Contract Name:
EditionMetadataRenderer
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IMetadataRenderer} from "../interfaces/IMetadataRenderer.sol";
import {IERC721Drop} from "../interfaces/IERC721Drop.sol";
import {IERC721MetadataUpgradeable} from "@openzeppelin/contracts-upgradeable/interfaces/IERC721MetadataUpgradeable.sol";
import {IERC2981Upgradeable} from "@openzeppelin/contracts-upgradeable/interfaces/IERC2981Upgradeable.sol";
import {NFTMetadataRenderer} from "../utils/NFTMetadataRenderer.sol";
import {MetadataRenderAdminCheck} from "./MetadataRenderAdminCheck.sol";
interface DropConfigGetter {
function config()
external
view
returns (IERC721Drop.Configuration memory config);
}
/// @notice EditionMetadataRenderer for editions support
contract EditionMetadataRenderer is
IMetadataRenderer,
MetadataRenderAdminCheck
{
/// @notice Storage for token edition information
struct TokenEditionInfo {
string description;
string imageURI;
string animationURI;
}
/// @notice Event for updated Media URIs
event MediaURIsUpdated(
address indexed target,
address sender,
string imageURI,
string animationURI
);
/// @notice Event for a new edition initialized
/// @dev admin function indexer feedback
event EditionInitialized(
address indexed target,
string description,
string imageURI,
string animationURI
);
/// @notice Description updated for this edition
/// @dev admin function indexer feedback
event DescriptionUpdated(
address indexed target,
address sender,
string newDescription
);
/// @notice Token information mapping storage
mapping(address => TokenEditionInfo) public tokenInfos;
/// @notice Update media URIs
/// @param target target for contract to update metadata for
/// @param imageURI new image uri address
/// @param animationURI new animation uri address
function updateMediaURIs(
address target,
string memory imageURI,
string memory animationURI
) external requireSenderAdmin(target) {
tokenInfos[target].imageURI = imageURI;
tokenInfos[target].animationURI = animationURI;
emit MediaURIsUpdated({
target: target,
sender: msg.sender,
imageURI: imageURI,
animationURI: animationURI
});
}
/// @notice Admin function to update description
/// @param target target description
/// @param newDescription new description
function updateDescription(address target, string memory newDescription)
external
requireSenderAdmin(target)
{
tokenInfos[target].description = newDescription;
emit DescriptionUpdated({
target: target,
sender: msg.sender,
newDescription: newDescription
});
}
/// @notice Default initializer for edition data from a specific contract
/// @param data data to init with
function initializeWithData(bytes memory data) external {
// data format: description, imageURI, animationURI
(
string memory description,
string memory imageURI,
string memory animationURI
) = abi.decode(data, (string, string, string));
tokenInfos[msg.sender] = TokenEditionInfo({
description: description,
imageURI: imageURI,
animationURI: animationURI
});
emit EditionInitialized({
target: msg.sender,
description: description,
imageURI: imageURI,
animationURI: animationURI
});
}
/// @notice Contract URI information getter
/// @return contract uri (if set)
function contractURI() external view override returns (string memory) {
address target = msg.sender;
TokenEditionInfo storage editionInfo = tokenInfos[target];
IERC721Drop.Configuration memory config = DropConfigGetter(target)
.config();
return
NFTMetadataRenderer.encodeContractURIJSON({
name: IERC721MetadataUpgradeable(target).name(),
description: editionInfo.description,
imageURI: editionInfo.imageURI,
animationURI: editionInfo.animationURI,
royaltyBPS: uint256(config.royaltyBPS),
royaltyRecipient: config.fundsRecipient
});
}
/// @notice Token URI information getter
/// @param tokenId to get uri for
/// @return contract uri (if set)
function tokenURI(uint256 tokenId)
external
view
override
returns (string memory)
{
address target = msg.sender;
TokenEditionInfo memory info = tokenInfos[target];
IERC721Drop media = IERC721Drop(target);
uint256 maxSupply = media.saleDetails().maxSupply;
// For open editions, set max supply to 0 for renderer to remove the edition max number
// This will be added back on once the open edition is "finalized"
if (maxSupply == type(uint64).max) {
maxSupply = 0;
}
return
NFTMetadataRenderer.createMetadataEdition({
name: IERC721MetadataUpgradeable(target).name(),
description: info.description,
imageURI: info.imageURI,
animationURI: info.animationURI,
tokenOfEdition: tokenId,
editionSize: maxSupply
});
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
interface IMetadataRenderer {
function tokenURI(uint256) external view returns (string memory);
function contractURI() external view returns (string memory);
function initializeWithData(bytes memory initData) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IMetadataRenderer} from "../interfaces/IMetadataRenderer.sol";
/// @notice Interface for Freee Drops contract
interface IERC721Drop {
// Enums
/// @notice Phase type
enum PhaseType {
Public,
Presale,
Airdrop,
AdminMint
}
// Access errors
/// @notice Only admin can access this function
error Access_OnlyAdmin();
/// @notice Missing the given role or admin access
error Access_MissingRoleOrAdmin(bytes32 role);
/// @notice Withdraw is not allowed by this user
error Access_WithdrawNotAllowed();
/// @notice Cannot withdraw funds due to ETH send failure.
