APE Price: $1.11 (-4.72%)

Contract Diff Checker

Contract Name:
SimpleAccountFactory

Contract Source Code:

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

/* solhint-disable avoid-low-level-calls */
/* solhint-disable no-empty-blocks */

import "../interfaces/IAccount.sol";
import "../interfaces/IEntryPoint.sol";
import "./UserOperationLib.sol";

/**
 * Basic account implementation.
 * This contract provides the basic logic for implementing the IAccount interface - validateUserOp
 * Specific account implementation should inherit it and provide the account-specific logic.
 */
abstract contract BaseAccount is IAccount {
    using UserOperationLib for PackedUserOperation;

    /**
     * Return the account nonce.
     * This method returns the next sequential nonce.
     * For a nonce of a specific key, use `entrypoint.getNonce(account, key)`
     */
    function getNonce() public view virtual returns (uint256) {
        return entryPoint().getNonce(address(this), 0);
    }

    /**
     * Return the entryPoint used by this account.
     * Subclass should return the current entryPoint used by this account.
     */
    function entryPoint() public view virtual returns (IEntryPoint);

    /// @inheritdoc IAccount
    function validateUserOp(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 missingAccountFunds
    ) external virtual override returns (uint256 validationData) {
        _requireFromEntryPoint();
        validationData = _validateSignature(userOp, userOpHash);
        _validateNonce(userOp.nonce);
        _payPrefund(missingAccountFunds);
    }

    /**
     * Ensure the request comes from the known entrypoint.
     */
    function _requireFromEntryPoint() internal view virtual {
        require(
            msg.sender == address(entryPoint()),
            "account: not from EntryPoint"
        );
    }

    /**
     * Validate the signature is valid for this message.
     * @param userOp          - Validate the userOp.signature field.
     * @param userOpHash      - Convenient field: the hash of the request, to check the signature against.
     *                          (also hashes the entrypoint and chain id)
     * @return validationData - Signature and time-range of this operation.
     *                          <20-byte> aggregatorOrSigFail - 0 for valid signature, 1 to mark signature failure,
     *                                    otherwise, an address of an aggregator contract.
     *                          <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
     *                          <6-byte> validAfter - first timestamp this operation is valid
     *                          If the account doesn't use time-range, it is enough to return
     *                          SIG_VALIDATION_FAILED value (1) for signature failure.
     *                          Note that the validation code cannot use block.timestamp (or block.number) directly.
     */
    function _validateSignature(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash
    ) internal virtual returns (uint256 validationData);

    /**
     * Validate the nonce of the UserOperation.
     * This method may validate the nonce requirement of this account.
     * e.g.
     * To limit the nonce to use sequenced UserOps only (no "out of order" UserOps):
     *      `require(nonce < type(uint64).max)`
     * For a hypothetical account that *requires* the nonce to be out-of-order:
     *      `require(nonce & type(uint64).max == 0)`
     *
     * The actual nonce uniqueness is managed by the EntryPoint, and thus no other
     * action is needed by the account itself.
     *
     * @param nonce to validate
     *
     * solhint-disable-next-line no-empty-blocks
     */
    function _validateNonce(uint256 nonce) internal view virtual {
    }

    /**
     * Sends to the entrypoint (msg.sender) the missing funds for this transaction.
     * SubClass MAY override this method for better funds management
     * (e.g. send to the entryPoint more than the minimum required, so that in future transactions
     * it will not be required to send again).
     * @param missingAccountFunds - The minimum value this method should send the entrypoint.
     *                              This value MAY be zero, in case there is enough deposit,
     *                              or the userOp has a paymaster.
     */
    function _payPrefund(uint256 missingAccountFunds) internal virtual {
        if (missingAccountFunds != 0) {
            (bool success, ) = payable(msg.sender).call{
                value: missingAccountFunds,
                gas: type(uint256).max
            }("");
            (success);
            //ignore failure (its EntryPoint's job to verify, not account.)
        }
    }
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

/* solhint-disable no-inline-assembly */


 /*
  * For simulation purposes, validateUserOp (and validatePaymasterUserOp)
  * must return this value in case of signature failure, instead of revert.
  */
uint256 constant SIG_VALIDATION_FAILED = 1;


/*
 * For simulation purposes, validateUserOp (and validatePaymasterUserOp)
 * return this value on success.
 */
uint256 constant SIG_VALIDATION_SUCCESS = 0;


/**
 * Returned data from validateUserOp.
 * validateUserOp returns a uint256, which is created by `_packedValidationData` and
 * parsed by `_parseValidationData`.
 * @param aggregator  - address(0) - The account validated the signature by itself.
 *                      address(1) - The account failed to validate the signature.
 *                      otherwise - This is an address of a signature aggregator that must
 *                                  be used to validate the signature.
 * @param validAfter  - This UserOp is valid only after this timestamp.
 * @param validaUntil - This UserOp is valid only up to this timestamp.
 */
struct ValidationData {
    address aggregator;
    uint48 validAfter;
    uint48 validUntil;
}

