APE Price: $0.41 (+4.90%)

Contract Diff Checker

Contract Name:
ManyChainMultiSig

Contract Source Code:

File 1 of 1 : ManyChainMultiSig

{{
  "language": "Solidity",
  "sources": {
    "lib/openzeppelin-contracts/contracts/access/Ownable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n    address private _owner;\n\n    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n    /**\n     * @dev Initializes the contract setting the deployer as the initial owner.\n     */\n    constructor() {\n        _transferOwnership(_msgSender());\n    }\n\n    /**\n     * @dev Throws if called by any account other than the owner.\n     */\n    modifier onlyOwner() {\n        _checkOwner();\n        _;\n    }\n\n    /**\n     * @dev Returns the address of the current owner.\n     */\n    function owner() public view virtual returns (address) {\n        return _owner;\n    }\n\n    /**\n     * @dev Throws if the sender is not the owner.\n     */\n    function _checkOwner() internal view virtual {\n        require(owner() == _msgSender(), \"Ownable: caller is not the owner\");\n    }\n\n    /**\n     * @dev Leaves the contract without owner. It will not be possible to call\n     * `onlyOwner` functions. Can only be called by the current owner.\n     *\n     * NOTE: Renouncing ownership will leave the contract without an owner,\n     * thereby disabling any functionality that is only available to the owner.\n     */\n    function renounceOwnership() public virtual onlyOwner {\n        _transferOwnership(address(0));\n    }\n\n    /**\n     * @dev Transfers ownership of the contract to a new account (`newOwner`).\n     * Can only be called by the current owner.\n     */\n    function transferOwnership(address newOwner) public virtual onlyOwner {\n        require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n        _transferOwnership(newOwner);\n    }\n\n    /**\n     * @dev Transfers ownership of the contract to a new account (`newOwner`).\n     * Internal function without access restriction.\n     */\n    function _transferOwnership(address newOwner) internal virtual {\n        address oldOwner = _owner;\n        _owner = newOwner;\n        emit OwnershipTransferred(oldOwner, newOwner);\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/access/Ownable2Step.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./Ownable.sol\";\n\n/**\n * @dev Contract module which provides access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership} and {acceptOwnership}.\n *\n * This module is used through inheritance. It will make available all functions\n * from parent (Ownable).\n */\nabstract contract Ownable2Step is Ownable {\n    address private _pendingOwner;\n\n    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);\n\n    /**\n     * @dev Returns the address of the pending owner.\n     */\n    function pendingOwner() public view virtual returns (address) {\n        return _pendingOwner;\n    }\n\n    /**\n     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.\n     * Can only be called by the current owner.\n     */\n    function transferOwnership(address newOwner) public virtual override onlyOwner {\n        _pendingOwner = newOwner;\n        emit OwnershipTransferStarted(owner(), newOwner);\n    }\n\n    /**\n     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.\n     * Internal function without access restriction.\n     */\n    function _transferOwnership(address newOwner) internal virtual override {\n        delete _pendingOwner;\n        super._transferOwnership(newOwner);\n    }\n\n    /**\n     * @dev The new owner accepts the ownership transfer.\n     */\n    function acceptOwnership() public virtual {\n        address sender = _msgSender();\n        require(pendingOwner() == sender, \"Ownable2Step: caller is not the new owner\");\n        _transferOwnership(sender);\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/math/SignedMath.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard signed math utilities missing in the Solidity language.\n */\nlibrary SignedMath {\n    /**\n     * @dev Returns the largest of two signed numbers.\n     */\n    function max(int256 a, int256 b) internal pure returns (int256) {\n        return a > b ? a : b;\n    }\n\n    /**\n     * @dev Returns the smallest of two signed numbers.\n     */\n    function min(int256 a, int256 b) internal pure returns (int256) {\n        return a < b ? a : b;\n    }\n\n    /**\n     * @dev Returns the average of two signed numbers without overflow.\n     * The result is rounded towards zero.\n     */\n    function average(int256 a, int256 b) internal pure returns (int256) {\n        // Formula from the book \"Hacker's Delight\"\n        int256 x = (a & b) + ((a ^ b) >> 1);\n        return x + (int256(uint256(x) >> 255) & (a ^ b));\n    }\n\n    /**\n     * @dev Returns the absolute unsigned value of a signed value.\n     */\n    function abs(int256 n) internal pure returns (uint256) {\n        unchecked {\n            // must be unchecked in order to support `n = type(int256).min`\n            return uint256(n >= 0 ? n : -n);\n        }\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n    enum Rounding {\n        Down, // Toward negative infinity\n        Up, // Toward infinity\n        Zero // Toward zero\n    }\n\n    /**\n     * @dev Returns the largest of two numbers.\n     */\n    function max(uint256 a, uint256 b) internal pure returns (uint256) {\n        return a > b ? a : b;\n    }\n\n    /**\n     * @dev Returns the smallest of two numbers.\n     */\n    function min(uint256 a, uint256 b) internal pure returns (uint256) {\n        return a < b ? a : b;\n    }\n\n    /**\n     * @dev Returns the average of two numbers. The result is rounded towards\n     * zero.\n     */\n    function average(uint256 a, uint256 b) internal pure returns (uint256) {\n        // (a + b) / 2 can overflow.\n        return (a & b) + (a ^ b) / 2;\n    }\n\n    /**\n     * @dev Returns the ceiling of the division of two numbers.\n     *\n     * This differs from standard division with `/` in that it rounds up instead\n     * of rounding down.\n     */\n    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {\n        // (a + b - 1) / b can overflow on addition, so we distribute.\n        return a == 0 ? 0 : (a - 1) / b + 1;\n    }\n\n    /**\n     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0\n     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)\n     * with further edits by Uniswap Labs also under MIT license.\n     */\n    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {\n        unchecked {\n            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use\n            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256\n            // variables such that product = prod1 * 2^256 + prod0.\n            uint256 prod0; // Least significant 256 bits of the product\n            uint256 prod1; // Most significant 256 bits of the product\n            assembly {\n                let mm := mulmod(x, y, not(0))\n                prod0 := mul(x, y)\n                prod1 := sub(sub(mm, prod0), lt(mm, prod0))\n            }\n\n            // Handle non-overflow cases, 256 by 256 division.\n            if (prod1 == 0) {\n                // Solidity will revert if denominator == 0, unlike the div opcode on its own.\n                // The surrounding unchecked block does not change this fact.\n                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.\n                return prod0 / denominator;\n            }\n\n            // Make sure the result is less than 2^256. Also prevents denominator == 0.\n            require(denominator > prod1, \"Math: mulDiv overflow\");\n\n            ///////////////////////////////////////////////\n            // 512 by 256 division.\n            ///////////////////////////////////////////////\n\n            // Make division exact by subtracting the remainder from [prod1 prod0].\n            uint256 remainder;\n            assembly {\n                // Compute remainder using mulmod.\n                remainder := mulmod(x, y, denominator)\n\n                // Subtract 256 bit number from 512 bit number.\n                prod1 := sub(prod1, gt(remainder, prod0))\n                prod0 := sub(prod0, remainder)\n            }\n\n            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.\n            // See https://cs.stackexchange.com/q/138556/92363.\n\n            // Does not overflow because the denominator cannot be zero at this stage in the function.\n            uint256 twos = denominator & (~denominator + 1);\n            assembly {\n                // Divide denominator by twos.\n                denominator := div(denominator, twos)\n\n                // Divide [prod1 prod0] by twos.\n                prod0 := div(prod0, twos)\n\n                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.\n                twos := add(div(sub(0, twos), twos), 1)\n            }\n\n            // Shift in bits from prod1 into prod0.\n            prod0 |= prod1 * twos;\n\n            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such\n            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for\n            // four bits. That is, denominator * inv = 1 mod 2^4.\n            uint256 inverse = (3 * denominator) ^ 2;\n\n            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works\n            // in modular arithmetic, doubling the correct bits in each step.\n            inverse *= 2 - denominator * inverse; // inverse mod 2^8\n            inverse *= 2 - denominator * inverse; // inverse mod 2^16\n            inverse *= 2 - denominator * inverse; // inverse mod 2^32\n            inverse *= 2 - denominator * inverse; // inverse mod 2^64\n            inverse *= 2 - denominator * inverse; // inverse mod 2^128\n            inverse *= 2 - denominator * inverse; // inverse mod 2^256\n\n            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.\n            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is\n            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1\n            // is no longer required.\n            result = prod0 * inverse;\n            return result;\n        }\n    }\n\n    /**\n     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.\n     */\n    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {\n        uint256 result = mulDiv(x, y, denominator);\n        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {\n            result += 1;\n        }\n        return result;\n    }\n\n    /**\n     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.\n     *\n     * Inspired by Henry S. Warren, Jr.'s \"Hacker's Delight\" (Chapter 11).\n     */\n    function sqrt(uint256 a) internal pure returns (uint256) {\n        if (a == 0) {\n            return 0;\n        }\n\n        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.\n        //\n        // We know that the \"msb\" (most significant bit) of our target number `a` is a power of 2 such that we have\n        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.\n        //\n        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`\n        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`\n        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`\n        //\n        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.\n        uint256 result = 1 << (log2(a) >> 1);\n\n        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,\n        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at\n        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision\n        // into the expected uint128 result.\n        unchecked {\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            return min(result, a / result);\n        }\n    }\n\n    /**\n     * @notice Calculates sqrt(a), following the selected rounding direction.\n     */\n    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = sqrt(a);\n            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);\n        }\n    }\n\n    /**\n     * @dev Return the log in base 2, rounded down, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log2(uint256 value) internal pure returns (uint256) {\n        uint256 result = 0;\n        unchecked {\n            if (value >> 128 > 0) {\n                value >>= 128;\n                result += 128;\n            }\n            if (value >> 64 > 0) {\n                value >>= 64;\n                result += 64;\n            }\n            if (value >> 32 > 0) {\n                value >>= 32;\n                result += 32;\n            }\n            if (value >> 16 > 0) {\n                value >>= 16;\n                result += 16;\n            }\n            if (value >> 8 > 0) {\n                value >>= 8;\n                result += 8;\n            }\n            if (value >> 4 > 0) {\n                value >>= 4;\n                result += 4;\n            }\n            if (value >> 2 > 0) {\n                value >>= 2;\n                result += 2;\n            }\n            if (value >> 1 > 0) {\n                result += 1;\n            }\n        }\n        return result;\n    }\n\n    /**\n     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = log2(value);\n            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);\n        }\n    }\n\n    /**\n     * @dev Return the log in base 10, rounded down, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log10(uint256 value) internal pure returns (uint256) {\n        uint256 result = 0;\n        unchecked {\n            if (value >= 10 ** 64) {\n                value /= 10 ** 64;\n                result += 64;\n            }\n            if (value >= 10 ** 32) {\n                value /= 10 ** 32;\n                result += 32;\n            }\n            if (value >= 10 ** 16) {\n                value /= 10 ** 16;\n                result += 16;\n            }\n            if (value >= 10 ** 8) {\n                value /= 10 ** 8;\n                result += 8;\n            }\n            if (value >= 10 ** 4) {\n                value /= 10 ** 4;\n                result += 4;\n            }\n            if (value >= 10 ** 2) {\n                value /= 10 ** 2;\n                result += 2;\n            }\n            if (value >= 10 ** 1) {\n                result += 1;\n            }\n        }\n        return result;\n    }\n\n    /**\n     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = log10(value);\n            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);\n        }\n    }\n\n    /**\n     * @dev Return the log in base 256, rounded down, of a positive value.\n     * Returns 0 if given 0.\n     *\n     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.\n     */\n    function log256(uint256 value) internal pure returns (uint256) {\n        uint256 result = 0;\n        unchecked {\n            if (value >> 128 > 0) {\n                value >>= 128;\n                result += 16;\n            }\n            if (value >> 64 > 0) {\n                value >>= 64;\n                result += 8;\n            }\n            if (value >> 32 > 0) {\n                value >>= 32;\n                result += 4;\n            }\n            if (value >> 16 > 0) {\n                value >>= 16;\n                result += 2;\n            }\n            if (value >> 8 > 0) {\n                result += 1;\n            }\n        }\n        return result;\n    }\n\n    /**\n     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = log256(value);\n            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);\n        }\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev These functions deal with verification of Merkle Tree proofs.\n *\n * The tree and the proofs can be generated using our\n * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].\n * You will find a quickstart guide in the readme.\n *\n * WARNING: You should avoid using leaf values that are 64 bytes long prior to\n * hashing, or use a hash function other than keccak256 for hashing leaves.