error Withdraw_FundsSendFailure();
/// @notice Mint fee send failure
error MintFee_FundsSendFailure();
/// @notice Protocol Rewards withdraw failure
error ProtocolRewards_WithdrawSendFailure();
/// @notice Call to external metadata renderer failed.
error ExternalMetadataRenderer_CallFailed();
/// @notice Thrown when the operator for the contract is not allowed
/// @dev Used when strict enforcement of marketplaces for creator royalties is desired.
error OperatorNotAllowed(address operator);
/// @notice Thrown when there is no active market filter DAO address supported for the current chain
/// @dev Used for enabling and disabling filter for the given chain.
error MarketFilterDAOAddressNotSupportedForChain();
/// @notice Used when the operator filter registry external call fails
/// @dev Used for bubbling error up to clients.
error RemoteOperatorFilterRegistryCallFailed();
/// @notice Used when attempt to transfer soulbound token
error Transfer_NotAllowed();
// Sale/Purchase errors
/// @notice Sale is inactive
error Sale_Inactive();
/// @notice Presale is inactive
error Presale_Inactive();
/// @notice Presale merkle root is invalid
error Presale_MerkleNotApproved();
/// @notice Wrong price for purchase
error Purchase_WrongPrice(uint256 correctPrice);
/// @notice NFT sold out
error Mint_SoldOut();
/// @notice Too many purchase for address
error Purchase_TooManyForAddress();
/// @notice Too many presale for address
error Presale_TooManyForAddress();
// Admin errors
/// @notice Royalty percentage too high
error Setup_RoyaltyPercentageTooHigh(uint16 maxRoyaltyBPS);
/// @notice Invalid admin upgrade address
error Admin_InvalidUpgradeAddress(address proposedAddress);
/// @notice Unable to finalize an edition not marked as open (size set to uint64_max_value)
error Admin_UnableToFinalizeNotOpenEdition();
/// @notice Cannot reserve every mint for admin
error InvalidMintSchedule();
/// @notice Event emitted for mint fee payout
/// @param mintFeeAmount amount of the mint fee
/// @param mintFeeRecipient recipient of the mint fee
/// @param success if the payout succeeded
event MintFeePayout(uint256 mintFeeAmount, address mintFeeRecipient, bool success);
/// @notice Event emitted for each sale
/// @param phase phase of the sale
/// @param to address sale was made to
/// @param quantity quantity of the minted nfts
/// @param pricePerToken price for each token
/// @param firstPurchasedTokenId first purchased token ID (to get range add to quantity for max)
event Sale(PhaseType phase, address indexed to, uint256 indexed quantity, uint256 indexed pricePerToken, uint256 firstPurchasedTokenId);
/// @notice Event emitted for each sale
/// @param sender address sale was made to
/// @param tokenContract address of the token contract
/// @param tokenId first purchased token ID (to get range add to quantity for max)
/// @param quantity quantity of the minted nfts
/// @param comment caller provided comment
event MintComment(address indexed sender, address indexed tokenContract, uint256 indexed tokenId, uint256 quantity, string comment);
/// @notice Sales configuration has been changed
/// @dev To access new sales configuration, use getter function.