/**
 * Extract sigFailed, validAfter, validUntil.
 * Also convert zero validUntil to type(uint48).max.
 * @param validationData - The packed validation data.
 */
function _parseValidationData(
    uint256 validationData
) pure returns (ValidationData memory data) {
    address aggregator = address(uint160(validationData));
    uint48 validUntil = uint48(validationData >> 160);
    if (validUntil == 0) {
        validUntil = type(uint48).max;
    }
    uint48 validAfter = uint48(validationData >> (48 + 160));
    return ValidationData(aggregator, validAfter, validUntil);
}

/**
 * Helper to pack the return value for validateUserOp.
 * @param data - The ValidationData to pack.
 */
function _packValidationData(
    ValidationData memory data
) pure returns (uint256) {
    return
        uint160(data.aggregator) |
        (uint256(data.validUntil) << 160) |
        (uint256(data.validAfter) << (160 + 48));
}

/**
 * Helper to pack the return value for validateUserOp, when not using an aggregator.
 * @param sigFailed  - True for signature failure, false for success.
 * @param validUntil - Last timestamp this UserOperation is valid (or zero for infinite).
 * @param validAfter - First timestamp this UserOperation is valid.
 */
function _packValidationData(
    bool sigFailed,
    uint48 validUntil,
    uint48 validAfter
) pure returns (uint256) {
    return
        (sigFailed ? 1 : 0) |
        (uint256(validUntil) << 160) |
        (uint256(validAfter) << (160 + 48));
}

/**
 * keccak function over calldata.
 * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
 */
    function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
        assembly ("memory-safe") {
            let mem := mload(0x40)
            let len := data.length
            calldatacopy(mem, data.offset, len)
            ret := keccak256(mem, len)
        }
    }


/**
 * The minimum of two numbers.
 * @param a - First number.
 * @param b - Second number.
 */
    function min(uint256 a, uint256 b) pure returns (uint256) {
        return a < b ? a : b;
    }

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

/* solhint-disable no-inline-assembly */

import "../interfaces/PackedUserOperation.sol";
import {calldataKeccak, min} from "./Helpers.sol";

/**
 * Utility functions helpful when working with UserOperation structs.
 */
library UserOperationLib {

    uint256 public constant PAYMASTER_VALIDATION_GAS_OFFSET = 20;
    uint256 public constant PAYMASTER_POSTOP_GAS_OFFSET = 36;
    uint256 public constant PAYMASTER_DATA_OFFSET = 52;
    /**
     * Get sender from user operation data.
     * @param userOp - The user operation data.
     */
    function getSender(
        PackedUserOperation calldata userOp
    ) internal pure returns (address) {
        address data;
        //read sender from userOp, which is first userOp member (saves 800 gas...)
        assembly {
            data := calldataload(userOp)
        }
        return address(uint160(data));
    }

    /**
     * Relayer/block builder might submit the TX with higher priorityFee,
     * but the user should not pay above what he signed for.
     * @param userOp - The user operation data.
     */
    function gasPrice(
        PackedUserOperation calldata userOp
    ) internal view returns (uint256) {
        unchecked {
            (uint256 maxPriorityFeePerGas, uint256 maxFeePerGas) = unpackUints(userOp.gasFees);
            if (maxFeePerGas == maxPriorityFeePerGas) {
                //legacy mode (for networks that don't support basefee opcode)
                return maxFeePerGas;
            }
            return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
        }
    }

    /**
     * Pack the user operation data into bytes for hashing.
     * @param userOp - The user operation data.
     */
    function encode(
        PackedUserOperation calldata userOp
    ) internal pure returns (bytes memory ret) {
        address sender = getSender(userOp);
        uint256 nonce = userOp.nonce;
        bytes32 hashInitCode = calldataKeccak(userOp.initCode);
        bytes32 hashCallData = calldataKeccak(userOp.callData);
        bytes32 accountGasLimits = userOp.accountGasLimits;
        uint256 preVerificationGas = userOp.preVerificationGas;
        bytes32 gasFees = userOp.gasFees;
        bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);

        return abi.encode(
            sender, nonce,
            hashInitCode, hashCallData,
            accountGasLimits, preVerificationGas, gasFees,
            hashPaymasterAndData
        );
    }

    function unpackUints(
        bytes32 packed
    ) internal pure returns (uint256 high128, uint256 low128) {
        return (uint128(bytes16(packed)), uint128(uint256(packed)));
    }