\n * This is because the concatenation of a sorted pair of internal nodes in\n * the merkle tree could be reinterpreted as a leaf value.\n * OpenZeppelin's JavaScript library generates merkle trees that are safe\n * against this attack out of the box.\n */\nlibrary MerkleProof {\n    /**\n     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree\n     * defined by `root`. For this, a `proof` must be provided, containing\n     * sibling hashes on the branch from the leaf to the root of the tree. Each\n     * pair of leaves and each pair of pre-images are assumed to be sorted.\n     */\n    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {\n        return processProof(proof, leaf) == root;\n    }\n\n    /**\n     * @dev Calldata version of {verify}\n     *\n     * _Available since v4.7._\n     */\n    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {\n        return processProofCalldata(proof, leaf) == root;\n    }\n\n    /**\n     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up\n     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt\n     * hash matches the root of the tree. When processing the proof, the pairs\n     * of leafs & pre-images are assumed to be sorted.\n     *\n     * _Available since v4.4._\n     */\n    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {\n        bytes32 computedHash = leaf;\n        for (uint256 i = 0; i < proof.length; i++) {\n            computedHash = _hashPair(computedHash, proof[i]);\n        }\n        return computedHash;\n    }\n\n    /**\n     * @dev Calldata version of {processProof}\n     *\n     * _Available since v4.7._\n     */\n    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {\n        bytes32 computedHash = leaf;\n        for (uint256 i = 0; i < proof.length; i++) {\n            computedHash = _hashPair(computedHash, proof[i]);\n        }\n        return computedHash;\n    }\n\n    /**\n     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by\n     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.\n     *\n     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.\n     *\n     * _Available since v4.7._\n     */\n    function multiProofVerify(\n        bytes32[] memory proof,\n        bool[] memory proofFlags,\n        bytes32 root,\n        bytes32[] memory leaves\n    ) internal pure returns (bool) {\n        return processMultiProof(proof, proofFlags, leaves) == root;\n    }\n\n    /**\n     * @dev Calldata version of {multiProofVerify}\n     *\n     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.\n     *\n     * _Available since v4.7._\n     */\n    function multiProofVerifyCalldata(\n        bytes32[] calldata proof,\n        bool[] calldata proofFlags,\n        bytes32 root,\n        bytes32[] memory leaves\n    ) internal pure returns (bool) {\n        return processMultiProofCalldata(proof, proofFlags, leaves) == root;\n    }\n\n    /**\n     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction\n     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another\n     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false\n     * respectively.\n     *\n     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree\n     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the\n     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).\n     *\n     * _Available since v4.7._\n     */\n    function processMultiProof(\n        bytes32[] memory proof,\n        bool[] memory proofFlags,\n        bytes32[] memory leaves\n    ) internal pure returns (bytes32 merkleRoot) {\n        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by\n        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the\n        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of\n        // the merkle tree.\n        uint256 leavesLen = leaves.length;\n        uint256 proofLen = proof.length;\n        uint256 totalHashes = proofFlags.length;\n\n        // Check proof validity.\n        require(leavesLen + proofLen - 1 == totalHashes, \"MerkleProof: invalid multiproof\");\n\n        // The xxxPos values are \"pointers\" to the next value to consume in each array. All accesses are done using\n        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's \"pop\".\n        bytes32[] memory hashes = new bytes32[](totalHashes);\n        uint256 leafPos = 0;\n        uint256 hashPos = 0;\n        uint256 proofPos = 0;\n        // At each step, we compute the next hash using two values:\n        // - a value from the \"main queue\". If not all leaves have been consumed, we get the next leaf, otherwise we\n        //   get the next hash.\n        // - depending on the flag, either another value from the \"main queue\" (merging branches) or an element from the\n        //   `proof` array.\n        for (uint256 i = 0; i < totalHashes; i++) {\n            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];\n            bytes32 b = proofFlags[i]\n                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])\n                : proof[proofPos++];\n            hashes[i] = _hashPair(a, b);\n        }\n\n        if (totalHashes > 0) {\n            require(proofPos == proofLen, \"MerkleProof: invalid multiproof\");\n            unchecked {\n                return hashes[totalHashes - 1];\n            }\n        } else if (leavesLen > 0) {\n            return leaves[0];\n        } else {\n            return proof[0];\n        }\n    }\n\n    /**\n     * @dev Calldata version of {processMultiProof}.\n     *\n     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.\n     *\n     * _Available since v4.7._\n     */\n    function processMultiProofCalldata(\n        bytes32[] calldata proof,\n        bool[] calldata proofFlags,\n        bytes32[] memory leaves\n    ) internal pure returns (bytes32 merkleRoot) {\n        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by\n        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the\n        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of\n        // the merkle tree.\n        uint256 leavesLen = leaves.length;\n        uint256 proofLen = proof.length;\n        uint256 totalHashes = proofFlags.length;\n\n        // Check proof validity.\n        require(leavesLen + proofLen - 1 == totalHashes, \"MerkleProof: invalid multiproof\");\n\n        // The xxxPos values are \"pointers\" to the next value to consume in each array. All accesses are done using\n        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's \"pop\".\n        bytes32[] memory hashes = new bytes32[](totalHashes);\n        uint256 leafPos = 0;\n        uint256 hashPos = 0;\n        uint256 proofPos = 0;\n        // At each step, we compute the next hash using two values:\n        // - a value from the \"main queue\". If not all leaves have been consumed, we get the next leaf, otherwise we\n        //   get the next hash.\n        // - depending on the flag, either another value from the \"main queue\" (merging branches) or an element from the\n        //   `proof` array.\n        for (uint256 i = 0; i < totalHashes; i++) {\n            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];\n            bytes32 b = proofFlags[i]\n                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])\n                : proof[proofPos++];\n            hashes[i] = _hashPair(a, b);\n        }\n\n        if (totalHashes > 0) {\n            require(proofPos == proofLen, \"MerkleProof: invalid multiproof\");\n            unchecked {\n                return hashes[totalHashes - 1];\n            }\n        } else if (leavesLen > 0) {\n            return leaves[0];\n        } else {\n            return proof[0];\n        }\n    }\n\n    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {\n        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);\n    }\n\n    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {\n        /// @solidity memory-safe-assembly\n        assembly {\n            mstore(0x00, a)\n            mstore(0x20, b)\n            value := keccak256(0x00, 0x40)\n        }\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../Strings.sol\";\n\n/**\n * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.\n *\n * These functions can be used to verify that a message was signed by the holder\n * of the private keys of a given address.\n */\nlibrary ECDSA {\n    enum RecoverError {\n        NoError,\n        InvalidSignature,\n        InvalidSignatureLength,\n        InvalidSignatureS,\n        InvalidSignatureV // Deprecated in v4.8\n    }\n\n    function _throwError(RecoverError error) private pure {\n        if (error == RecoverError.NoError) {\n            return; // no error: do nothing\n        } else if (error == RecoverError.InvalidSignature) {\n            revert(\"ECDSA: invalid signature\");\n        } else if (error == RecoverError.InvalidSignatureLength) {\n            revert(\"ECDSA: invalid signature length\");\n        } else if (error == RecoverError.InvalidSignatureS) {\n            revert(\"ECDSA: invalid signature 's' value\");\n        }\n    }\n\n    /**\n     * @dev Returns the address that signed a hashed message (`hash`) with\n     * `signature` or error string. This address can then be used for verification purposes.\n     *\n     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:\n     * this function rejects them by requiring the `s` value to be in the lower\n     * half order, and the `v` value to be either 27 or 28.\n     *\n     * IMPORTANT: `hash` _must_ be the result of a hash operation for the\n     * verification to be secure: it is possible to craft signatures that\n     * recover to arbitrary addresses for non-hashed data. A safe way to ensure\n     * this is by receiving a hash of the original message (which may otherwise\n     * be too long), and then calling {toEthSignedMessageHash} on it.\n     *\n     * Documentation for signature generation:\n     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]\n     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]\n     *\n     * _Available since v4.3._\n     */\n    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {\n        if (signature.length == 65) {\n            bytes32 r;\n            bytes32 s;\n            uint8 v;\n            // ecrecover takes the signature parameters, and the only way to get them\n            // currently is to use assembly.\n            /// @solidity memory-safe-assembly\n            assembly {\n                r := mload(add(signature, 0x20))\n                s := mload(add(signature, 0x40))\n                v := byte(0, mload(add(signature, 0x60)))\n            }\n            return tryRecover(hash, v, r, s);\n        } else {\n            return (address(0), RecoverError.InvalidSignatureLength);\n        }\n    }\n\n    /**\n     * @dev Returns the address that signed a hashed message (`hash`) with\n     * `signature`. This address can then be used for verification purposes.\n     *\n     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:\n     * this function rejects them by requiring the `s` value to be in the lower\n     * half order, and the `v` value to be either 27 or 28.\n     *\n     * IMPORTANT: `hash` _must_ be the result of a hash operation for the\n     * verification to be secure: it is possible to craft signatures that\n     * recover to arbitrary addresses for non-hashed data. A safe way to ensure\n     * this is by receiving a hash of the original message (which may otherwise\n     * be too long), and then calling {toEthSignedMessageHash} on it.\n     */\n    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {\n        (address recovered, RecoverError error) = tryRecover(hash, signature);\n        _throwError(error);\n        return recovered;\n    }\n\n    /**\n     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.\n     *\n     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]\n     *\n     * _Available since v4.3._\n     */\n    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {\n        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);\n        uint8 v = uint8((uint256(vs) >> 255) + 27);\n        return tryRecover(hash, v, r, s);\n    }\n\n    /**\n     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.\n     *\n     * _Available since v4.2._\n     */\n    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {\n        (address recovered, RecoverError error) = tryRecover(hash, r, vs);\n        _throwError(error);\n        return recovered;\n    }\n\n    /**\n     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,\n     * `r` and `s` signature fields separately.\n     *\n     * _Available since v4.3._\n     */\n    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {\n        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature\n        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines\n        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most\n        // signatures from current libraries generate a unique signature with an s-value in the lower half order.\n        //\n        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value\n        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or\n        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept\n        // these malleable signatures as well.\n        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {\n            return (address(0), RecoverError.InvalidSignatureS);\n        }\n\n        // If the signature is valid (and not malleable), return the signer address\n        address signer = ecrecover(hash, v, r, s);\n        if (signer == address(0)) {\n            return (address(0), RecoverError.InvalidSignature);\n        }\n\n        return (signer, RecoverError.NoError);\n    }\n\n    /**\n     * @dev Overload of {ECDSA-recover} that receives the `v`,\n     * `r` and `s` signature fields separately.\n     */\n    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {\n        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);\n        _throwError(error);\n        return recovered;\n    }\n\n    /**\n     * @dev Returns an Ethereum Signed Message, created from a `hash`. This\n     * produces hash corresponding to the one signed with the\n     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]\n     * JSON-RPC method as part of EIP-191.\n     *\n     * See {recover}.\n     */\n    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {\n        // 32 is the length in bytes of hash,\n        // enforced by the type signature above\n        /// @solidity memory-safe-assembly\n        assembly {\n            mstore(0x00, \"\\x19Ethereum Signed Message:\\n32\")\n            mstore(0x1c, hash)\n            message := keccak256(0x00, 0x3c)\n        }\n    }\n\n    /**\n     * @dev Returns an Ethereum Signed Message, created from `s`. This\n     * produces hash corresponding to the one signed with the\n     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]\n     * JSON-RPC method as part of EIP-191.\n     *\n     * See {recover}.\n     */\n    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {\n        return keccak256(abi.encodePacked(\"\\x19Ethereum Signed Message:\\n\", Strings.toString(s.length), s));\n    }\n\n    /**\n     * @dev Returns an Ethereum Signed Typed Data, created from a\n     * `domainSeparator` and a `structHash`. This produces hash corresponding\n     * to the one signed with the\n     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]\n     * JSON-RPC method as part of EIP-712.\n     *\n     * See {recover}.\n     */\n    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {\n        /// @solidity memory-safe-assembly\n        assembly {\n            let ptr := mload(0x40)\n            mstore(ptr, \"\\x19\\x01\")\n            mstore(add(ptr, 0x02), domainSeparator)\n            mstore(add(ptr, 0x22), structHash)\n            data := keccak256(ptr, 0x42)\n        }\n    }\n\n    /**\n     * @dev Returns an Ethereum Signed Data with intended validator, created from a\n     * `validator` and `data` according to the version 0 of EIP-191.