/// @param changedBy Changed by user
event SalesConfigChanged(address indexed changedBy);
/// @notice Event emitted when the funds recipient is changed
/// @param newAddress new address for the funds recipient
/// @param changedBy address that the recipient is changed by
event FundsRecipientChanged(address indexed newAddress, address indexed changedBy);
/// @notice Event emitted when the funds are withdrawn from the minting contract
/// @param withdrawnBy address that issued the withdraw
/// @param withdrawnTo address that the funds were withdrawn to
/// @param amount amount that was withdrawn
/// @param feeRecipient user getting withdraw fee (if any)
/// @param feeAmount amount of the fee getting sent (if any)
event FundsWithdrawn(address indexed withdrawnBy, address indexed withdrawnTo, uint256 amount, address feeRecipient, uint256 feeAmount);
/// @notice Event emitted when an open mint is finalized and further minting is closed forever on the contract.
/// @param sender address sending close mint
/// @param numberOfMints number of mints the contract is finalized at
event OpenMintFinalized(address indexed sender, uint256 numberOfMints);
/// @notice Event emitted when the soulbound status is changed
/// @param isSoulbound new soulbound status
/// @param changedBy address that the soulbound status is changed by
event SoulboundStatusChanged(bool isSoulbound, address changedBy);
/// @notice Event emitted when metadata renderer is updated.
/// @param sender address of the updater
/// @param renderer new metadata renderer address
event UpdatedMetadataRenderer(address sender, IMetadataRenderer renderer);
/// @notice Admin function to update the sales configuration settings
/// @param publicSalePrice public sale price in ether
/// @param maxSalePurchasePerAddress Max # of purchases (public) per address allowed
/// @param publicSaleStart unix timestamp when the public sale starts
/// @param publicSaleEnd unix timestamp when the public sale ends (set to 0 to disable)
/// @param presaleStart unix timestamp when the presale starts
/// @param presaleEnd unix timestamp when the presale ends
/// @param presaleMerkleRoot merkle root for the presale information
function setSaleConfiguration(
uint104 publicSalePrice,
uint32 maxSalePurchasePerAddress,
uint64 publicSaleStart,
uint64 publicSaleEnd,
uint64 presaleStart,
uint64 presaleEnd,
bytes32 presaleMerkleRoot
) external;
/// @notice General configuration for NFT Minting and bookkeeping
struct Configuration {
/// @dev Metadata renderer (uint160)
IMetadataRenderer metadataRenderer;
/// @dev Total size of edition that can be minted (uint160+64 = 224)
uint64 editionSize;
/// @dev Royalty amount in bps (uint224+16 = 240)
uint16 royaltyBPS;
/// @dev Funds recipient for sale (new slot, uint160)
address payable fundsRecipient;
/// @dev soulboundNFT
bool isSoulbound;
}
/// @notice Sales states and configuration
/// @dev Uses 3 storage slots
struct SalesConfiguration {
/// @dev Public sale price (max ether value > 1000 ether with this value)
uint104 publicSalePrice;
/// @notice Purchase mint limit per address (if set to 0 === unlimited mints)
/// @dev Max purchase number per txn (90+32 = 122)
uint32 maxSalePurchasePerAddress;
/// @dev uint64 type allows for dates into 292 billion years
/// @notice Public sale start timestamp (136+64 = 186)
uint64 publicSaleStart;
/// @notice Public sale end timestamp (186+64 = 250)
uint64 publicSaleEnd;
/// @notice Presale start timestamp
/// @dev new storage slot
uint64 presaleStart;
/// @notice Presale end timestamp
uint64 presaleEnd;
/// @notice Presale merkle root
bytes32 presaleMerkleRoot;
}
/// @notice Return value for sales details to use with front-ends
struct SaleDetails {
// Synthesized status variables for sale and presale
bool publicSaleActive;
bool presaleActive;
// Price for public sale
uint256 publicSalePrice;
// Timed sale actions for public sale
uint64 publicSaleStart;
uint64 publicSaleEnd;
// Timed sale actions for presale
uint64 presaleStart;
uint64 presaleEnd;
// Merkle root (includes address, quantity, and price data for each entry)
bytes32 presaleMerkleRoot;
// Limit public sale to a specific number of mints per wallet
uint256 maxSalePurchasePerAddress;
// Information about the rest of the supply
// Total that have been minted
uint256 totalMinted;
// The total supply available
uint256 maxSupply;
}
/// @notice Return type of specific mint counts and details per address
struct AddressMintDetails {
/// Number of total mints from the given address
uint256 totalMints;