    //unpack just the high 128-bits from a packed value
    function unpackHigh128(bytes32 packed) internal pure returns (uint256) {
        return uint256(packed) >> 128;
    }

    // unpack just the low 128-bits from a packed value
    function unpackLow128(bytes32 packed) internal pure returns (uint256) {
        return uint128(uint256(packed));
    }

    function unpackMaxPriorityFeePerGas(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackHigh128(userOp.gasFees);
    }

    function unpackMaxFeePerGas(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackLow128(userOp.gasFees);
    }

    function unpackVerificationGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackHigh128(userOp.accountGasLimits);
    }

    function unpackCallGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackLow128(userOp.accountGasLimits);
    }

    function unpackPaymasterVerificationGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET]));
    }

    function unpackPostOpGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET]));
    }

    function unpackPaymasterStaticFields(
        bytes calldata paymasterAndData
    ) internal pure returns (address paymaster, uint256 validationGasLimit, uint256 postOpGasLimit) {
        return (
            address(bytes20(paymasterAndData[: PAYMASTER_VALIDATION_GAS_OFFSET])),
            uint128(bytes16(paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET])),
            uint128(bytes16(paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET]))
        );
    }

    /**
     * Hash the user operation data.
     * @param userOp - The user operation data.
     */
    function hash(
        PackedUserOperation calldata userOp
    ) internal pure returns (bytes32) {
        return keccak256(encode(userOp));
    }
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.5;

import "./PackedUserOperation.sol";

interface IAccount {
    /**
     * Validate user's signature and nonce
     * the entryPoint will make the call to the recipient only if this validation call returns successfully.
     * signature failure should be reported by returning SIG_VALIDATION_FAILED (1).
     * This allows making a "simulation call" without a valid signature
     * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure.
     *
     * @dev Must validate caller is the entryPoint.
     *      Must validate the signature and nonce
     * @param userOp              - The operation that is about to be executed.
     * @param userOpHash          - Hash of the user's request data. can be used as the basis for signature.
     * @param missingAccountFunds - Missing funds on the account's deposit in the entrypoint.
     *                              This is the minimum amount to transfer to the sender(entryPoint) to be
     *                              able to make the call. The excess is left as a deposit in the entrypoint
     *                              for future calls. Can be withdrawn anytime using "entryPoint.withdrawTo()".
     *                              In case there is a paymaster in the request (or the current deposit is high
     *                              enough), this value will be zero.
     * @return validationData       - Packaged ValidationData structure. use `_packValidationData` and
     *                              `_unpackValidationData` to encode and decode.
     *                              <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
     *                                 otherwise, an address of an "authorizer" contract.
     *                              <6-byte> validUntil - Last timestamp this operation is valid. 0 for "indefinite"
     *                              <6-byte> validAfter - First timestamp this operation is valid
     *                                                    If an account doesn't use time-range, it is enough to
     *                                                    return SIG_VALIDATION_FAILED value (1) for signature failure.
     *                              Note that the validation code cannot use block.timestamp (or block.number) directly.
     */
    function validateUserOp(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 missingAccountFunds
    ) external returns (uint256 validationData);
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.5;

import "./PackedUserOperation.sol";

/**
 * Aggregated Signatures validator.
 */
interface IAggregator {
    /**
     * Validate aggregated signature.
     * Revert if the aggregated signature does not match the given list of operations.
     * @param userOps   - Array of UserOperations to validate the signature for.
     * @param signature - The aggregated signature.
     */
    function validateSignatures(
        PackedUserOperation[] calldata userOps,
        bytes calldata signature
    ) external view;

    /**
     * Validate signature of a single userOp.
     * This method should be called by bundler after EntryPointSimulation.simulateValidation() returns
     * the aggregator this account uses.
     * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps.
     * @param userOp        - The userOperation received from the user.
     * @return sigForUserOp - The value to put into the signature field of the userOp when calling handleOps.
     *                        (usually empty, unless account and aggregator support some kind of "multisig".
     */
    function validateUserOpSignature(
        PackedUserOperation calldata userOp
    ) external view returns (bytes memory sigForUserOp);

    /**
     * Aggregate multiple signatures into a single value.
     * This method is called off-chain to calculate the signature to pass with handleOps()
     * bundler MAY use optimized custom code perform this aggregation.
     * @param userOps              - Array of UserOperations to collect the signatures from.
     * @return aggregatedSignature - The aggregated signature.
     */
    function aggregateSignatures(
        PackedUserOperation[] calldata userOps
    ) external view returns (bytes memory aggregatedSignature);
}

/**
 ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation.
 ** Only one instance required on each chain.
 **/
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.5;