\n     *\n     * See {recover}.\n     */\n    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {\n        return keccak256(abi.encodePacked(\"\\x19\\x00\", validator, data));\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n    function _msgSender() internal view virtual returns (address) {\n        return msg.sender;\n    }\n\n    function _msgData() internal view virtual returns (bytes calldata) {\n        return msg.data;\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/Strings.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./math/Math.sol\";\nimport \"./math/SignedMath.sol\";\n\n/**\n * @dev String operations.\n */\nlibrary Strings {\n    bytes16 private constant _SYMBOLS = \"0123456789abcdef\";\n    uint8 private constant _ADDRESS_LENGTH = 20;\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` decimal representation.\n     */\n    function toString(uint256 value) internal pure returns (string memory) {\n        unchecked {\n            uint256 length = Math.log10(value) + 1;\n            string memory buffer = new string(length);\n            uint256 ptr;\n            /// @solidity memory-safe-assembly\n            assembly {\n                ptr := add(buffer, add(32, length))\n            }\n            while (true) {\n                ptr--;\n                /// @solidity memory-safe-assembly\n                assembly {\n                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))\n                }\n                value /= 10;\n                if (value == 0) break;\n            }\n            return buffer;\n        }\n    }\n\n    /**\n     * @dev Converts a `int256` to its ASCII `string` decimal representation.\n     */\n    function toString(int256 value) internal pure returns (string memory) {\n        return string(abi.encodePacked(value < 0 ? \"-\" : \"\", toString(SignedMath.abs(value))));\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.\n     */\n    function toHexString(uint256 value) internal pure returns (string memory) {\n        unchecked {\n            return toHexString(value, Math.log256(value) + 1);\n        }\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.\n     */\n    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {\n        bytes memory buffer = new bytes(2 * length + 2);\n        buffer[0] = \"0\";\n        buffer[1] = \"x\";\n        for (uint256 i = 2 * length + 1; i > 1; --i) {\n            buffer[i] = _SYMBOLS[value & 0xf];\n            value >>= 4;\n        }\n        require(value == 0, \"Strings: hex length insufficient\");\n        return string(buffer);\n    }\n\n    /**\n     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.\n     */\n    function toHexString(address addr) internal pure returns (string memory) {\n        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);\n    }\n\n    /**\n     * @dev Returns true if the two strings are equal.\n     */\n    function equal(string memory a, string memory b) internal pure returns (bool) {\n        return keccak256(bytes(a)) == keccak256(bytes(b));\n    }\n}\n"
    },
    "src/ManyChainMultiSig.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity =0.8.19;\n\nimport \"openzeppelin-contracts/utils/cryptography/MerkleProof.sol\";\nimport \"openzeppelin-contracts/access/Ownable2Step.sol\";\nimport \"openzeppelin-contracts/utils/cryptography/ECDSA.sol\";\n\n// Should be used as the first 32 bytes of the pre-image of the leaf that holds a\n// op. This value is for domain separation of the different values stored in the\n// Merkle tree.\nbytes32 constant MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_OP =\n    keccak256(\"MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_OP\");\n\n// Should be used as the first 32 bytes of the pre-image of the leaf that holds the\n// root metadata. This value is for domain separation of the different values stored in the\n// Merkle tree.\nbytes32 constant MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_METADATA =\n    keccak256(\"MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_METADATA\");\n\n/// @notice This is a multi-sig contract that supports signing many transactions (called \"ops\" in\n/// the context of this contract to prevent confusion with transactions on the underlying chain)\n/// targeting many chains with a single set of signatures. Authorized ops along with some metadata\n/// are stored in a Merkle tree, which is generated offchain. Each op has an associated chain id,\n/// ManyChainMultiSig contract address and nonce. The nonce enables us to enforce the\n/// (per-ManyChainMultiSig contract instance) ordering of ops.\n///\n/// At any time, this contract stores at most one Merkle root. In the typical case, all ops\n/// in the Merkle tree are expected to be executed before another root is set. Since the Merkle root\n/// itself reveals ~ no information about the tree's contents, we take two measures to improve\n/// transparency. First, we attach an expiration time to each Merkle root after which it cannot\n/// be used any more. Second, we embed metadata in the tree itself that has to be proven/revealed\n/// to the contract when a new root is set; the metadata contains the range of nonces (and thus\n/// number of ops) in the tree intended for the ManyChainMultiSig contract instance on which the\n/// root is being set.\n///\n/// Once a root is registered, *anyone* is allowed to furnish proofs of op inclusion in the Merkle\n/// tree and execute the corresponding op. The contract enforces that ops are executed in the\n/// correct order and with the correct arguments. A notable exception to this is the gas limit of\n/// the call, which can be freely determined by the executor. We expect (transitive) callees to\n/// implement standard behavior of simply reverting if insufficient gas is provided. In particular,\n/// this means callees should not have non-reverting gas-dependent branches.\n///\n/// Note: In the typical case, we expect the time from a root being set to all of the ops\n/// therein having been executed to be on the order of a couple of minutes.\ncontract ManyChainMultiSig is Ownable2Step {\n    receive() external payable {}\n\n    uint8 public constant NUM_GROUPS = 32;\n    uint8 public constant MAX_NUM_SIGNERS = 200;\n\n    struct Signer {\n        address addr;\n        uint8 index; // index of signer in s_config.signers\n        uint8 group; // 0 <= group < NUM_GROUPS. Each signer can only be in one group.\n    }\n\n    // s_signers is used to easily validate the existence of the signer by its address. We still\n    // have signers stored in s_config in order to easily deactivate them when a new config is set.\n    mapping(address => Signer) s_signers;\n\n    // Signing groups are arranged in a tree. Each group is an interior node and has its own quorum.\n    // Signers are the leaves of the tree. A signer/leaf node is successful iff it furnishes a valid\n    // signature. A group/interior node is successful iff a quorum of its children are successful.\n    // setRoot succeeds only if the root group is successful.\n    // Here is an example:\n    //\n    //                    ┌──────┐\n    //                 ┌─►│2-of-3│◄───────┐\n    //                 │  └──────┘        │\n    //                 │        ▲         │\n    //                 │        │         │\n    //              ┌──┴───┐ ┌──┴───┐ ┌───┴────┐\n    //          ┌──►│1-of-2│ │2-of-2│ │signer A│\n    //          │   └──────┘ └──────┘ └────────┘\n    //          │       ▲      ▲  ▲\n    //          │       │      │  │     ┌──────┐\n    //          │       │      │  └─────┤1-of-2│◄─┐\n    //          │       │      │        └──────┘  │\n    //  ┌───────┴┐ ┌────┴───┐ ┌┴───────┐ ▲        │\n    //  │signer B│ │signer C│ │signer D│ │        │\n    //  └────────┘ └────────┘ └────────┘ │        │\n    //                                   │        │\n    //                            ┌──────┴─┐ ┌────┴───┐\n    //                            │signer E│ │signer F│\n    //                            └────────┘ └────────┘\n    //\n    // - If signers [A, B] sign, they can set a root.\n    // - If signers [B, D, E] sign, they can set a root.\n    // - If signers [B, D, E, F] sign, they can set a root. (Either E's or F's signature was\n    //   superfluous.)\n    // - If signers [B, C, D] sign, they cannot set a root, because the 2-of-2 group on the second\n    //   level isn't successful and therefore the root group isn't successful either.\n    //\n    // To map this tree to a Config, we:\n    // - create an entry in signers for each signer (sorted by address in ascending order)\n    // - assign the root group to index 0 and have it be its own parent\n    // - assign an index to each non-root group, such that each group's parent has a lower index\n    //   than the group itself\n    // For example, we could transform the above tree structure into:\n    // groupQuorums = [2, 1, 2, 1] + [0, 0, ...] (rightpad with 0s to NUM_GROUPS)\n    // groupParents = [0, 0, 0, 2] + [0, 0, ...] (rightpad with 0s to NUM_GROUPS)\n    // and assuming that address(A) < address(C) < address(E) < address(F) < address(D) < address(B)\n    // signers = [\n    //    {addr: address(A), index: 0, group: 0}, {addr: address(C), index: 1, group: 1},\n    //    {addr: address(E), index: 2, group: 3}, {addr: address(F), index: 3, group: 3},\n    //    {addr: address(D), index: 4, group: 2}, {addr: address(B), index: 5, group: 1},\n    //  ]\n    struct Config {\n        Signer[] signers;\n        // groupQuorums[i] stores the quorum for the i-th signer group. Any group with\n        // groupQuorums[i] = 0 is considered disabled. The i-th group is successful if\n        // it is enabled and at least groupQuorums[i] of its children are successful.\n        uint8[NUM_GROUPS] groupQuorums;\n        // groupParents[i] stores the parent group of the i-th signer group. We ensure that the\n        // groups form a tree structure (where the root/0-th signer group points to itself as\n        // parent) by enforcing\n        // - (i != 0) implies (groupParents[i] < i)\n        // - groupParents[0] == 0\n        uint8[NUM_GROUPS] groupParents;\n    }\n\n    Config s_config;\n\n    // Remember signedHashes that this contract has seen. Each signedHash can only be set once.\n    mapping(bytes32 => bool) s_seenSignedHashes;\n\n    // MerkleRoots are a bit tricky since they reveal almost no information about the contents of\n    // the tree they authenticate. To mitigate this, we enforce that this contract can only execute\n    // ops from a single root at any given point in time. We further associate an expiry\n    // with each root to ensure that messages are executed in a timely manner. setRoot and various\n    // execute calls are expected to happen in quick succession. We put the expiring root and\n    // opCount in same struct in order to reduce gas costs of reading and writing.\n    struct ExpiringRootAndOpCount {\n        bytes32 root;\n        // We prefer using block.timestamp instead of block.number, as a single\n        // root may target many chains. We assume that block.timestamp can\n        // be manipulated by block producers but only within relatively tight\n        // bounds (a few minutes at most).\n        uint32 validUntil;\n        // each ManyChainMultiSig instance has it own independent opCount.\n        uint40 opCount;\n    }\n\n    ExpiringRootAndOpCount s_expiringRootAndOpCount;\n\n    /// @notice Each root also authenticates metadata about itself (stored as one of the leaves)\n    /// which must be revealed when the root is set.\n    ///\n    /// @dev We need to be careful that abi.encode(MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_METADATA, RootMetadata)\n    /// is greater than 64 bytes to prevent collisions with internal nodes in the Merkle tree. See\n    /// openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol:15 for details.\n    struct RootMetadata {\n        // chainId and multiSig uniquely identify a ManyChainMultiSig contract instance that the\n        // root is destined for.\n        // uint256 since it is unclear if we can represent chainId as uint64. There is a proposal (\n        // https://ethereum-magicians.org/t/eip-2294-explicit-bound-to-chain-id/11090) to\n        // bound chainid to 64 bits, but it is still unresolved.\n        uint256 chainId;\n        address multiSig;\n        // opCount before adding this root\n        uint40 preOpCount;\n        // opCount after executing all ops in this root\n        uint40 postOpCount;\n        // override whatever root was already stored in this contract even if some of its\n        // ops weren't executed.\n        // Important: it is strongly recommended that offchain code set this to false by default.\n        // Be careful setting this to true as it may break assumptions about what transactions from\n        // the previous root have already been executed.\n        bool overridePreviousRoot;\n    }\n\n    RootMetadata s_rootMetadata;\n\n    /// @notice An ECDSA signature.\n    struct Signature {\n        uint8 v;\n        bytes32 r;\n        bytes32 s;\n    }\n\n    /// @notice setRoot Sets a new expiring root.\n    ///\n    /// @param root is the new expiring root.\n    /// @param validUntil is the time by which root is valid\n    /// @param metadata is the authenticated metadata about the root, which is stored as one of\n    /// the leaves.\n    /// @param metadataProof is the MerkleProof of inclusion of the metadata in the Merkle tree.\n    /// @param signatures the ECDSA signatures on (root, validUntil).\n    ///\n    /// @dev the message (root, validUntil) should be signed by a sufficient set of signers.\n    /// This signature authenticates also the metadata.\n    ///\n    /// @dev this method can be executed by anyone who has the root and valid signatures.\n    /// as we validate the correctness of signatures, this imposes no risk.\n    function setRoot(\n        bytes32 root,\n        uint32 validUntil,\n        RootMetadata calldata metadata,\n        bytes32[] calldata metadataProof,\n        Signature[] calldata signatures\n    ) external {\n        bytes32 signedHash = ECDSA.toEthSignedMessageHash(keccak256(abi.encode(root, validUntil)));\n\n        // Each (root, validUntil) tuple can only bet set once. For example, this prevents a\n        // scenario where there are two signed roots with overridePreviousRoot = true and\n        // an adversary keeps alternatively calling setRoot(root1), setRoot(root2),\n        // setRoot(root1), ...\n        if (s_seenSignedHashes[signedHash]) {\n            revert SignedHashAlreadySeen();\n        }\n\n        // verify ECDSA signatures on (root, validUntil) and ensure that the root group is successful\n        {\n            // verify sigs and count number of signers in each group\n            Signer memory signer;\n            address prevAddress = address(0x0);\n            uint8[NUM_GROUPS] memory groupVoteCounts; // number of votes per group\n            for (uint256 i = 0; i < signatures.length; i++) {\n                Signature calldata sig = signatures[i];\n                address signerAddress = ECDSA.recover(signedHash, sig.v, sig.r, sig.s);\n                // the off-chain system is required to sort the signatures by the\n                // signer address in an increasing order\n                if (prevAddress >= signerAddress) {\n                    revert SignersAddressesMustBeStrictlyIncreasing();\n                }\n                prevAddress = signerAddress;\n\n                signer = s_signers[signerAddress];\n                if (signer.addr != signerAddress) {\n                    revert InvalidSigner();\n                }\n                uint8 group = signer.group;\n                while (true) {\n                    groupVoteCounts[group]++;\n                    if (groupVoteCounts[group] != s_config.groupQuorums[group]) {\n                        // bail out unless we just hit the quorum. we only hit each quorum once,\n                        // so we never move on to the parent of a group more than once.