000000000000000000000000000000000a492d5b29b3191f028d5a9a848911a
Arg [5] : 0000000000000000000000000000000000bf54a35f528d67c62145161b25c55c
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.