/* solhint-disable avoid-low-level-calls */
/* solhint-disable no-inline-assembly */
/* solhint-disable reason-string */

import "./PackedUserOperation.sol";
import "./IStakeManager.sol";
import "./IAggregator.sol";
import "./INonceManager.sol";

interface IEntryPoint is IStakeManager, INonceManager {
    /***
     * An event emitted after each successful request.
     * @param userOpHash    - Unique identifier for the request (hash its entire content, except signature).
     * @param sender        - The account that generates this request.
     * @param paymaster     - If non-null, the paymaster that pays for this request.
     * @param nonce         - The nonce value from the request.
     * @param success       - True if the sender transaction succeeded, false if reverted.
     * @param actualGasCost - Actual amount paid (by account or paymaster) for this UserOperation.
     * @param actualGasUsed - Total gas used by this UserOperation (including preVerification, creation,
     *                        validation and execution).
     */
    event UserOperationEvent(
        bytes32 indexed userOpHash,
        address indexed sender,
        address indexed paymaster,
        uint256 nonce,
        bool success,
        uint256 actualGasCost,
        uint256 actualGasUsed
    );

    /**
     * Account "sender" was deployed.
     * @param userOpHash - The userOp that deployed this account. UserOperationEvent will follow.
     * @param sender     - The account that is deployed
     * @param factory    - The factory used to deploy this account (in the initCode)
     * @param paymaster  - The paymaster used by this UserOp
     */
    event AccountDeployed(
        bytes32 indexed userOpHash,
        address indexed sender,
        address factory,
        address paymaster
    );

    /**
     * An event emitted if the UserOperation "callData" reverted with non-zero length.
     * @param userOpHash   - The request unique identifier.
     * @param sender       - The sender of this request.
     * @param nonce        - The nonce used in the request.
     * @param revertReason - The return bytes from the (reverted) call to "callData".
     */
    event UserOperationRevertReason(
        bytes32 indexed userOpHash,
        address indexed sender,
        uint256 nonce,
        bytes revertReason
    );

    /**
     * An event emitted if the UserOperation Paymaster's "postOp" call reverted with non-zero length.
     * @param userOpHash   - The request unique identifier.
     * @param sender       - The sender of this request.
     * @param nonce        - The nonce used in the request.
     * @param revertReason - The return bytes from the (reverted) call to "callData".
     */
    event PostOpRevertReason(
        bytes32 indexed userOpHash,
        address indexed sender,
        uint256 nonce,
        bytes revertReason
    );

    /**
     * UserOp consumed more than prefund. The UserOperation is reverted, and no refund is made.
     * @param userOpHash   - The request unique identifier.
     * @param sender       - The sender of this request.
     * @param nonce        - The nonce used in the request.
     */
    event UserOperationPrefundTooLow(
        bytes32 indexed userOpHash,
        address indexed sender,
        uint256 nonce
    );

    /**
     * An event emitted by handleOps(), before starting the execution loop.
     * Any event emitted before this event, is part of the validation.
     */
    event BeforeExecution();

    /**
     * Signature aggregator used by the following UserOperationEvents within this bundle.
     * @param aggregator - The aggregator used for the following UserOperationEvents.
     */
    event SignatureAggregatorChanged(address indexed aggregator);

    /**
     * A custom revert error of handleOps, to identify the offending op.
     * Should be caught in off-chain handleOps simulation and not happen on-chain.
     * Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts.
     * NOTE: If simulateValidation passes successfully, there should be no reason for handleOps to fail on it.
     * @param opIndex - Index into the array of ops to the failed one (in simulateValidation, this is always zero).
     * @param reason  - Revert reason. The string starts with a unique code "AAmn",
     *                  where "m" is "1" for factory, "2" for account and "3" for paymaster issues,
     *                  so a failure can be attributed to the correct entity.
     */
    error FailedOp(uint256 opIndex, string reason);

    /**
     * A custom revert error of handleOps, to report a revert by account or paymaster.
     * @param opIndex - Index into the array of ops to the failed one (in simulateValidation, this is always zero).
     * @param reason  - Revert reason. see FailedOp(uint256,string), above
     * @param inner   - data from inner cought revert reason
     * @dev note that inner is truncated to 2048 bytes
     */
    error FailedOpWithRevert(uint256 opIndex, string reason, bytes inner);

    error PostOpReverted(bytes returnData);

    /**
     * Error case when a signature aggregator fails to verify the aggregated signature it had created.
     * @param aggregator The aggregator that failed to verify the signature
     */
    error SignatureValidationFailed(address aggregator);

    // Return value of getSenderAddress.
    error SenderAddressResult(address sender);

    // UserOps handled, per aggregator.
    struct UserOpsPerAggregator {
        PackedUserOperation[] userOps;
        // Aggregator address
        IAggregator aggregator;
        // Aggregated signature
        bytes signature;
    }