/// Number of presale mints from the given address
uint256 presaleMints;
/// Number of public mints from the given address
uint256 publicMints;
}
/// @notice External purchase function (payable in eth)
/// @param quantity to purchase
/// @return first minted token ID
function purchase(uint256 quantity) external payable returns (uint256);
/// @notice External purchase presale function (takes a merkle proof and matches to root) (payable in eth)
/// @param quantity to purchase
/// @param maxQuantity can purchase (verified by merkle root)
/// @param pricePerToken price per token allowed (verified by merkle root)
/// @param merkleProof input for merkle proof leaf verified by merkle root
/// @return first minted token ID
function purchasePresale(uint256 quantity, uint256 maxQuantity, uint256 pricePerToken, bytes32[] memory merkleProof) external payable returns (uint256);
/// @notice Function to return the global sales details for the given drop
function saleDetails() external view returns (SaleDetails memory);
/// @notice Function to return the specific sales details for a given address
/// @param minter address for minter to return mint information for
function mintedPerAddress(address minter) external view returns (AddressMintDetails memory);
/// @notice This is the opensea/public owner setting that can be set by the contract admin
function owner() external view returns (address);
/// @notice Update the metadata renderer
/// @param newRenderer new address for renderer
/// @param setupRenderer data to call to bootstrap data for the new renderer (optional)
function setMetadataRenderer(IMetadataRenderer newRenderer, bytes memory setupRenderer) external;
/// @notice This is an admin mint function to mint a quantity to a specific address
/// @param to address to mint to
/// @param quantity quantity to mint
/// @return the id of the first minted NFT
function adminMint(address to, uint256 quantity) external returns (uint256);
/// @notice This is an admin mint function to mint a single nft each to a list of addresses
/// @param to list of addresses to mint an NFT each to
/// @return the id of the first minted NFT
function adminMintAirdrop(address[] memory to) external returns (uint256);
/// @dev Getter for admin role associated with the contract to handle metadata
/// @return boolean if address is admin
function isAdmin(address user) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC721Metadata.sol)
pragma solidity ^0.8.0;
import "../token/ERC721/extensions/IERC721MetadataUpgradeable.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC2981.sol)
pragma solidity ^0.8.0;
import "../utils/introspection/IERC165Upgradeable.sol";
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*
* _Available since v4.5._
*/
interface IERC2981Upgradeable is IERC165Upgradeable {
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*/
function royaltyInfo(
uint256 tokenId,
uint256 salePrice
) external view returns (address receiver, uint256 royaltyAmount);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {Base64} from "@openzeppelin/contracts/utils/Base64.sol";
/// NFT metadata library for rendering metadata associated with editions
library NFTMetadataRenderer {
/// Generate edition metadata from storage information as base64-json blob
/// Combines the media data and metadata
/// @param name Name of NFT in metadata
/// @param description Description of NFT in metadata
/// @param imageURI URI of image to render for edition
/// @param animationURI URI of animation to render for edition
/// @param tokenOfEdition Token ID for specific token
/// @param editionSize Size of entire edition to show
function createMetadataEdition(
string memory name,
string memory description,
string memory imageURI,
string memory animationURI,
uint256 tokenOfEdition,
uint256 editionSize
) internal pure returns (string memory) {
string memory _tokenMediaData = tokenMediaData(
imageURI,
animationURI
);
bytes memory json = createMetadataJSON(
name,
description,
_tokenMediaData,
tokenOfEdition,
editionSize
);
return encodeMetadataJSON(json);
}
function encodeContractURIJSON(
string memory name,
string memory description,
string memory imageURI,
string memory animationURI,
uint256 royaltyBPS,
address royaltyRecipient
) internal pure returns (string memory) {
bytes memory imageSpace = bytes("");
if (bytes(imageURI).length > 0) {
imageSpace = abi.encodePacked('", "image": "', imageURI);
}
bytes memory animationSpace = bytes("");
if (bytes(animationURI).length > 0) {
