APE Price: $0.71 (-2.75%)

Contract Diff Checker

Contract Name:
Winpad

Contract Source Code:

File 1 of 1 : Winpad

// File: @openzeppelin/contracts/utils/ReentrancyGuard.sol

//       ___                       ___           ___         ___          _____
//      /__/\        ___          /__/\         /  /\       /  /\        /  /::\
//     _\_ \:\      /  /\         \  \:\       /  /::\     /  /::\      /  /:/\:\
//    /__/\ \:\    /  /:/          \  \:\     /  /:/\:\   /  /:/\:\    /  /:/  \:\
//   _\_ \:\ \:\  /__/::\      _____\__\:\   /  /:/~/:/  /  /:/~/::\  /__/:/ \__\:|
//  /__/\ \:\ \:\ \__\/\:\__  /__/::::::::\ /__/:/ /:/  /__/:/ /:/\:\ \  \:\ /  /:/
//  \  \:\ \:\/:/    \  \:\/\ \  \:\~~\~~\/ \  \:\/:/   \  \:\/:/__\/  \  \:\  /:/
//   \  \:\ \::/      \__\::/  \  \:\  ~~~   \  \::/     \  \::/        \  \:\/:/
//    \  \:\/:/       /__/:/    \  \:\        \  \:\      \  \:\         \  \::/
//     \  \::/        \__\/      \  \:\        \  \:\      \  \:\         \__\/
//      \__\/                     \__\/         \__\/       \__\/

// Official Contract of Winpad.


// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// File: @openzeppelin/contracts/utils/Context.sol


// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// File: @openzeppelin/contracts/access/Ownable.sol


// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;


/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// File: @openzeppelin/contracts/utils/math/SafeMath.sol


// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

// File: contracts/Winpad.sol


pragma solidity ^0.8.26;




interface INft {
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    function balanceOf(address owner) external view returns (uint256);

    function ownerOf(uint256 tokenId) external view returns (address);
}

contract Winpad is Ownable, ReentrancyGuard {
    using SafeMath for uint256;

    // Revenue distribution percentages
    uint8 public constant FEE_PERCENT = 8;
    uint8 public constant TREASURY_PERCENT = 72;
    uint8 public constant OPERATIONS_PERCENT = 20;

    // Revenue distribution addresses
    address payable public feeAccount;
    address payable public treasuryAccount;
    address payable public operationsAccount;

    // Entry tier structure
    struct EntryTier {
        uint256 apeCost;
        uint256 baseEntries;
        uint256 bonusEntries;
        bool exists;
    }

    // Match structure
    struct Match {
        bytes32 id;
        uint256[] allowedTiers;
        address nftAddress;
        uint256 nftId;
        uint256 totalEntries;
        uint256 endDate;
        address winner;
        bool isEnded;
        bool exists;
    }

    // Participant tracking
    struct Participation {
        address participant;
        uint256 tierId; // Add back tierId
        uint256 entries;
    }

    // Storage
    mapping(uint256 => EntryTier) public tiers;
    uint256 public nextTierId = 1;
    mapping(bytes32 => Match) public matches;
    mapping(bytes32 => mapping(address => bool)) public hasUsedFreeEntry;
    mapping(bytes32 => Participation[]) public participations;
    bytes32[] public allMatchIds;
    mapping(address => bool) public authorizedCallers;

    // Free entry for those NFTs.
    address[] public entryNFTs;

    // Events
    event MatchCreated(
        bytes32 indexed matchId,
        address nftAddress,
        uint256 nftId,
        uint256 endDate
    );
    event ParticipantEnrolled(
        bytes32 indexed matchId,
        address participant,
        uint256 entries
    );
    event MatchCanceled(bytes32 indexed matchId, uint256 totalRefunded);
    event MatchExtended(bytes32 indexed matchId, uint256 endDate);
    event WinnerSelected(
        bytes32 indexed matchId,
        address winner,
        uint256 entries
    );
    event FundsDistributed(
        bytes32 indexed matchId,
        uint256 totalAmount,
        uint256 fee,
        uint256 treasury,
        uint256 operations
    );
    event TierUpdated(
        uint256 indexed tierId,
        uint256 apeCost,
        uint256 baseEntries,
        uint256 bonusEntries
    );
    event CallerUpdated(address indexed caller, bool status);

    modifier onlyCaller() {
        require(
            owner() == msg.sender || authorizedCallers[msg.sender],
            "Unauthorized"
        );
        _;
    }

    constructor(
        address _initialOwner,
        address payable _feeAccount,
        address payable _treasuryAccount,
        address payable _operationsAccount
    ) Ownable(_initialOwner) {
        feeAccount = _feeAccount;
        treasuryAccount = _treasuryAccount;
        operationsAccount = _operationsAccount;
    }