    /**
     * Execute a batch of UserOperations.
     * No signature aggregator is used.
     * If any account requires an aggregator (that is, it returned an aggregator when
     * performing simulateValidation), then handleAggregatedOps() must be used instead.
     * @param ops         - The operations to execute.
     * @param beneficiary - The address to receive the fees.
     */
    function handleOps(
        PackedUserOperation[] calldata ops,
        address payable beneficiary
    ) external;

    /**
     * Execute a batch of UserOperation with Aggregators
     * @param opsPerAggregator - The operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts).
     * @param beneficiary      - The address to receive the fees.
     */
    function handleAggregatedOps(
        UserOpsPerAggregator[] calldata opsPerAggregator,
        address payable beneficiary
    ) external;

    /**
     * Generate a request Id - unique identifier for this request.
     * The request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid.
     * @param userOp - The user operation to generate the request ID for.
     * @return hash the hash of this UserOperation
     */
    function getUserOpHash(
        PackedUserOperation calldata userOp
    ) external view returns (bytes32);

    /**
     * Gas and return values during simulation.
     * @param preOpGas         - The gas used for validation (including preValidationGas)
     * @param prefund          - The required prefund for this operation
     * @param accountValidationData   - returned validationData from account.
     * @param paymasterValidationData - return validationData from paymaster.
     * @param paymasterContext - Returned by validatePaymasterUserOp (to be passed into postOp)
     */
    struct ReturnInfo {
        uint256 preOpGas;
        uint256 prefund;
        uint256 accountValidationData;
        uint256 paymasterValidationData;
        bytes paymasterContext;
    }

    /**
     * Returned aggregated signature info:
     * The aggregator returned by the account, and its current stake.
     */
    struct AggregatorStakeInfo {
        address aggregator;
        StakeInfo stakeInfo;
    }

    /**
     * Get counterfactual sender address.
     * Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation.
     * This method always revert, and returns the address in SenderAddressResult error
     * @param initCode - The constructor code to be passed into the UserOperation.
     */
    function getSenderAddress(bytes memory initCode) external;

    error DelegateAndRevert(bool success, bytes ret);

    /**
     * Helper method for dry-run testing.
     * @dev calling this method, the EntryPoint will make a delegatecall to the given data, and report (via revert) the result.
     *  The method always revert, so is only useful off-chain for dry run calls, in cases where state-override to replace
     *  actual EntryPoint code is less convenient.
     * @param target a target contract to make a delegatecall from entrypoint
     * @param data data to pass to target in a delegatecall
     */
    function delegateAndRevert(address target, bytes calldata data) external;
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.5;

interface INonceManager {

    /**
     * Return the next nonce for this sender.
     * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop)
     * But UserOp with different keys can come with arbitrary order.
     *
     * @param sender the account address
     * @param key the high 192 bit of the nonce
     * @return nonce a full nonce to pass for next UserOp with this sender.
     */
    function getNonce(address sender, uint192 key)
    external view returns (uint256 nonce);

    /**
     * Manually increment the nonce of the sender.
     * This method is exposed just for completeness..
     * Account does NOT need to call it, neither during validation, nor elsewhere,
     * as the EntryPoint will update the nonce regardless.
     * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future
     * UserOperations will not pay extra for the first transaction with a given key.
     */
    function incrementNonce(uint192 key) external;
}

// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.7.5;

/**
 * Manage deposits and stakes.
 * Deposit is just a balance used to pay for UserOperations (either by a paymaster or an account).
 * Stake is value locked for at least "unstakeDelay" by the staked entity.
 */
interface IStakeManager {
    event Deposited(address indexed account, uint256 totalDeposit);

    event Withdrawn(
        address indexed account,
        address withdrawAddress,
        uint256 amount
    );

    // Emitted when stake or unstake delay are modified.
    event StakeLocked(
        address indexed account,
        uint256 totalStaked,
        uint256 unstakeDelaySec
    );

    // Emitted once a stake is scheduled for withdrawal.
    event StakeUnlocked(address indexed account, uint256 withdrawTime);

    event StakeWithdrawn(
        address indexed account,
        address withdrawAddress,
        uint256 amount
    );

    /**
     * @param deposit         - The entity's deposit.
     * @param staked          - True if this entity is staked.
     * @param stake           - Actual amount of ether staked for this entity.
     * @param unstakeDelaySec - Minimum delay to withdraw the stake.
     * @param withdrawTime    - First block timestamp where 'withdrawStake' will be callable, or zero if already locked.
     * @dev Sizes were chosen so that deposit fits into one cell (used during handleOp)
     *      and the rest fit into a 2nd cell (used during stake/unstake)
     *      - 112 bit allows for 10^15 eth
     *      - 48 bit for full timestamp
     *      - 32 bit allows 150 years for unstake delay
     */
    struct DepositInfo {
        uint256 deposit;
        bool staked;
        uint112 stake;
        uint32 unstakeDelaySec;
        uint48 withdrawTime;
    }