\n                        break;\n                    }\n                    if (group == 0) {\n                        // reached root\n                        break;\n                    }\n\n                    group = s_config.groupParents[group];\n                }\n            }\n            // the group at the root of the tree (with index 0) determines whether the vote passed,\n            // we cannot proceed if it isn't configured with a valid (non-zero) quorum\n            if (s_config.groupQuorums[0] == 0) {\n                revert MissingConfig();\n            }\n            // did the root group reach its quorum?\n            if (groupVoteCounts[0] < s_config.groupQuorums[0]) {\n                revert InsufficientSigners();\n            }\n        }\n\n        if (validUntil < block.timestamp) {\n            revert ValidUntilHasAlreadyPassed();\n        }\n\n        {\n            // verify metadataProof\n            bytes32 hashedLeaf =\n                keccak256(abi.encode(MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_METADATA, metadata));\n            if (!MerkleProof.verify(metadataProof, root, hashedLeaf)) {\n                revert ProofCannotBeVerified();\n            }\n        }\n\n        if (block.chainid != metadata.chainId) {\n            revert WrongChainId();\n        }\n\n        if (address(this) != metadata.multiSig) {\n            revert WrongMultiSig();\n        }\n\n        uint40 opCount = s_expiringRootAndOpCount.opCount;\n\n        // don't allow a new root to be set if there are still outstanding ops that have not been\n        // executed, unless overridePreviousRoot is set\n        if (opCount != s_rootMetadata.postOpCount && !metadata.overridePreviousRoot) {\n            revert PendingOps();\n        }\n\n        // the signers are responsible for tracking opCount offchain and ensuring that\n        // preOpCount equals to opCount\n        if (opCount != metadata.preOpCount) {\n            revert WrongPreOpCount();\n        }\n\n        if (metadata.preOpCount > metadata.postOpCount) {\n            revert WrongPostOpCount();\n        }\n\n        // done with validation, persist in in contract state\n        s_seenSignedHashes[signedHash] = true;\n        s_expiringRootAndOpCount = ExpiringRootAndOpCount({\n            root: root,\n            validUntil: validUntil,\n            opCount: metadata.preOpCount\n        });\n        s_rootMetadata = metadata;\n        emit NewRoot(root, validUntil, metadata);\n    }\n\n    /// @notice an op to be executed by the ManyChainMultiSig contract\n    ///\n    /// @dev We need to be careful that abi.encode(LEAF_OP_DOMAIN_SEPARATOR, RootMetadata)\n    /// is greater than 64 bytes to prevent collisions with internal nodes in the Merkle tree. See\n    /// openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol:15 for details.\n    struct Op {\n        uint256 chainId;\n        address multiSig;\n        uint40 nonce;\n        address to;\n        uint256 value;\n        bytes data;\n    }\n\n    /// @notice Execute the received op after verifying the proof of its inclusion in the\n    /// current Merkle tree. The op should be the next op according to the order\n    /// enforced by the merkle tree whose root is stored in s_expiringRootAndOpCount, i.e., the\n    /// nonce of the op should be equal to s_expiringRootAndOpCount.opCount.\n    ///\n    /// @param op is Op to be executed\n    /// @param proof is the MerkleProof for the op's inclusion in the MerkleTree which its\n    /// root is the s_expiringRootAndOpCount.root.\n    ///\n    /// @dev ANYONE can call this function! That's intentional. Callers can only execute verified,\n    /// ordered ops in the Merkle tree.\n    ///\n    /// @dev we perform a raw call to each target. Raw calls to targets that don't have associated\n    /// contract code will always succeed regardless of data.\n    ///\n    /// @dev the gas limit of the call can be freely determined by the caller of this function.\n    /// We expect callees to revert if they run out of gas.\n    function execute(Op calldata op, bytes32[] calldata proof) external payable {\n        ExpiringRootAndOpCount memory currentExpiringRootAndOpCount = s_expiringRootAndOpCount;\n\n        if (s_rootMetadata.postOpCount <= currentExpiringRootAndOpCount.opCount) {\n            revert PostOpCountReached();\n        }\n\n        if (op.chainId != block.chainid) {\n            revert WrongChainId();\n        }\n\n        if (op.multiSig != address(this)) {\n            revert WrongMultiSig();\n        }\n\n        if (block.timestamp > currentExpiringRootAndOpCount.validUntil) {\n            revert RootExpired();\n        }\n\n        if (op.nonce != currentExpiringRootAndOpCount.opCount) {\n            revert WrongNonce();\n        }\n\n        // verify that the op exists in the merkle tree\n        bytes32 hashedLeaf = keccak256(abi.encode(MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_OP, op));\n        if (!MerkleProof.verify(proof, currentExpiringRootAndOpCount.root, hashedLeaf)) {\n            revert ProofCannotBeVerified();\n        }\n\n        // increase the counter *before* execution to prevent reentrancy issues\n        s_expiringRootAndOpCount.opCount = currentExpiringRootAndOpCount.opCount + 1;\n\n        _execute(op.to, op.value, op.data);\n        emit OpExecuted(op.nonce, op.to, op.data, op.value);\n    }\n\n    /// @notice sets a new s_config. If clearRoot is true, then it also invalidates\n    /// s_expiringRootAndOpCount.root.\n    ///\n    /// @param signerAddresses holds the addresses of the active signers. The addresses must be in\n    /// ascending order.\n    /// @param signerGroups maps each signer to its group\n    /// @param groupQuorums holds the required number of valid signatures in each group.\n    /// A group i is called successful group if at least groupQuorum[i] distinct signers provide a\n    /// valid signature.\n    /// @param groupParents holds each group's parent. The groups must be arranged in a tree s.t.\n    /// group 0 is the root of the tree and the i-th group's parent has index j less than i.\n    /// Iff setRoot is called with a set of signatures that causes the root group to be successful,\n    /// setRoot allows a root to be set.\n    /// @param clearRoot, if set to true, invalidates the current root. This option is needed to\n    /// invalidate the current root, so to prevent further ops from being executed. This\n    /// might be used when the current root was signed under a loser group configuration or when\n    /// some previous signers aren't trusted any more.\n    function setConfig(\n        address[] calldata signerAddresses,\n        uint8[] calldata signerGroups,\n        uint8[NUM_GROUPS] calldata groupQuorums,\n        uint8[NUM_GROUPS] calldata groupParents,\n        bool clearRoot\n    ) external onlyOwner {\n        if (signerAddresses.length == 0 || signerAddresses.length > MAX_NUM_SIGNERS) {\n            revert OutOfBoundsNumOfSigners();\n        }\n\n        if (signerAddresses.length != signerGroups.length) {\n            revert SignerGroupsLengthMismatch();\n        }\n\n        {\n            // validate group structure\n            // counts the number of children of each group\n            uint8[NUM_GROUPS] memory groupChildrenCounts;\n            // first, we count the signers as children\n            for (uint256 i = 0; i < signerGroups.length; i++) {\n                if (signerGroups[i] >= NUM_GROUPS) {\n                    revert OutOfBoundsGroup();\n                }\n                groupChildrenCounts[signerGroups[i]]++;\n            }\n            // second, we iterate backwards so as to check each group and propagate counts from\n            // child group to parent groups up the tree to the root\n            for (uint256 j = 0; j < NUM_GROUPS; j++) {\n                uint256 i = NUM_GROUPS - 1 - j;\n                // ensure we have a well-formed group tree. the root should have itself as parent\n                if ((i != 0 && groupParents[i] >= i) || (i == 0 && groupParents[i] != 0)) {\n                    revert GroupTreeNotWellFormed();\n                }\n                bool disabled = groupQuorums[i] == 0;\n                if (disabled) {\n                    // a disabled group shouldn't have any children\n                    if (0 < groupChildrenCounts[i]) {\n                        revert SignerInDisabledGroup();\n                    }\n                } else {\n                    // ensure that the group quorum can be met\n                    if (groupChildrenCounts[i] < groupQuorums[i]) {\n                        revert OutOfBoundsGroupQuorum();\n                    }\n                    groupChildrenCounts[groupParents[i]]++;\n                    // the above line clobbers groupChildrenCounts[0] in last iteration, don't use it after the loop ends\n                }\n            }\n        }\n\n        Signer[] memory oldSigners = s_config.signers;\n        // remove any old signer addresses\n        for (uint256 i = 0; i < oldSigners.length; i++) {\n            address oldSignerAddress = oldSigners[i].addr;\n            delete s_signers[oldSignerAddress];\n            s_config.signers.pop();\n        }\n\n        // we cannot just write s_config = Config({...}) because solc doesn't support that\n        assert(s_config.signers.length == 0);\n        s_config.groupQuorums = groupQuorums;\n        s_config.groupParents = groupParents;\n\n        // add new signers' addresses, we require that the signers' list be a strictly monotone\n        // increasing sequence\n        address prevSigner = address(0x0);\n        for (uint256 i = 0; i < signerAddresses.length; i++) {\n            if (prevSigner >= signerAddresses[i]) {\n                revert SignersAddressesMustBeStrictlyIncreasing();\n            }\n            Signer memory signer =\n                Signer({addr: signerAddresses[i], index: uint8(i), group: signerGroups[i]});\n            s_signers[signerAddresses[i]] = signer;\n            s_config.signers.push(signer);\n            prevSigner = signerAddresses[i];\n        }\n\n        if (clearRoot) {\n            // clearRoot is equivalent to overriding with a completely empty root\n            uint40 opCount = s_expiringRootAndOpCount.opCount;\n            s_expiringRootAndOpCount =\n                ExpiringRootAndOpCount({root: 0, validUntil: 0, opCount: opCount});\n            s_rootMetadata = RootMetadata({\n                chainId: block.chainid,\n                multiSig: address(this),\n                preOpCount: opCount,\n                postOpCount: opCount,\n                overridePreviousRoot: true\n            });\n        }\n        emit ConfigSet(s_config, clearRoot);\n    }\n\n    /// @notice Execute an op's call. Performs a raw call that always succeeds if the\n    /// target isn't a contract.\n    function _execute(address target, uint256 value, bytes calldata data) internal virtual {\n        (bool success, bytes memory ret) = target.call{value: value}(data);\n        if (!success) {\n            revert CallReverted(ret);\n        }\n    }\n\n    /*\n     * Getters\n     */\n\n    function getConfig() public view returns (Config memory) {\n        return s_config;\n    }\n\n    function getOpCount() public view returns (uint40) {\n        return s_expiringRootAndOpCount.opCount;\n    }\n\n    function getRoot() public view returns (bytes32 root, uint32 validUntil) {\n        ExpiringRootAndOpCount memory currentRootAndOpCount = s_expiringRootAndOpCount;\n        return (currentRootAndOpCount.root, currentRootAndOpCount.validUntil);\n    }\n\n    function getRootMetadata() public view returns (RootMetadata memory) {\n        return s_rootMetadata;\n    }\n\n    /*\n     * Events and Errors\n     */\n\n    /// @notice Emitted when a new root is set.\n    event NewRoot(bytes32 indexed root, uint32 validUntil, RootMetadata metadata);\n\n    /// @notice Emitted when a new config is set.\n    event ConfigSet(Config config, bool isRootCleared);\n\n    /// @notice Emitted when an op gets successfully executed.\n    event OpExecuted(uint40 indexed nonce, address to, bytes data, uint256 value);\n\n    /// @notice Thrown when number of signers is 0 or greater than MAX_NUM_SIGNERS.\n    error OutOfBoundsNumOfSigners();\n\n    /// @notice Thrown when signerAddresses and signerGroups have different lengths.\n    error SignerGroupsLengthMismatch();\n\n    /// @notice Thrown when number of some signer's group is greater than (NUM_GROUPS-1).\n    error OutOfBoundsGroup();\n\n    /// @notice Thrown when the group tree isn't well-formed.\n    error GroupTreeNotWellFormed();\n\n    /// @notice Thrown when the quorum of some group is larger than the number of signers in it.\n    error OutOfBoundsGroupQuorum();\n\n    /// @notice Thrown when a disabled group contains a signer.\n    error SignerInDisabledGroup();\n\n    /// @notice Thrown when the signers' addresses are not a strictly increasing monotone sequence.\n    /// Prevents signers from including more than one signature.\n    error SignersAddressesMustBeStrictlyIncreasing();\n\n    /// @notice Thrown when the signature corresponds to invalid signer.\n    error InvalidSigner();\n\n    /// @notice Thrown when there is no sufficient set of valid signatures provided to make the\n    /// root group successful.\n    error InsufficientSigners();\n\n    /// @notice Thrown when attempt to set metadata or execute op for another chain.\n    error WrongChainId();\n\n    /// @notice Thrown when the multiSig address in metadata or op is\n    /// incompatible with the address of this contract.\n    error WrongMultiSig();\n\n    /// @notice Thrown when the preOpCount <= postOpCount invariant is violated.\n    error WrongPostOpCount();\n\n    /// @notice Thrown when attempting to set a new root while there are still pending ops\n    /// from the previous root without explicitly overriding it.\n    error PendingOps();\n\n    /// @notice Thrown when preOpCount in metadata is incompatible with the current opCount.\n    error WrongPreOpCount();\n\n    /// @notice Thrown when the provided merkle proof cannot be verified.\n    error ProofCannotBeVerified();\n\n    /// @notice Thrown when attempt to execute an op after\n    /// s_expiringRootAndOpCount.validUntil has passed.\n    error RootExpired();\n\n    /// @notice Thrown when attempt to bypass the enforced ops' order in the merkle tree or\n    /// re-execute an op.\n    error WrongNonce();\n\n    /// @notice Thrown when attempting to execute an op even though opCount equals\n    /// metadata.postOpCount.\n    error PostOpCountReached();\n\n    /// @notice Thrown when the underlying call in _execute() reverts.\n    error CallReverted(bytes error);\n\n    /// @notice Thrown when attempt to set past validUntil for the root.\n    error ValidUntilHasAlreadyPassed();\n\n    /// @notice Thrown when setRoot() is called before setting a config.\n    error MissingConfig();\n\n    /// @notice Thrown when attempt to set the same (root, validUntil) in setRoot().\n    error SignedHashAlreadySeen();\n}\n"
    }
  },
  "settings": {
    "evmVersion": "paris",
    "libraries": {},
    "metadata": {
      "appendCBOR": true,
      "bytecodeHash": "ipfs",
      "useLiteralContent": false
    },
    "optimizer": {
      "enabled": true,
      "runs": 200
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "abi"
        ]
      }
    },
    "remappings": [
      "ds-test/=lib/forge-std/lib/ds-test/src/",
      "forge-std/=lib/forge-std/src/",
      "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
      "safe-contracts/=lib/safe-contracts/contracts/",
      "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
      "openzeppelin/=lib/openzeppelin-contracts/contracts/"
    ],
    "viaIR": false