    // Entry NFTs management
    function addEntryNFT(address nft) external onlyOwner {
        entryNFTs.push(nft);
    }

    function removeEntryNFT(uint256 index) external onlyOwner {
        require(index < entryNFTs.length, "Index out of bounds");
        entryNFTs[index] = entryNFTs[entryNFTs.length - 1];
        entryNFTs.pop();
    }

    // Tier management
    function addTier(
        uint256 apeCost,
        uint256 baseEntries,
        uint256 bonusEntries
    ) external onlyOwner {
        tiers[nextTierId] = EntryTier(apeCost, baseEntries, bonusEntries, true);
        emit TierUpdated(nextTierId, apeCost, baseEntries, bonusEntries);
        nextTierId++;
    }

    // Match creation
    function createMatch(
        uint256[] memory allowedTiers,
        address nftAddress,
        uint256 nftId,
        uint256 duration
    ) external onlyOwner returns (bytes32 matchId) {
        require(duration > 0, "Invalid duration");
        require(
            INft(nftAddress).ownerOf(nftId) == address(this),
            "NFT not owned"
        );

        matchId = keccak256(
            abi.encodePacked(block.timestamp, nftAddress, nftId, msg.sender)
        );

        matches[matchId] = Match({
            id: matchId,
            allowedTiers: allowedTiers,
            nftAddress: nftAddress,
            nftId: nftId,
            totalEntries: 0,
            endDate: block.timestamp + duration,
            winner: address(0),
            isEnded: false,
            exists: true
        });

        allMatchIds.push(matchId);
        emit MatchCreated(
            matchId,
            nftAddress,
            nftId,
            block.timestamp + duration
        );
    }

    // Participant enrollment
    function enroll(bytes32 matchId, uint256 tierId)
        external
        payable
        nonReentrant
    {
        Match storage m = matches[matchId];
        EntryTier memory tier = tiers[tierId];

        require(m.exists, "Invalid match");
        require(!m.isEnded, "Match ended");
        require(block.timestamp < m.endDate, "Enrollment closed");
        require(tier.exists, "Invalid tier");
        require(contains(m.allowedTiers, tierId), "Tier not allowed");
        require(msg.value == tier.apeCost, "Incorrect APE amount");

        if (tier.apeCost == 0) {
            require(
                !hasUsedFreeEntry[matchId][msg.sender],
                "Free entry already used"
            );
            bool hasEntryNFT = false;
            for (uint256 i = 0; i < entryNFTs.length; i++) {
                if (INft(entryNFTs[i]).balanceOf(msg.sender) > 0) {
                    hasEntryNFT = true;
                    break;
                }
            }
            require(hasEntryNFT, "No qualifying NFT found");
            hasUsedFreeEntry[matchId][msg.sender] = true;
        }

        uint256 totalEntries = tier.baseEntries + tier.bonusEntries;
        participations[matchId].push(
            Participation(msg.sender, tierId, totalEntries)
        );
        m.totalEntries += totalEntries;

        emit ParticipantEnrolled(matchId, msg.sender, totalEntries);
    }

    // Match resolution
    function pickWinner(bytes32 matchId, uint256 randomSeed)
        external
        onlyCaller
        nonReentrant
    {
        Match storage m = matches[matchId];
        require(!m.isEnded, "Match already ended");

        uint256 randomNumber = uint256(
            keccak256(abi.encodePacked(randomSeed, block.timestamp))
        ) % m.totalEntries;
        uint256 cumulative;
        address winner;
        uint256 winnerEntries;