    // API struct used by getStakeInfo and simulateValidation.
    struct StakeInfo {
        uint256 stake;
        uint256 unstakeDelaySec;
    }

    /**
     * Get deposit info.
     * @param account - The account to query.
     * @return info   - Full deposit information of given account.
     */
    function getDepositInfo(
        address account
    ) external view returns (DepositInfo memory info);

    /**
     * Get account balance.
     * @param account - The account to query.
     * @return        - The deposit (for gas payment) of the account.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * Add to the deposit of the given account.
     * @param account - The account to add to.
     */
    function depositTo(address account) external payable;

    /**
     * Add to the account's stake - amount and delay
     * any pending unstake is first cancelled.
     * @param _unstakeDelaySec - The new lock duration before the deposit can be withdrawn.
     */
    function addStake(uint32 _unstakeDelaySec) external payable;

    /**
     * Attempt to unlock the stake.
     * The value can be withdrawn (using withdrawStake) after the unstake delay.
     */
    function unlockStake() external;

    /**
     * Withdraw from the (unlocked) stake.
     * Must first call unlockStake and wait for the unstakeDelay to pass.
     * @param withdrawAddress - The address to send withdrawn value.
     */
    function withdrawStake(address payable withdrawAddress) external;

    /**
     * Withdraw from the deposit.
     * @param withdrawAddress - The address to send withdrawn value.
     * @param withdrawAmount  - The amount to withdraw.
     */
    function withdrawTo(
        address payable withdrawAddress,
        uint256 withdrawAmount
    ) external;
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.7.5;

/**
 * User Operation struct
 * @param sender                - The sender account of this request.
 * @param nonce                 - Unique value the sender uses to verify it is not a replay.
 * @param initCode              - If set, the account contract will be created by this constructor/
 * @param callData              - The method call to execute on this account.
 * @param accountGasLimits      - Packed gas limits for validateUserOp and gas limit passed to the callData method call.
 * @param preVerificationGas    - Gas not calculated by the handleOps method, but added to the gas paid.
 *                                Covers batch overhead.
 * @param gasFees               - packed gas fields maxPriorityFeePerGas and maxFeePerGas - Same as EIP-1559 gas parameters.
 * @param paymasterAndData      - If set, this field holds the paymaster address, verification gas limit, postOp gas limit and paymaster-specific extra data
 *                                The paymaster will pay for the transaction instead of the sender.
 * @param signature             - Sender-verified signature over the entire request, the EntryPoint address and the chain ID.
 */
struct PackedUserOperation {
    address sender;
    uint256 nonce;
    bytes initCode;
    bytes callData;
    bytes32 accountGasLimits;
    uint256 preVerificationGas;
    bytes32 gasFees;
    bytes paymasterAndData;
    bytes signature;
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

/* solhint-disable avoid-low-level-calls */
/* solhint-disable no-inline-assembly */
/* solhint-disable reason-string */

import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol";
import "../core/BaseAccount.sol";
import "../core/Helpers.sol";
import "./callback/TokenCallbackHandler.sol";

/**
  * minimal account.
  *  this is sample minimal account.
  *  has execute, eth handling methods
  *  has a single signer that can send requests through the entryPoint.
  */
contract SimpleAccount is BaseAccount, TokenCallbackHandler, UUPSUpgradeable, Initializable {
    address public owner;

    IEntryPoint private immutable _entryPoint;

    event SimpleAccountInitialized(IEntryPoint indexed entryPoint, address indexed owner);

    modifier onlyOwner() {
        _onlyOwner();
        _;
    }

    /// @inheritdoc BaseAccount
    function entryPoint() public view virtual override returns (IEntryPoint) {
        return _entryPoint;
    }

    // solhint-disable-next-line no-empty-blocks
    receive() external payable {}

    constructor(IEntryPoint anEntryPoint) {
        _entryPoint = anEntryPoint;
        _disableInitializers();
    }

    function _onlyOwner() internal view {
        //directly from EOA owner, or through the account itself (which gets redirected through execute())
        require(msg.sender == owner || msg.sender == address(this), "only owner");
    }

    /**
     * execute a transaction (called directly from owner, or by entryPoint)
     * @param dest destination address to call
     * @param value the value to pass in this call
     * @param func the calldata to pass in this call
     */
    function execute(address dest, uint256 value, bytes calldata func) external {
        _requireFromEntryPointOrOwner();
        _call(dest, value, func);
    }