  }
}}

Contract Name:
ManyChainMultiSig

Contract Source Code:

File 1 of 1 : ManyChainMultiSig

{{
  "language": "Solidity",
  "sources": {
    "lib/openzeppelin-contracts/contracts/access/Ownable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n    address private _owner;\n\n    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n    /**\n     * @dev Initializes the contract setting the deployer as the initial owner.\n     */\n    constructor() {\n        _transferOwnership(_msgSender());\n    }\n\n    /**\n     * @dev Throws if called by any account other than the owner.\n     */\n    modifier onlyOwner() {\n        _checkOwner();\n        _;\n    }\n\n    /**\n     * @dev Returns the address of the current owner.\n     */\n    function owner() public view virtual returns (address) {\n        return _owner;\n    }\n\n    /**\n     * @dev Throws if the sender is not the owner.\n     */\n    function _checkOwner() internal view virtual {\n        require(owner() == _msgSender(), \"Ownable: caller is not the owner\");\n    }\n\n    /**\n     * @dev Leaves the contract without owner. It will not be possible to call\n     * `onlyOwner` functions. Can only be called by the current owner.\n     *\n     * NOTE: Renouncing ownership will leave the contract without an owner,\n     * thereby disabling any functionality that is only available to the owner.\n     */\n    function renounceOwnership() public virtual onlyOwner {\n        _transferOwnership(address(0));\n    }\n\n    /**\n     * @dev Transfers ownership of the contract to a new account (`newOwner`).\n     * Can only be called by the current owner.\n     */\n    function transferOwnership(address newOwner) public virtual onlyOwner {\n        require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n        _transferOwnership(newOwner);\n    }\n\n    /**\n     * @dev Transfers ownership of the contract to a new account (`newOwner`).\n     * Internal function without access restriction.\n     */\n    function _transferOwnership(address newOwner) internal virtual {\n        address oldOwner = _owner;\n        _owner = newOwner;\n        emit OwnershipTransferred(oldOwner, newOwner);\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/access/Ownable2Step.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./Ownable.sol\";\n\n/**\n * @dev Contract module which provides access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership} and {acceptOwnership}.\n *\n * This module is used through inheritance. It will make available all functions\n * from parent (Ownable).\n */\nabstract contract Ownable2Step is Ownable {\n    address private _pendingOwner;\n\n    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);\n\n    /**\n     * @dev Returns the address of the pending owner.\n     */\n    function pendingOwner() public view virtual returns (address) {\n        return _pendingOwner;\n    }\n\n    /**\n     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.\n     * Can only be called by the current owner.\n     */\n    function transferOwnership(address newOwner) public virtual override onlyOwner {\n        _pendingOwner = newOwner;\n        emit OwnershipTransferStarted(owner(), newOwner);\n    }\n\n    /**\n     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.\n     * Internal function without access restriction.\n     */\n    function _transferOwnership(address newOwner) internal virtual override {\n        delete _pendingOwner;\n        super._transferOwnership(newOwner);\n    }\n\n    /**\n     * @dev The new owner accepts the ownership transfer.\n     */\n    function acceptOwnership() public virtual {\n        address sender = _msgSender();\n        require(pendingOwner() == sender, \"Ownable2Step: caller is not the new owner\");\n        _transferOwnership(sender);\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/math/SignedMath.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard signed math utilities missing in the Solidity language.\n */\nlibrary SignedMath {\n    /**\n     * @dev Returns the largest of two signed numbers.\n     */\n    function max(int256 a, int256 b) internal pure returns (int256) {\n        return a > b ? a : b;\n    }\n\n    /**\n     * @dev Returns the smallest of two signed numbers.\n     */\n    function min(int256 a, int256 b) internal pure returns (int256) {\n        return a < b ? a : b;\n    }\n\n    /**\n     * @dev Returns the average of two signed numbers without overflow.\n     * The result is rounded towards zero.\n     */\n    function average(int256 a, int256 b) internal pure returns (int256) {\n        // Formula from the book \"Hacker's Delight\"\n        int256 x = (a & b) + ((a ^ b) >> 1);\n        return x + (int256(uint256(x) >> 255) & (a ^ b));\n    }\n\n    /**\n     * @dev Returns the absolute unsigned value of a signed value.\n     */\n    function abs(int256 n) internal pure returns (uint256) {\n        unchecked {\n            // must be unchecked in order to support `n = type(int256).min`\n            return uint256(n >= 0 ? n : -n);\n        }\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n    enum Rounding {\n        Down, // Toward negative infinity\n        Up, // Toward infinity\n        Zero // Toward zero\n    }\n\n    /**\n     * @dev Returns the largest of two numbers.\n     */\n    function max(uint256 a, uint256 b) internal pure returns (uint256) {\n        return a > b ? a : b;\n    }\n\n    /**\n     * @dev Returns the smallest of two numbers.\n     */\n    function min(uint256 a, uint256 b) internal pure returns (uint256) {\n        return a < b ? a : b;\n    }\n\n    /**\n     * @dev Returns the average of two numbers. The result is rounded towards\n     * zero.\n     */\n    function average(uint256 a, uint256 b) internal pure returns (uint256) {\n        // (a + b) / 2 can overflow.\n        return (a & b) + (a ^ b) / 2;\n    }\n\n    /**\n     * @dev Returns the ceiling of the division of two numbers.\n     *\n     * This differs from standard division with `/` in that it rounds up instead\n     * of rounding down.\n     */\n    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {\n        // (a + b - 1) / b can overflow on addition, so we distribute.\n        return a == 0 ? 0 : (a - 1) / b + 1;\n    }\n\n    /**\n     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0\n     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)\n     * with further edits by Uniswap Labs also under MIT license.\n     */\n    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {\n        unchecked {\n            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use\n            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256\n            // variables such that product = prod1 * 2^256 + prod0.\n            uint256 prod0; // Least significant 256 bits of the product\n            uint256 prod1; // Most significant 256 bits of the product\n            assembly {\n                let mm := mulmod(x, y, not(0))\n                prod0 := mul(x, y)\n                prod1 := sub(sub(mm, prod0), lt(mm, prod0))\n            }\n\n            // Handle non-overflow cases, 256 by 256 division.\n            if (prod1 == 0) {\n                // Solidity will revert if denominator == 0, unlike the div opcode on its own.\n                // The surrounding unchecked block does not change this fact.\n                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.\n                return prod0 / denominator;\n            }\n\n            // Make sure the result is less than 2^256. Also prevents denominator == 0.\n            require(denominator > prod1, \"Math: mulDiv overflow\");\n\n            ///////////////////////////////////////////////\n            // 512 by 256 division.\n            ///////////////////////////////////////////////\n\n            // Make division exact by subtracting the remainder from [prod1 prod0].\n            uint256 remainder;\n            assembly {\n                // Compute remainder using mulmod.\n                remainder := mulmod(x, y, denominator)\n\n                // Subtract 256 bit number from 512 bit number.\n                prod1 := sub(prod1, gt(remainder, prod0))\n                prod0 := sub(prod0, remainder)\n            }\n\n            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.\n            // See https://cs.stackexchange.com/q/138556/92363.\n\n            // Does not overflow because the denominator cannot be zero at this stage in the function.\n            uint256 twos = denominator & (~denominator + 1);\n            assembly {\n                // Divide denominator by twos.\n                denominator := div(denominator, twos)\n\n                // Divide [prod1 prod0] by twos.\n                prod0 := div(prod0, twos)\n\n                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.\n                twos := add(div(sub(0, twos), twos), 1)\n            }\n\n            // Shift in bits from prod1 into prod0.\n            prod0 |= prod1 * twos;\n\n            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such\n            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for\n            // four bits. That is, denominator * inv = 1 mod 2^4.\n            uint256 inverse = (3 * denominator) ^ 2;\n\n            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works\n            // in modular arithmetic, doubling the correct bits in each step.\n            inverse *= 2 - denominator * inverse; // inverse mod 2^8\n            inverse *= 2 - denominator * inverse; // inverse mod 2^16\n            inverse *= 2 - denominator * inverse; // inverse mod 2^32\n            inverse *= 2 - denominator * inverse; // inverse mod 2^64\n            inverse *= 2 - denominator * inverse; // inverse mod 2^128\n            inverse *= 2 - denominator * inverse; // inverse mod 2^256\n\n            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.\n            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is\n            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1\n            // is no longer required.\n            result = prod0 * inverse;\n            return result;\n        }\n    }\n\n    /**\n     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.\n     */\n    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {\n        uint256 result = mulDiv(x, y, denominator);\n        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {\n            result += 1;\n        }\n        return result;\n    }\n\n    /**\n     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.\n     *\n     * Inspired by Henry S. Warren, Jr.'s \"Hacker's Delight\" (Chapter 11).\n     */\n    function sqrt(uint256 a) internal pure returns (uint256) {\n        if (a == 0) {\n            return 0;\n        }\n\n        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.\n        //\n        // We know that the \"msb\" (most significant bit) of our target number `a` is a power of 2 such that we have\n        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.\n        //\n        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`\n        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`\n        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`\n        //\n        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.\n        uint256 result = 1 << (log2(a) >> 1);\n\n        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,\n        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at\n        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision\n        // into the expected uint128 result.\n        unchecked {\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            return min(result, a / result);\n        }\n    }\n\n    /**\n     * @notice Calculates sqrt(a), following the selected rounding direction.\n     */\n    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = sqrt(a);\n            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);\n        }\n    }\n\n    /**\n     * @dev Return the log in base 2, rounded down, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log2(uint256 value) internal pure returns (uint256) {\n        uint256 result = 0;\n        unchecked {\n            if (value >> 128 > 0) {\n                value >>= 128;\n                result += 128;\n            }\n            if (value >> 64 > 0) {\n                value >>= 64;\n                result += 64;\n            }\n            if (value >> 32 > 0) {\n                value >>= 32;\n                result += 32;\n            }\n            if (value >> 16 > 0) {\n                value >>= 16;\n                result += 16;\n            }\n            if (value >> 8 > 0) {\n                value >>= 8;\n                result += 8;\n            }\n            if (value >> 4 > 0) {\n                value >>= 4;\n                result += 4;\n            }\n            if (value >> 2 > 0) {\n                value >>= 2;\n                result += 2;\n            }\n            if (value >> 1 > 0) {\n                result += 1;\n            }\n        }\n        return result;\n    }\n\n    /**\n     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = log2(value);\n            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);\n        }\n    }\n\n    /**\n     * @dev Return the log in base 10, rounded down, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log10(uint256 value) internal pure returns (uint256) {\n        uint256 result = 0;\n        unchecked {\n            if (value >= 10 ** 64) {\n                value /= 10 ** 64;\n                result += 64;\n            }\n            if (value >= 10 ** 32) {\n                value /= 10 ** 32;\n                result += 32;\n            }\n            if (value >= 10 ** 16) {\n                value /= 10 ** 16;\n                result += 16;\n            }\n            if (value >= 10 ** 8) {\n                value /= 10 ** 8;\n                result += 8;\n            }\n            if (value >= 10 ** 4) {\n                value /= 10 ** 4;\n                result += 4;\n            }\n            if (value >= 10 ** 2) {\n                value /= 10 ** 2;\n                result += 2;\n            }\n            if (value >= 10 ** 1) {\n                result += 1;\n            }\n        }\n        return result;\n    }\n\n    /**\n     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = log10(value);\n            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);\n        }\n    }\n\n    /**\n     * @dev Return the log in base 256, rounded down, of a positive value.\n     * Returns 0 if given 0.\n     *\n     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.\n     */\n    function log256(uint256 value) internal pure returns (uint256) {\n        uint256 result = 0;\n        unchecked {\n            if (value >> 128 > 0) {\n                value >>= 128;\n                result += 16;\n            }\n            if (value >> 64 > 0) {\n                value >>= 64;\n                result += 8;\n            }\n            if (value >> 32 > 0) {\n                value >>= 32;\n                result += 4;\n            }\n            if (value >> 16 > 0) {\n                value >>= 16;\n                result += 2;\n            }\n            if (value >> 8 > 0) {\n                result += 1;\n            }\n        }\n        return result;\n    }\n\n    /**\n     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = log256(value);\n            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);\n        }\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev These functions deal with verification of Merkle Tree proofs.\n *\n * The tree and the proofs can be generated using our\n * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].\n * You will find a quickstart guide in the readme.\n *\n * WARNING: You should avoid using leaf values that are 64 bytes long prior to\n * hashing, or use a hash function other than keccak256 for hashing leaves.