        Participation[] memory parts = participations[matchId];
        for (uint256 i = 0; i < parts.length; i++) {
            Participation memory p = parts[i];
            if (randomNumber < cumulative + p.entries) {
                winner = p.participant;
                winnerEntries = p.entries;
                break;
            }
            cumulative += p.entries;
        }

        uint256 totalPrizePool = address(this).balance;
        uint256 feeAmount = totalPrizePool.mul(FEE_PERCENT).div(100);
        uint256 treasuryAmount = totalPrizePool.mul(TREASURY_PERCENT).div(100);
        uint256 operationsAmount = totalPrizePool.sub(feeAmount).sub(
            treasuryAmount
        );

        feeAccount.transfer(feeAmount);
        treasuryAccount.transfer(treasuryAmount);
        operationsAccount.transfer(operationsAmount);

        require(
            INft(m.nftAddress).ownerOf(m.nftId) == address(this),
            "Contract does not own NFT"
        );
        INft(m.nftAddress).transferFrom(address(this), winner, m.nftId);

        m.winner = winner;
        m.isEnded = true;

        emit FundsDistributed(
            matchId,
            totalPrizePool,
            feeAmount,
            treasuryAmount,
            operationsAmount
        );
        emit WinnerSelected(matchId, winner, winnerEntries);
    }

    // Fix the cancellation logic
    function cancelMatch(bytes32 matchId) external onlyCaller nonReentrant {
        Match storage m = matches[matchId];
        require(!m.isEnded, "Match already ended");

        uint256 totalRefunded;

        for (uint256 i = 0; i < participations[matchId].length; i++) {
            Participation memory p = participations[matchId][i];
            EntryTier memory tier = tiers[p.tierId]; // Now works
            payable(p.participant).transfer(tier.apeCost);
            totalRefunded += tier.apeCost;
        }

        INft(m.nftAddress).transferFrom(address(this), owner(), m.nftId);
        m.isEnded = true;

        emit MatchCanceled(matchId, totalRefunded);
    }

    // Extending match duration
    function extendMatchEndDate(bytes32 matchId, uint256 additionalDuration)
        external
        onlyCaller
    {
        Match storage m = matches[matchId];
        require(!m.isEnded, "Match already ended");
        require(additionalDuration > 0, "Invalid duration");

        m.endDate += additionalDuration;

        emit MatchExtended(matchId, m.endDate);
    }

    // View functions
    function getEntryTypes() public view returns (EntryTier[] memory) {
        EntryTier[] memory types = new EntryTier[](nextTierId - 1);
        for (uint256 i = 1; i < nextTierId; i++) {
            types[i - 1] = tiers[i];
        }
        return types;
    }

    function getOngoingMatches() public view returns (Match[] memory) {
        return _filterMatches(0);
    }

    function getMatchHistory() public view returns (Match[] memory) {
        return _filterMatches(1);
    }

    function getReadyMatches() public view returns (Match[] memory) {
        return _filterMatches(2);
    }

    function getAllEntryNFTs() public view returns (address[] memory) {
        return entryNFTs;
    }

    function getParticipations(bytes32 matchId)
        public
        view
        returns (Participation[] memory)
    {
        return participations[matchId];
    }

    // Internal helpers
    function _filterMatches(uint8 filterType)
        private
        view
        returns (Match[] memory)
    {
        Match[] memory result = new Match[](allMatchIds.length);
        uint256 count = 0;

        for (uint256 i = 0; i < allMatchIds.length; i++) {
            bytes32 id = allMatchIds[i];
            Match storage m = matches[id];

            bool include;
            if (filterType == 0) {
                // Ongoing
                include = !m.isEnded && block.timestamp < m.endDate;
            } else if (filterType == 1) {
                // History
                include = m.isEnded;
            } else if (filterType == 2) {
                // Ready
                include = !m.isEnded && (block.timestamp >= m.endDate);
            }

            if (include) {
                result[count] = m;
                count++;
            }
        }

        Match[] memory trimmed = new Match[](count);
        for (uint256 i = 0; i < count; i++) {
            trimmed[i] = result[i];
        }
        return trimmed;
    }

    function contains(uint256[] memory arr, uint256 value)
        private
        pure
        returns (bool)
    {
        for (uint256 i = 0; i < arr.length; i++) {
            if (arr[i] == value) return true;
        }
        return false;
    }

    // Authorization management
    function updateCaller(address caller, bool status) external onlyOwner {
        authorizedCallers[caller] = status;
        emit CallerUpdated(caller, status);
    }

    receive() external payable {}
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):