    /**
     * execute a sequence of transactions
     * @dev to reduce gas consumption for trivial case (no value), use a zero-length array to mean zero value
     * @param dest an array of destination addresses
     * @param value an array of values to pass to each call. can be zero-length for no-value calls
     * @param func an array of calldata to pass to each call
     */
    function executeBatch(address[] calldata dest, uint256[] calldata value, bytes[] calldata func) external {
        _requireFromEntryPointOrOwner();
        require(dest.length == func.length && (value.length == 0 || value.length == func.length), "wrong array lengths");
        if (value.length == 0) {
            for (uint256 i = 0; i < dest.length; i++) {
                _call(dest[i], 0, func[i]);
            }
        } else {
            for (uint256 i = 0; i < dest.length; i++) {
                _call(dest[i], value[i], func[i]);
            }
        }
    }

    /**
     * @dev The _entryPoint member is immutable, to reduce gas consumption.  To upgrade EntryPoint,
     * a new implementation of SimpleAccount must be deployed with the new EntryPoint address, then upgrading
      * the implementation by calling `upgradeTo()`
      * @param anOwner the owner (signer) of this account
     */
    function initialize(address anOwner) public virtual initializer {
        _initialize(anOwner);
    }

    function _initialize(address anOwner) internal virtual {
        owner = anOwner;
        emit SimpleAccountInitialized(_entryPoint, owner);
    }

    // Require the function call went through EntryPoint or owner
    function _requireFromEntryPointOrOwner() internal view {
        require(msg.sender == address(entryPoint()) || msg.sender == owner, "account: not Owner or EntryPoint");
    }

    /// implement template method of BaseAccount
    function _validateSignature(PackedUserOperation calldata userOp, bytes32 userOpHash)
    internal override virtual returns (uint256 validationData) {
        bytes32 hash = MessageHashUtils.toEthSignedMessageHash(userOpHash);
        if (owner != ECDSA.recover(hash, userOp.signature))
            return SIG_VALIDATION_FAILED;
        return SIG_VALIDATION_SUCCESS;
    }

    function _call(address target, uint256 value, bytes memory data) internal {
        (bool success, bytes memory result) = target.call{value: value}(data);
        if (!success) {
            assembly {
                revert(add(result, 32), mload(result))
            }
        }
    }

    /**
     * check current account deposit in the entryPoint
     */
    function getDeposit() public view returns (uint256) {
        return entryPoint().balanceOf(address(this));
    }

    /**
     * deposit more funds for this account in the entryPoint
     */
    function addDeposit() public payable {
        entryPoint().depositTo{value: msg.value}(address(this));
    }

    /**
     * withdraw value from the account's deposit
     * @param withdrawAddress target to send to
     * @param amount to withdraw
     */
    function withdrawDepositTo(address payable withdrawAddress, uint256 amount) public onlyOwner {
        entryPoint().withdrawTo(withdrawAddress, amount);
    }

    function _authorizeUpgrade(address newImplementation) internal view override {
        (newImplementation);
        _onlyOwner();
    }
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

import "@openzeppelin/contracts/utils/Create2.sol";
import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";

import "./SimpleAccount.sol";

/**
 * A sample factory contract for SimpleAccount
 * A UserOperations "initCode" holds the address of the factory, and a method call (to createAccount, in this sample factory).
 * The factory's createAccount returns the target account address even if it is already installed.
 * This way, the entryPoint.getSenderAddress() can be called either before or after the account is created.
 */
contract SimpleAccountFactory {
    SimpleAccount public immutable accountImplementation;

    constructor(IEntryPoint _entryPoint) {
        accountImplementation = new SimpleAccount(_entryPoint);
    }

    /**
     * create an account, and return its address.
     * returns the address even if the account is already deployed.
     * Note that during UserOperation execution, this method is called only if the account is not deployed.
     * This method returns an existing account address so that entryPoint.getSenderAddress() would work even after account creation
     */
    function createAccount(address owner,uint256 salt) public returns (SimpleAccount ret) {
        address addr = getAddress(owner, salt);
        uint256 codeSize = addr.code.length;
        if (codeSize > 0) {
            return SimpleAccount(payable(addr));
        }
        ret = SimpleAccount(payable(new ERC1967Proxy{salt : bytes32(salt)}(
                address(accountImplementation),
                abi.encodeCall(SimpleAccount.initialize, (owner))
            )));
    }

    /**
     * calculate the counterfactual address of this account as it would be returned by createAccount()
     */
    function getAddress(address owner,uint256 salt) public view returns (address) {
        return Create2.computeAddress(bytes32(salt), keccak256(abi.encodePacked(
                type(ERC1967Proxy).creationCode,
                abi.encode(
                    address(accountImplementation),
                    abi.encodeCall(SimpleAccount.initialize, (owner))
                )
            )));
    }
}

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.23;

/* solhint-disable no-empty-blocks */

import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol";