\n * This is because the concatenation of a sorted pair of internal nodes in\n * the merkle tree could be reinterpreted as a leaf value.\n * OpenZeppelin's JavaScript library generates merkle trees that are safe\n * against this attack out of the box.\n */\nlibrary MerkleProof {\n    /**\n     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree\n     * defined by `root`. For this, a `proof` must be provided, containing\n     * sibling hashes on the branch from the leaf to the root of the tree. Each\n     * pair of leaves and each pair of pre-images are assumed to be sorted.\n     */\n    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {\n        return processProof(proof, leaf) == root;\n    }\n\n    /**\n     * @dev Calldata version of {verify}\n     *\n     * _Available since v4.7._\n     */\n    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {\n        return processProofCalldata(proof, leaf) == root;\n    }\n\n    /**\n     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up\n     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt\n     * hash matches the root of the tree. When processing the proof, the pairs\n     * of leafs & pre-images are assumed to be sorted.\n     *\n     * _Available since v4.4._\n     */\n    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {\n        bytes32 computedHash = leaf;\n        for (uint256 i = 0; i < proof.length; i++) {\n            computedHash = _hashPair(computedHash, proof[i]);\n        }\n        return computedHash;\n    }\n\n    /**\n     * @dev Calldata version of {processProof}\n     *\n     * _Available since v4.7._\n     */\n    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {\n        bytes32 computedHash = leaf;\n        for (uint256 i = 0; i < proof.length; i++) {\n            computedHash = _hashPair(computedHash, proof[i]);\n        }\n        return computedHash;\n    }\n\n    /**\n     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by\n     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.\n     *\n     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.\n     *\n     * _Available since v4.7._\n     */\n    function multiProofVerify(\n        bytes32[] memory proof,\n        bool[] memory proofFlags,\n        bytes32 root,\n        bytes32[] memory leaves\n    ) internal pure returns (bool) {\n        return processMultiProof(proof, proofFlags, leaves) == root;\n    }\n\n    /**\n     * @dev Calldata version of {multiProofVerify}\n     *\n     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.\n     *\n     * _Available since v4.7._\n     */\n    function multiProofVerifyCalldata(\n        bytes32[] calldata proof,\n        bool[] calldata proofFlags,\n        bytes32 root,\n        bytes32[] memory leaves\n    ) internal pure returns (bool) {\n        return processMultiProofCalldata(proof, proofFlags, leaves) == root;\n    }\n\n    /**\n     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction\n     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another\n     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false\n     * respectively.\n     *\n     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree\n     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the\n     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).\n     *\n     * _Available since v4.7._\n     */\n    function processMultiProof(\n        bytes32[] memory proof,\n        bool[] memory proofFlags,\n        bytes32[] memory leaves\n    ) internal pure returns (bytes32 merkleRoot) {\n        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by\n        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the\n        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of\n        // the merkle tree.\n        uint256 leavesLen = leaves.length;\n        uint256 proofLen = proof.length;\n        uint256 totalHashes = proofFlags.length;\n\n        // Check proof validity.\n        require(leavesLen + proofLen - 1 == totalHashes, \"MerkleProof: invalid multiproof\");\n\n        // The xxxPos values are \"pointers\" to the next value to consume in each array. All accesses are done using\n        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's \"pop\".\n        bytes32[] memory hashes = new bytes32[](totalHashes);\n        uint256 leafPos = 0;\n        uint256 hashPos = 0;\n        uint256 proofPos = 0;\n        // At each step, we compute the next hash using two values:\n        // - a value from the \"main queue\". If not all leaves have been consumed, we get the next leaf, otherwise we\n        //   get the next hash.\n        // - depending on the flag, either another value from the \"main queue\" (merging branches) or an element from the\n        //   `proof` array.\n        for (uint256 i = 0; i < totalHashes; i++) {\n            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];\n            bytes32 b = proofFlags[i]\n                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])\n                : proof[proofPos++];\n            hashes[i] = _hashPair(a, b);\n        }\n\n        if (totalHashes > 0) {\n            require(proofPos == proofLen, \"MerkleProof: invalid multiproof\");\n            unchecked {\n                return hashes[totalHashes - 1];\n            }\n        } else if (leavesLen > 0) {\n            return leaves[0];\n        } else {\n            return proof[0];\n        }\n    }\n\n    /**\n     * @dev Calldata version of {processMultiProof}.\n     *\n     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.\n     *\n     * _Available since v4.7._\n     */\n    function processMultiProofCalldata(\n        bytes32[] calldata proof,\n        bool[] calldata proofFlags,\n        bytes32[] memory leaves\n    ) internal pure returns (bytes32 merkleRoot) {\n        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by\n        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the\n        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of\n        // the merkle tree.\n        uint256 leavesLen = leaves.length;\n        uint256 proofLen = proof.length;\n        uint256 totalHashes = proofFlags.length;\n\n        // Check proof validity.\n        require(leavesLen + proofLen - 1 == totalHashes, \"MerkleProof: invalid multiproof\");\n\n        // The xxxPos values are \"pointers\" to the next value to consume in each array. All accesses are done using\n        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's \"pop\".\n        bytes32[] memory hashes = new bytes32[](totalHashes);\n        uint256 leafPos = 0;\n        uint256 hashPos = 0;\n        uint256 proofPos = 0;\n        // At each step, we compute the next hash using two values:\n        // - a value from the \"main queue\". If not all leaves have been consumed, we get the next leaf, otherwise we\n        //   get the next hash.\n        // - depending on the flag, either another value from the \"main queue\" (merging branches) or an element from the\n        //   `proof` array.\n        for (uint256 i = 0; i < totalHashes; i++) {\n            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];\n            bytes32 b = proofFlags[i]\n                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])\n                : proof[proofPos++];\n            hashes[i] = _hashPair(a, b);\n        }\n\n        if (totalHashes > 0) {\n            require(proofPos == proofLen, \"MerkleProof: invalid multiproof\");\n            unchecked {\n                return hashes[totalHashes - 1];\n            }\n        } else if (leavesLen > 0) {\n            return leaves[0];\n        } else {\n            return proof[0];\n        }\n    }\n\n    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {\n        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);\n    }\n\n    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {\n        /// @solidity memory-safe-assembly\n        assembly {\n            mstore(0x00, a)\n            mstore(0x20, b)\n            value := keccak256(0x00, 0x40)\n        }\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../Strings.sol\";\n\n/**\n * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.\n *\n * These functions can be used to verify that a message was signed by the holder\n * of the private keys of a given address.\n */\nlibrary ECDSA {\n    enum RecoverError {\n        NoError,\n        InvalidSignature,\n        InvalidSignatureLength,\n        InvalidSignatureS,\n        InvalidSignatureV // Deprecated in v4.8\n    }\n\n    function _throwError(RecoverError error) private pure {\n        if (error == RecoverError.NoError) {\n            return; // no error: do nothing\n        } else if (error == RecoverError.InvalidSignature) {\n            revert(\"ECDSA: invalid signature\");\n        } else if (error == RecoverError.InvalidSignatureLength) {\n            revert(\"ECDSA: invalid signature length\");\n        } else if (error == RecoverError.InvalidSignatureS) {\n            revert(\"ECDSA: invalid signature 's' value\");\n        }\n    }\n\n    /**\n     * @dev Returns the address that signed a hashed message (`hash`) with\n     * `signature` or error string. This address can then be used for verification purposes.\n     *\n     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:\n     * this function rejects them by requiring the `s` value to be in the lower\n     * half order, and the `v` value to be either 27 or 28.\n     *\n     * IMPORTANT: `hash` _must_ be the result of a hash operation for the\n     * verification to be secure: it is possible to craft signatures that\n     * recover to arbitrary addresses for non-hashed data. A safe way to ensure\n     * this is by receiving a hash of the original message (which may otherwise\n     * be too long), and then calling {toEthSignedMessageHash} on it.\n     *\n     * Documentation for signature generation:\n     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]\n     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]\n     *\n     * _Available since v4.3._\n     */\n    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {\n        if (signature.length == 65) {\n            bytes32 r;\n            bytes32 s;\n            uint8 v;\n            // ecrecover takes the signature parameters, and the only way to get them\n            // currently is to use assembly.\n            /// @solidity memory-safe-assembly\n            assembly {\n                r := mload(add(signature, 0x20))\n                s := mload(add(signature, 0x40))\n                v := byte(0, mload(add(signature, 0x60)))\n            }\n            return tryRecover(hash, v, r, s);\n        } else {\n            return (address(0), RecoverError.InvalidSignatureLength);\n        }\n    }\n\n    /**\n     * @dev Returns the address that signed a hashed message (`hash`) with\n     * `signature`. This address can then be used for verification purposes.\n     *\n     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:\n     * this function rejects them by requiring the `s` value to be in the lower\n     * half order, and the `v` value to be either 27 or 28.\n     *\n     * IMPORTANT: `hash` _must_ be the result of a hash operation for the\n     * verification to be secure: it is possible to craft signatures that\n     * recover to arbitrary addresses for non-hashed data. A safe way to ensure\n     * this is by receiving a hash of the original message (which may otherwise\n     * be too long), and then calling {toEthSignedMessageHash} on it.\n     */\n    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {\n        (address recovered, RecoverError error) = tryRecover(hash, signature);\n        _throwError(error);\n        return recovered;\n    }\n\n    /**\n     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.\n     *\n     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]\n     *\n     * _Available since v4.3._\n     */\n    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {\n        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);\n        uint8 v = uint8((uint256(vs) >> 255) + 27);\n        return tryRecover(hash, v, r, s);\n    }\n\n    /**\n     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.\n     *\n     * _Available since v4.2._\n     */\n    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {\n        (address recovered, RecoverError error) = tryRecover(hash, r, vs);\n        _throwError(error);\n        return recovered;\n    }\n\n    /**\n     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,\n     * `r` and `s` signature fields separately.\n     *\n     * _Available since v4.3._\n     */\n    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {\n        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature\n        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines\n        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most\n        // signatures from current libraries generate a unique signature with an s-value in the lower half order.\n        //\n        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value\n        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or\n        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept\n        // these malleable signatures as well.\n        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {\n            return (address(0), RecoverError.InvalidSignatureS);\n        }\n\n        // If the signature is valid (and not malleable), return the signer address\n        address signer = ecrecover(hash, v, r, s);\n        if (signer == address(0)) {\n            return (address(0), RecoverError.InvalidSignature);\n        }\n\n        return (signer, RecoverError.NoError);\n    }\n\n    /**\n     * @dev Overload of {ECDSA-recover} that receives the `v`,\n     * `r` and `s` signature fields separately.\n     */\n    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {\n        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);\n        _throwError(error);\n        return recovered;\n    }\n\n    /**\n     * @dev Returns an Ethereum Signed Message, created from a `hash`. This\n     * produces hash corresponding to the one signed with the\n     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]\n     * JSON-RPC method as part of EIP-191.\n     *\n     * See {recover}.\n     */\n    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {\n        // 32 is the length in bytes of hash,\n        // enforced by the type signature above\n        /// @solidity memory-safe-assembly\n        assembly {\n            mstore(0x00, \"\\x19Ethereum Signed Message:\\n32\")\n            mstore(0x1c, hash)\n            message := keccak256(0x00, 0x3c)\n        }\n    }\n\n    /**\n     * @dev Returns an Ethereum Signed Message, created from `s`. This\n     * produces hash corresponding to the one signed with the\n     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]\n     * JSON-RPC method as part of EIP-191.\n     *\n     * See {recover}.\n     */\n    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {\n        return keccak256(abi.encodePacked(\"\\x19Ethereum Signed Message:\\n\", Strings.toString(s.length), s));\n    }\n\n    /**\n     * @dev Returns an Ethereum Signed Typed Data, created from a\n     * `domainSeparator` and a `structHash`. This produces hash corresponding\n     * to the one signed with the\n     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]\n     * JSON-RPC method as part of EIP-712.\n     *\n     * See {recover}.\n     */\n    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {\n        /// @solidity memory-safe-assembly\n        assembly {\n            let ptr := mload(0x40)\n            mstore(ptr, \"\\x19\\x01\")\n            mstore(add(ptr, 0x02), domainSeparator)\n            mstore(add(ptr, 0x22), structHash)\n            data := keccak256(ptr, 0x42)\n        }\n    }\n\n    /**\n     * @dev Returns an Ethereum Signed Data with intended validator, created from a\n     * `validator` and `data` according to the version 0 of EIP-191.