animationSpace = abi.encodePacked('", "animation_url": "', animationURI);
}
return
string(
encodeMetadataJSON(
abi.encodePacked(
'{"name": "',
name,
'", "description": "',
description,
// this is for opensea since they don't respect ERC2981 right now
'", "seller_fee_basis_points": ',
Strings.toString(royaltyBPS),
', "fee_recipient": "',
Strings.toHexString(uint256(uint160(royaltyRecipient)), 20),
imageSpace,
animationSpace,
'"}'
)
)
);
}
/// Function to create the metadata json string for the nft edition
/// @param name Name of NFT in metadata
/// @param description Description of NFT in metadata
/// @param mediaData Data for media to include in json object
/// @param tokenOfEdition Token ID for specific token
/// @param editionSize Size of entire edition to show
function createMetadataJSON(
string memory name,
string memory description,
string memory mediaData,
uint256 tokenOfEdition,
uint256 editionSize
) internal pure returns (bytes memory) {
bytes memory editionSizeText;
if (editionSize > 0) {
editionSizeText = abi.encodePacked(
"#",
Strings.toString(tokenOfEdition)
);
}
return
abi.encodePacked(
'{"name": "',
name,
" ",
editionSizeText,
'", "',
'description": "',
description,
'", "',
mediaData,
'properties": {"number": ',
Strings.toString(tokenOfEdition),
', "name": "',
name,
'"}}'
);
}
/// Encodes the argument json bytes into base64-data uri format
/// @param json Raw json to base64 and turn into a data-uri
function encodeMetadataJSON(bytes memory json)
internal
pure
returns (string memory)
{
return
string(
abi.encodePacked(
"data:application/json;base64,",
Base64.encode(json)
)
);
}
/// Generates edition metadata from storage information as base64-json blob
/// Combines the media data and metadata
/// @param imageUrl URL of image to render for edition
/// @param animationUrl URL of animation to render for edition
function tokenMediaData(
string memory imageUrl,
string memory animationUrl
) internal pure returns (string memory) {
bool hasImage = bytes(imageUrl).length > 0;
bool hasAnimation = bytes(animationUrl).length > 0;
if (hasImage && hasAnimation) {
return
string(
abi.encodePacked(
'image": "',
imageUrl,
'", "animation_url": "',
animationUrl,
'", "'
)
);
}
if (hasImage) {
return string(abi.encodePacked('image": "', imageUrl, '", "'));
}
if (hasAnimation) {
return
string(
abi.encodePacked('animation_url": "', animationUrl, '", "')
);
}
return "";
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IERC721Drop} from "../interfaces/IERC721Drop.sol";
contract MetadataRenderAdminCheck {
error Access_OnlyAdmin();
/// @notice Modifier to require the sender to be an admin
/// @param target address that the user wants to modify
modifier requireSenderAdmin(address target) {
if (target != msg.sender && !IERC721Drop(target).isAdmin(msg.sender)) {
revert Access_OnlyAdmin();
}
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC721Upgradeable.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721MetadataUpgradeable is IERC721Upgradeable {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165Upgradeable {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides a set of functions to operate with Base64 strings.
*
* _Available since v4.5._
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
*/
string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// Loads the table into memory
string memory table = _TABLE;
// Encoding takes 3 bytes chunks of binary data from `bytes` data parameter
// and split into 4 numbers of 6 bits.
// The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up
// - `data.length + 2` -> Round up
// - `/ 3` -> Number of 3-bytes chunks
// - `4 *` -> 4 characters for each chunk
string memory result = new string(4 * ((data.length + 2) / 3));
/// @solidity memory-safe-assembly
assembly {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 32)
// Run over the input, 3 bytes at a time
for {
let dataPtr := data
let endPtr := add(data, mload(data))
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 bytes (18 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F which is the number of
// the previous character in the ASCII table prior to the Base64 Table
// The result is then added to the table to get the character to write,
// and finally write it in the result pointer but with a left shift
// of 256 (1 byte) - 8 (1 ASCII char) = 248 bits
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165Upgradeable.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721Upgradeable is IERC165Upgradeable {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}