/**
 * Token callback handler.
 *   Handles supported tokens' callbacks, allowing account receiving these tokens.
 */
abstract contract TokenCallbackHandler is IERC721Receiver, IERC1155Receiver {

    function onERC721Received(
        address,
        address,
        uint256,
        bytes calldata
    ) external pure override returns (bytes4) {
        return IERC721Receiver.onERC721Received.selector;
    }

    function onERC1155Received(
        address,
        address,
        uint256,
        uint256,
        bytes calldata
    ) external pure override returns (bytes4) {
        return IERC1155Receiver.onERC1155Received.selector;
    }

    function onERC1155BatchReceived(
        address,
        address,
        uint256[] calldata,
        uint256[] calldata,
        bytes calldata
    ) external pure override returns (bytes4) {
        return IERC1155Receiver.onERC1155BatchReceived.selector;
    }

    function supportsInterface(bytes4 interfaceId) external view virtual override returns (bool) {
        return
            interfaceId == type(IERC721Receiver).interfaceId ||
            interfaceId == type(IERC1155Receiver).interfaceId ||
            interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822Proxiable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol)

pragma solidity ^0.8.20;

import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "./ERC1967Utils.sol";

/**
 * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
 * implementation address that can be changed. This address is stored in storage in the location specified by
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
 * implementation behind the proxy.
 */
contract ERC1967Proxy is Proxy {
    /**
     * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
     *
     * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
     * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
     *
     * Requirements:
     *
     * - If `data` is empty, `msg.value` must be zero.
     */
    constructor(address implementation, bytes memory _data) payable {
        ERC1967Utils.upgradeToAndCall(implementation, _data);
    }

    /**
     * @dev Returns the current implementation address.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
     */
    function _implementation() internal view virtual override returns (address) {
        return ERC1967Utils.getImplementation();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.20;

import {IBeacon} from "../beacon/IBeacon.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This abstract contract provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
 */
library ERC1967Utils {
    // We re-declare ERC-1967 events here because they can't be used directly from IERC1967.
    // This will be fixed in Solidity 0.8.21. At that point we should remove these events.
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);

    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the EIP1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)

pragma solidity ^0.8.20;

/**
 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
 * be specified by overriding the virtual {_implementation} function.
 *
 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
 * different contract through the {_delegate} function.
 *
 * The success and return data of the delegated call will be returned back to the caller of the proxy.
 */
abstract contract Proxy {
    /**
     * @dev Delegates the current call to `implementation`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _delegate(address implementation) internal virtual {
        assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())

            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())

            switch result
            // delegatecall returns 0 on error.
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
     * function and {_fallback} should delegate.
     */
    function _implementation() internal view virtual returns (address);

    /**
     * @dev Delegates the current call to the address returned by `_implementation()`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _fallback() internal virtual {
        _delegate(_implementation());
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
     * function in the contract matches the call data.
     */
    fallback() external payable virtual {
        _fallback();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.20;

import {IERC1822Proxiable} from "../../interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 */
abstract contract UUPSUpgradeable is IERC1822Proxiable {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable __self = address(this);

    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
     * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
     * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev The call is from an unauthorized context.
     */
    error UUPSUnauthorizedCallContext();

    /**
     * @dev The storage `slot` is unsupported as a UUID.
     */
    error UUPSUnsupportedProxiableUUID(bytes32 slot);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        _checkProxy();
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        _checkNotDelegated();
        _;
    }

    /**
     * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual notDelegated returns (bytes32) {
        return ERC1967Utils.IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data);
    }

    /**
     * @dev Reverts if the execution is not performed via delegatecall or the execution
     * context is not of a proxy with an ERC1967-compliant implementation pointing to self.
     * See {_onlyProxy}.
     */
    function _checkProxy() internal view virtual {
        if (
            address(this) == __self || // Must be called through delegatecall
            ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
        ) {
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Reverts if the execution is performed via delegatecall.
     * See {notDelegated}.
     */
    function _checkNotDelegated() internal view virtual {
        if (address(this) != __self) {
            // Must not be called through delegatecall
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
     *
     * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
     * is expected to be the implementation slot in ERC1967.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
        try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
            if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                revert UUPSUnsupportedProxiableUUID(slot);
            }
            ERC1967Utils.upgradeToAndCall(newImplementation, data);
        } catch {
            // The implementation is not UUPS
            revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Interface that must be implemented by smart contracts in order to receive
 * ERC-1155 token transfers.
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev Not enough balance for performing a CREATE2 deploy.
     */
    error Create2InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev The deployment failed.
     */
    error Create2FailedDeployment();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Create2InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        /// @solidity memory-safe-assembly
        assembly {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
        }
        if (addr == address(0)) {
            revert Create2FailedDeployment();
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := keccak256(start, 85)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):