\n     *\n     * See {recover}.\n     */\n    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {\n        return keccak256(abi.encodePacked(\"\\x19\\x00\", validator, data));\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n    function _msgSender() internal view virtual returns (address) {\n        return msg.sender;\n    }\n\n    function _msgData() internal view virtual returns (bytes calldata) {\n        return msg.data;\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/Strings.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./math/Math.sol\";\nimport \"./math/SignedMath.sol\";\n\n/**\n * @dev String operations.\n */\nlibrary Strings {\n    bytes16 private constant _SYMBOLS = \"0123456789abcdef\";\n    uint8 private constant _ADDRESS_LENGTH = 20;\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` decimal representation.\n     */\n    function toString(uint256 value) internal pure returns (string memory) {\n        unchecked {\n            uint256 length = Math.log10(value) + 1;\n            string memory buffer = new string(length);\n            uint256 ptr;\n            /// @solidity memory-safe-assembly\n            assembly {\n                ptr := add(buffer, add(32, length))\n            }\n            while (true) {\n                ptr--;\n                /// @solidity memory-safe-assembly\n                assembly {\n                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))\n                }\n                value /= 10;\n                if (value == 0) break;\n            }\n            return buffer;\n        }\n    }\n\n    /**\n     * @dev Converts a `int256` to its ASCII `string` decimal representation.\n     */\n    function toString(int256 value) internal pure returns (string memory) {\n        return string(abi.encodePacked(value < 0 ? \"-\" : \"\", toString(SignedMath.abs(value))));\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.\n     */\n    function toHexString(uint256 value) internal pure returns (string memory) {\n        unchecked {\n            return toHexString(value, Math.log256(value) + 1);\n        }\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.\n     */\n    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {\n        bytes memory buffer = new bytes(2 * length + 2);\n        buffer[0] = \"0\";\n        buffer[1] = \"x\";\n        for (uint256 i = 2 * length + 1; i > 1; --i) {\n            buffer[i] = _SYMBOLS[value & 0xf];\n            value >>= 4;\n        }\n        require(value == 0, \"Strings: hex length insufficient\");\n        return string(buffer);\n    }\n\n    /**\n     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.\n     */\n    function toHexString(address addr) internal pure returns (string memory) {\n        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);\n    }\n\n    /**\n     * @dev Returns true if the two strings are equal.\n     */\n    function equal(string memory a, string memory b) internal pure returns (bool) {\n        return keccak256(bytes(a)) == keccak256(bytes(b));\n    }\n}\n"
    },
    "src/ManyChainMultiSig.sol": {
      "content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity =0.8.19;\n\nimport \"openzeppelin-contracts/utils/cryptography/MerkleProof.sol\";\nimport \"openzeppelin-contracts/access/Ownable2Step.sol\";\nimport \"openzeppelin-contracts/utils/cryptography/ECDSA.sol\";\n\n// Should be used as the first 32 bytes of the pre-image of the leaf that holds a\n// op. This value is for domain separation of the different values stored in the\n// Merkle tree.\nbytes32 constant MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_OP =\n    keccak256(\"MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_OP\");\n\n// Should be used as the first 32 bytes of the pre-image of the leaf that holds the\n// root metadata. This value is for domain separation of the different values stored in the\n// Merkle tree.\nbytes32 constant MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_METADATA =\n    keccak256(\"MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_METADATA\");\n\n/// @notice This is a multi-sig contract that supports signing many transactions (called \"ops\" in\n/// the context of this contract to prevent confusion with transactions on the underlying chain)\n/// targeting many chains with a single set of signatures. Authorized ops along with some metadata\n/// are stored in a Merkle tree, which is generated offchain. Each op has an associated chain id,\n/// ManyChainMultiSig contract address and nonce. The nonce enables us to enforce the\n/// (per-ManyChainMultiSig contract instance) ordering of ops.\n///\n/// At any time, this contract stores at most one Merkle root. In the typical case, all ops\n/// in the Merkle tree are expected to be executed before another root is set. Since the Merkle root\n/// itself reveals ~ no information about the tree's contents, we take two measures to improve\n/// transparency. First, we attach an expiration time to each Merkle root after which it cannot\n/// be used any more. Second, we embed metadata in the tree itself that has to be proven/revealed\n/// to the contract when a new root is set; the metadata contains the range of nonces (and thus\n/// number of ops) in the tree intended for the ManyChainMultiSig contract instance on which the\n/// root is being set.\n///\n/// Once a root is registered, *anyone* is allowed to furnish proofs of op inclusion in the Merkle\n/// tree and execute the corresponding op. The contract enforces that ops are executed in the\n/// correct order and with the correct arguments. A notable exception to this is the gas limit of\n/// the call, which can be freely determined by the executor. We expect (transitive) callees to\n/// implement standard behavior of simply reverting if insufficient gas is provided. In particular,\n/// this means callees should not have non-reverting gas-dependent branches.\n///\n/// Note: In the typical case, we expect the time from a root being set to all of the ops\n/// therein having been executed to be on the order of a couple of minutes.\ncontract ManyChainMultiSig is Ownable2Step {\n    receive() external payable {}\n\n    uint8 public constant NUM_GROUPS = 32;\n    uint8 public constant MAX_NUM_SIGNERS = 200;\n\n    struct Signer {\n        address addr;\n        uint8 index; // index of signer in s_config.signers\n        uint8 group; // 0 <= group < NUM_GROUPS. Each signer can only be in one group.\n    }\n\n    // s_signers is used to easily validate the existence of the signer by its address. We still\n    // have signers stored in s_config in order to easily deactivate them when a new config is set.\n    mapping(address => Signer) s_signers;\n\n    // Signing groups are arranged in a tree. Each group is an interior node and has its own quorum.\n    // Signers are the leaves of the tree. A signer/leaf node is successful iff it furnishes a valid\n    // signature. A group/interior node is successful iff a quorum of its children are successful.\n    // setRoot succeeds only if the root group is successful.\n    // Here is an example:\n    //\n    //                    ┌──────┐\n    //                 ┌─►│2-of-3│◄───────┐\n    //                 │  └──────┘        │\n    //                 │        ▲         │\n    //                 │        │         │\n    //              ┌──┴───┐ ┌──┴───┐ ┌───┴────┐\n    //          ┌──►│1-of-2│ │2-of-2│ │signer A│\n    //          │   └──────┘ └──────┘ └────────┘\n    //          │       ▲      ▲  ▲\n    //          │       │      │  │     ┌──────┐\n    //          │       │      │  └─────┤1-of-2│◄─┐\n    //          │       │      │        └──────┘  │\n    //  ┌───────┴┐ ┌────┴───┐ ┌┴───────┐ ▲        │\n    //  │signer B│ │signer C│ │signer D│ │        │\n    //  └────────┘ └────────┘ └────────┘ │        │\n    //                                   │        │\n    //                            ┌──────┴─┐ ┌────┴───┐\n    //                            │signer E│ │signer F│\n    //                            └────────┘ └────────┘\n    //\n    // - If signers [A, B] sign, they can set a root.\n    // - If signers [B, D, E] sign, they can set a root.\n    // - If signers [B, D, E, F] sign, they can set a root. (Either E's or F's signature was\n    //   superfluous.)\n    // - If signers [B, C, D] sign, they cannot set a root, because the 2-of-2 group on the second\n    //   level isn't successful and therefore the root group isn't successful either.\n    //\n    // To map this tree to a Config, we:\n    // - create an entry in signers for each signer (sorted by address in ascending order)\n    // - assign the root group to index 0 and have it be its own parent\n    // - assign an index to each non-root group, such that each group's parent has a lower index\n    //   than the group itself\n    // For example, we could transform the above tree structure into:\n    // groupQuorums = [2, 1, 2, 1] + [0, 0, ...] (rightpad with 0s to NUM_GROUPS)\n    // groupParents = [0, 0, 0, 2] + [0, 0, ...] (rightpad with 0s to NUM_GROUPS)\n    // and assuming that address(A) < address(C) < address(E) < address(F) < address(D) < address(B)\n    // signers = [\n    //    {addr: address(A), index: 0, group: 0}, {addr: address(C), index: 1, group: 1},\n    //    {addr: address(E), index: 2, group: 3}, {addr: address(F), index: 3, group: 3},\n    //    {addr: address(D), index: 4, group: 2}, {addr: address(B), index: 5, group: 1},\n    //  ]\n    struct Config {\n        Signer[] signers;\n        // groupQuorums[i] stores the quorum for the i-th signer group. Any group with\n        // groupQuorums[i] = 0 is considered disabled. The i-th group is successful if\n        // it is enabled and at least groupQuorums[i] of its children are successful.\n        uint8[NUM_GROUPS] groupQuorums;\n        // groupParents[i] stores the parent group of the i-th signer group. We ensure that the\n        // groups form a tree structure (where the root/0-th signer group points to itself as\n        // parent) by enforcing\n        // - (i != 0) implies (groupParents[i] < i)\n        // - groupParents[0] == 0\n        uint8[NUM_GROUPS] groupParents;\n    }\n\n    Config s_config;\n\n    // Remember signedHashes that this contract has seen. Each signedHash can only be set once.\n    mapping(bytes32 => bool) s_seenSignedHashes;\n\n    // MerkleRoots are a bit tricky since they reveal almost no information about the contents of\n    // the tree they authenticate. To mitigate this, we enforce that this contract can only execute\n    // ops from a single root at any given point in time. We further associate an expiry\n    // with each root to ensure that messages are executed in a timely manner. setRoot and various\n    // execute calls are expected to happen in quick succession. We put the expiring root and\n    // opCount in same struct in order to reduce gas costs of reading and writing.\n    struct ExpiringRootAndOpCount {\n        bytes32 root;\n        // We prefer using block.timestamp instead of block.number, as a single\n        // root may target many chains. We assume that block.timestamp can\n        // be manipulated by block producers but only within relatively tight\n        // bounds (a few minutes at most).\n        uint32 validUntil;\n        // each ManyChainMultiSig instance has it own independent opCount.\n        uint40 opCount;\n    }\n\n    ExpiringRootAndOpCount s_expiringRootAndOpCount;\n\n    /// @notice Each root also authenticates metadata about itself (stored as one of the leaves)\n    /// which must be revealed when the root is set.\n    ///\n    /// @dev We need to be careful that abi.encode(MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_METADATA, RootMetadata)\n    /// is greater than 64 bytes to prevent collisions with internal nodes in the Merkle tree. See\n    /// openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol:15 for details.\n    struct RootMetadata {\n        // chainId and multiSig uniquely identify a ManyChainMultiSig contract instance that the\n        // root is destined for.\n        // uint256 since it is unclear if we can represent chainId as uint64. There is a proposal (\n        // https://ethereum-magicians.org/t/eip-2294-explicit-bound-to-chain-id/11090) to\n        // bound chainid to 64 bits, but it is still unresolved.\n        uint256 chainId;\n        address multiSig;\n        // opCount before adding this root\n        uint40 preOpCount;\n        // opCount after executing all ops in this root\n        uint40 postOpCount;\n        // override whatever root was already stored in this contract even if some of its\n        // ops weren't executed.\n        // Important: it is strongly recommended that offchain code set this to false by default.\n        // Be careful setting this to true as it may break assumptions about what transactions from\n        // the previous root have already been executed.\n        bool overridePreviousRoot;\n    }\n\n    RootMetadata s_rootMetadata;\n\n    /// @notice An ECDSA signature.\n    struct Signature {\n        uint8 v;\n        bytes32 r;\n        bytes32 s;\n    }\n\n    /// @notice setRoot Sets a new expiring root.\n    ///\n    /// @param root is the new expiring root.\n    /// @param validUntil is the time by which root is valid\n    /// @param metadata is the authenticated metadata about the root, which is stored as one of\n    /// the leaves.\n    /// @param metadataProof is the MerkleProof of inclusion of the metadata in the Merkle tree.\n    /// @param signatures the ECDSA signatures on (root, validUntil).\n    ///\n    /// @dev the message (root, validUntil) should be signed by a sufficient set of signers.\n    /// This signature authenticates also the metadata.\n    ///\n    /// @dev this method can be executed by anyone who has the root and valid signatures.\n    /// as we validate the correctness of signatures, this imposes no risk.\n    function setRoot(\n        bytes32 root,\n        uint32 validUntil,\n        RootMetadata calldata metadata,\n        bytes32[] calldata metadataProof,\n        Signature[] calldata signatures\n    ) external {\n        bytes32 signedHash = ECDSA.toEthSignedMessageHash(keccak256(abi.encode(root, validUntil)));\n\n        // Each (root, validUntil) tuple can only bet set once. For example, this prevents a\n        // scenario where there are two signed roots with overridePreviousRoot = true and\n        // an adversary keeps alternatively calling setRoot(root1), setRoot(root2),\n        // setRoot(root1), ...\n        if (s_seenSignedHashes[signedHash]) {\n            revert SignedHashAlreadySeen();\n        }\n\n        // verify ECDSA signatures on (root, validUntil) and ensure that the root group is successful\n        {\n            // verify sigs and count number of signers in each group\n            Signer memory signer;\n            address prevAddress = address(0x0);\n            uint8[NUM_GROUPS] memory groupVoteCounts; // number of votes per group\n            for (uint256 i = 0; i < signatures.length; i++) {\n                Signature calldata sig = signatures[i];\n                address signerAddress = ECDSA.recover(signedHash, sig.v, sig.r, sig.s);\n                // the off-chain system is required to sort the signatures by the\n                // signer address in an increasing order\n                if (prevAddress >= signerAddress) {\n                    revert SignersAddressesMustBeStrictlyIncreasing();\n                }\n                prevAddress = signerAddress;\n\n                signer = s_signers[signerAddress];\n                if (signer.addr != signerAddress) {\n                    revert InvalidSigner();\n                }\n                uint8 group = signer.group;\n                while (true) {\n                    groupVoteCounts[group]++;\n                    if (groupVoteCounts[group] != s_config.groupQuorums[group]) {\n                        // bail out unless we just hit the quorum. we only hit each quorum once,\n                        // so we never move on to the parent of a group more than once.\n                        break;\n                    }\n                    if (group == 0) {\n                        // reached root\n                        break;\n                    }\n\n                    group = s_config.groupParents[group];\n                }\n            }\n            // the group at the root of the tree (with index 0) determines whether the vote passed,\n            // we cannot proceed if it isn't configured with a valid (non-zero) quorum\n            if (s_config.groupQuorums[0] == 0) {\n                revert MissingConfig();\n            }\n            // did the root group reach its quorum?\n            if (groupVoteCounts[0] < s_config.groupQuorums[0]) {\n                revert InsufficientSigners();\n            }\n        }\n\n        if (validUntil < block.timestamp) {\n            revert ValidUntilHasAlreadyPassed();\n        }\n\n        {\n            // verify metadataProof\n            bytes32 hashedLeaf =\n                keccak256(abi.encode(MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_METADATA, metadata));\n            if (!MerkleProof.verify(metadataProof, root, hashedLeaf)) {\n                revert ProofCannotBeVerified();\n            }\n        }\n\n        if (block.chainid != metadata.chainId) {\n            revert WrongChainId();\n        }\n\n        if (address(this) != metadata.multiSig) {\n            revert WrongMultiSig();\n        }\n\n        uint40 opCount = s_expiringRootAndOpCount.opCount;\n\n        // don't allow a new root to be set if there are still outstanding ops that have not been\n        // executed, unless overridePreviousRoot is set\n        if (opCount != s_rootMetadata.postOpCount && !metadata.overridePreviousRoot) {\n            revert PendingOps();\n        }\n\n        // the signers are responsible for tracking opCount offchain and ensuring that\n        // preOpCount equals to opCount\n        if (opCount != metadata.preOpCount) {\n            revert WrongPreOpCount();\n        }\n\n        if (metadata.preOpCount > metadata.postOpCount) {\n            revert WrongPostOpCount();\n        }\n\n        // done with validation, persist in in contract state\n        s_seenSignedHashes[signedHash] = true;\n        s_expiringRootAndOpCount = ExpiringRootAndOpCount({\n            root: root,\n            validUntil: validUntil,\n            opCount: metadata.preOpCount\n        });\n        s_rootMetadata = metadata;\n        emit NewRoot(root, validUntil, metadata);\n    }\n\n    /// @notice an op to be executed by the ManyChainMultiSig contract\n    ///\n    /// @dev We need to be careful that abi.encode(LEAF_OP_DOMAIN_SEPARATOR, RootMetadata)\n    /// is greater than 64 bytes to prevent collisions with internal nodes in the Merkle tree. See\n    /// openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol:15 for details.\n    struct Op {\n        uint256 chainId;\n        address multiSig;\n        uint40 nonce;\n        address to;\n        uint256 value;\n        bytes data;\n    }\n\n    /// @notice Execute the received op after verifying the proof of its inclusion in the\n    /// current Merkle tree. The op should be the next op according to the order\n    /// enforced by the merkle tree whose root is stored in s_expiringRootAndOpCount, i.e., the\n    /// nonce of the op should be equal to s_expiringRootAndOpCount.opCount.\n    ///\n    /// @param op is Op to be executed\n    /// @param proof is the MerkleProof for the op's inclusion in the MerkleTree which its\n    /// root is the s_expiringRootAndOpCount.root.\n    ///\n    /// @dev ANYONE can call this function! That's intentional. Callers can only execute verified,\n    /// ordered ops in the Merkle tree.\n    ///\n    /// @dev we perform a raw call to each target. Raw calls to targets that don't have associated\n    /// contract code will always succeed regardless of data.\n    ///\n    /// @dev the gas limit of the call can be freely determined by the caller of this function.\n    /// We expect callees to revert if they run out of gas.\n    function execute(Op calldata op, bytes32[] calldata proof) external payable {\n        ExpiringRootAndOpCount memory currentExpiringRootAndOpCount = s_expiringRootAndOpCount;\n\n        if (s_rootMetadata.postOpCount <= currentExpiringRootAndOpCount.opCount) {\n            revert PostOpCountReached();\n        }\n\n        if (op.chainId != block.chainid) {\n            revert WrongChainId();\n        }\n\n        if (op.multiSig != address(this)) {\n            revert WrongMultiSig();\n        }\n\n        if (block.timestamp > currentExpiringRootAndOpCount.validUntil) {\n            revert RootExpired();\n        }\n\n        if (op.nonce != currentExpiringRootAndOpCount.opCount) {\n            revert WrongNonce();\n        }\n\n        // verify that the op exists in the merkle tree\n        bytes32 hashedLeaf = keccak256(abi.encode(MANY_CHAIN_MULTI_SIG_DOMAIN_SEPARATOR_OP, op));\n        if (!MerkleProof.verify(proof, currentExpiringRootAndOpCount.root, hashedLeaf)) {\n            revert ProofCannotBeVerified();\n        }\n\n        // increase the counter *before* execution to prevent reentrancy issues\n        s_expiringRootAndOpCount.opCount = currentExpiringRootAndOpCount.opCount + 1;\n\n        _execute(op.to, op.value, op.data);\n        emit OpExecuted(op.nonce, op.to, op.data, op.value);\n    }\n\n    /// @notice sets a new s_config. If clearRoot is true, then it also invalidates\n    /// s_expiringRootAndOpCount.root.\n    ///\n    /// @param signerAddresses holds the addresses of the active signers. The addresses must be in\n    /// ascending order.\n    /// @param signerGroups maps each signer to its group\n    /// @param groupQuorums holds the required number of valid signatures in each group.\n    /// A group i is called successful group if at least groupQuorum[i] distinct signers provide a\n    /// valid signature.\n    /// @param groupParents holds each group's parent. The groups must be arranged in a tree s.t.\n    /// group 0 is the root of the tree and the i-th group's parent has index j less than i.\n    /// Iff setRoot is called with a set of signatures that causes the root group to be successful,\n    /// setRoot allows a root to be set.\n    /// @param clearRoot, if set to true, invalidates the current root. This option is needed to\n    /// invalidate the current root, so to prevent further ops from being executed. This\n    /// might be used when the current root was signed under a loser group configuration or when\n    /// some previous signers aren't trusted any more.\n    function setConfig(\n        address[] calldata signerAddresses,\n        uint8[] calldata signerGroups,\n        uint8[NUM_GROUPS] calldata groupQuorums,\n        uint8[NUM_GROUPS] calldata groupParents,\n        bool clearRoot\n    ) external onlyOwner {\n        if (signerAddresses.length == 0 || signerAddresses.length > MAX_NUM_SIGNERS) {\n            revert OutOfBoundsNumOfSigners();\n        }\n\n        if (signerAddresses.length != signerGroups.length) {\n            revert SignerGroupsLengthMismatch();\n        }\n\n        {\n            // validate group structure\n            // counts the number of children of each group\n            uint8[NUM_GROUPS] memory groupChildrenCounts;\n            // first, we count the signers as children\n            for (uint256 i = 0; i < signerGroups.length; i++) {\n                if (signerGroups[i] >= NUM_GROUPS) {\n                    revert OutOfBoundsGroup();\n                }\n                groupChildrenCounts[signerGroups[i]]++;\n            }\n            // second, we iterate backwards so as to check each group and propagate counts from\n            // child group to parent groups up the tree to the root\n            for (uint256 j = 0; j < NUM_GROUPS; j++) {\n                uint256 i = NUM_GROUPS - 1 - j;\n                // ensure we have a well-formed group tree. the root should have itself as parent\n                if ((i != 0 && groupParents[i] >= i) || (i == 0 && groupParents[i] != 0)) {\n                    revert GroupTreeNotWellFormed();\n                }\n                bool disabled = groupQuorums[i] == 0;\n                if (disabled) {\n                    // a disabled group shouldn't have any children\n                    if (0 < groupChildrenCounts[i]) {\n                        revert SignerInDisabledGroup();\n                    }\n                } else {\n                    // ensure that the group quorum can be met\n                    if (groupChildrenCounts[i] < groupQuorums[i]) {\n                        revert OutOfBoundsGroupQuorum();\n                    }\n                    groupChildrenCounts[groupParents[i]]++;\n                    // the above line clobbers groupChildrenCounts[0] in last iteration, don't use it after the loop ends\n                }\n            }\n        }\n\n        Signer[] memory oldSigners = s_config.signers;\n        // remove any old signer addresses\n        for (uint256 i = 0; i < oldSigners.length; i++) {\n            address oldSignerAddress = oldSigners[i].addr;\n            delete s_signers[oldSignerAddress];\n            s_config.signers.pop();\n        }\n\n        // we cannot just write s_config = Config({...}) because solc doesn't support that\n        assert(s_config.signers.length == 0);\n        s_config.groupQuorums = groupQuorums;\n        s_config.groupParents = groupParents;\n\n        // add new signers' addresses, we require that the signers' list be a strictly monotone\n        // increasing sequence\n        address prevSigner = address(0x0);\n        for (uint256 i = 0; i < signerAddresses.length; i++) {\n            if (prevSigner >= signerAddresses[i]) {\n                revert SignersAddressesMustBeStrictlyIncreasing();\n            }\n            Signer memory signer =\n                Signer({addr: signerAddresses[i], index: uint8(i), group: signerGroups[i]});\n            s_signers[signerAddresses[i]] = signer;\n            s_config.signers.push(signer);\n            prevSigner = signerAddresses[i];\n        }\n\n        if (clearRoot) {\n            // clearRoot is equivalent to overriding with a completely empty root\n            uint40 opCount = s_expiringRootAndOpCount.opCount;\n            s_expiringRootAndOpCount =\n                ExpiringRootAndOpCount({root: 0, validUntil: 0, opCount: opCount});\n            s_rootMetadata = RootMetadata({\n                chainId: block.chainid,\n                multiSig: address(this),\n                preOpCount: opCount,\n                postOpCount: opCount,\n                overridePreviousRoot: true\n            });\n        }\n        emit ConfigSet(s_config, clearRoot);\n    }\n\n    /// @notice Execute an op's call. Performs a raw call that always succeeds if the\n    /// target isn't a contract.\n    function _execute(address target, uint256 value, bytes calldata data) internal virtual {\n        (bool success, bytes memory ret) = target.call{value: value}(data);\n        if (!success) {\n            revert CallReverted(ret);\n        }\n    }\n\n    /*\n     * Getters\n     */\n\n    function getConfig() public view returns (Config memory) {\n        return s_config;\n    }\n\n    function getOpCount() public view returns (uint40) {\n        return s_expiringRootAndOpCount.opCount;\n    }\n\n    function getRoot() public view returns (bytes32 root, uint32 validUntil) {\n        ExpiringRootAndOpCount memory currentRootAndOpCount = s_expiringRootAndOpCount;\n        return (currentRootAndOpCount.root, currentRootAndOpCount.validUntil);\n    }\n\n    function getRootMetadata() public view returns (RootMetadata memory) {\n        return s_rootMetadata;\n    }\n\n    /*\n     * Events and Errors\n     */\n\n    /// @notice Emitted when a new root is set.\n    event NewRoot(bytes32 indexed root, uint32 validUntil, RootMetadata metadata);\n\n    /// @notice Emitted when a new config is set.\n    event ConfigSet(Config config, bool isRootCleared);\n\n    /// @notice Emitted when an op gets successfully executed.\n    event OpExecuted(uint40 indexed nonce, address to, bytes data, uint256 value);\n\n    /// @notice Thrown when number of signers is 0 or greater than MAX_NUM_SIGNERS.\n    error OutOfBoundsNumOfSigners();\n\n    /// @notice Thrown when signerAddresses and signerGroups have different lengths.\n    error SignerGroupsLengthMismatch();\n\n    /// @notice Thrown when number of some signer's group is greater than (NUM_GROUPS-1).\n    error OutOfBoundsGroup();\n\n    /// @notice Thrown when the group tree isn't well-formed.\n    error GroupTreeNotWellFormed();\n\n    /// @notice Thrown when the quorum of some group is larger than the number of signers in it.\n    error OutOfBoundsGroupQuorum();\n\n    /// @notice Thrown when a disabled group contains a signer.\n    error SignerInDisabledGroup();\n\n    /// @notice Thrown when the signers' addresses are not a strictly increasing monotone sequence.\n    /// Prevents signers from including more than one signature.\n    error SignersAddressesMustBeStrictlyIncreasing();\n\n    /// @notice Thrown when the signature corresponds to invalid signer.\n    error InvalidSigner();\n\n    /// @notice Thrown when there is no sufficient set of valid signatures provided to make the\n    /// root group successful.\n    error InsufficientSigners();\n\n    /// @notice Thrown when attempt to set metadata or execute op for another chain.\n    error WrongChainId();\n\n    /// @notice Thrown when the multiSig address in metadata or op is\n    /// incompatible with the address of this contract.\n    error WrongMultiSig();\n\n    /// @notice Thrown when the preOpCount <= postOpCount invariant is violated.\n    error WrongPostOpCount();\n\n    /// @notice Thrown when attempting to set a new root while there are still pending ops\n    /// from the previous root without explicitly overriding it.\n    error PendingOps();\n\n    /// @notice Thrown when preOpCount in metadata is incompatible with the current opCount.\n    error WrongPreOpCount();\n\n    /// @notice Thrown when the provided merkle proof cannot be verified.\n    error ProofCannotBeVerified();\n\n    /// @notice Thrown when attempt to execute an op after\n    /// s_expiringRootAndOpCount.validUntil has passed.\n    error RootExpired();\n\n    /// @notice Thrown when attempt to bypass the enforced ops' order in the merkle tree or\n    /// re-execute an op.\n    error WrongNonce();\n\n    /// @notice Thrown when attempting to execute an op even though opCount equals\n    /// metadata.postOpCount.\n    error PostOpCountReached();\n\n    /// @notice Thrown when the underlying call in _execute() reverts.\n    error CallReverted(bytes error);\n\n    /// @notice Thrown when attempt to set past validUntil for the root.\n    error ValidUntilHasAlreadyPassed();\n\n    /// @notice Thrown when setRoot() is called before setting a config.\n    error MissingConfig();\n\n    /// @notice Thrown when attempt to set the same (root, validUntil) in setRoot().\n    error SignedHashAlreadySeen();\n}\n"
    }
  },
  "settings": {
    "evmVersion": "paris",
    "libraries": {},
    "metadata": {
      "appendCBOR": true,
      "bytecodeHash": "ipfs",
      "useLiteralContent": false
    },
    "optimizer": {
      "enabled": true,
      "runs": 200
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "abi"
        ]
      }
    },
    "remappings": [
      "ds-test/=lib/forge-std/lib/ds-test/src/",
      "forge-std/=lib/forge-std/src/",
      "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
      "safe-contracts/=lib/safe-contracts/contracts/",
      "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
      "openzeppelin/=lib/openzeppelin-contracts/contracts/"
    ],
    "viaIR": false
  }
}}

Context size (optional):