Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal onlyInitializing {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20Upgradeable.sol";
import "../token/ERC20/extensions/IERC20MetadataUpgradeable.sol";
/**
* @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*
* _Available since v4.7._
*/
interface IERC4626Upgradeable is IERC20Upgradeable, IERC20MetadataUpgradeable {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20Upgradeable.sol";
import "./extensions/IERC20MetadataUpgradeable.sol";
import "../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
__ERC20_init_unchained(name_, symbol_);
}
function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[45] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC4626.sol)
pragma solidity ^0.8.0;
import "../ERC20Upgradeable.sol";
import "../utils/SafeERC20Upgradeable.sol";
import "../../../interfaces/IERC4626Upgradeable.sol";
import "../../../utils/math/MathUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the ERC4626 "Tokenized Vault Standard" as defined in
* https://eips.ethereum.org/EIPS/eip-4626[EIP-4626].
*
* This extension allows the minting and burning of "shares" (represented using the ERC20 inheritance) in exchange for
* underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
* the ERC20 standard. Any additional extensions included along it would affect the "shares" token represented by this
* contract and not the "assets" token which is an independent contract.
*
* [CAUTION]
* ====
* In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
* with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
* attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
* deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
* similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
* verifying the amount received is as expected, using a wrapper that performs these checks such as
* https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
*
* Since v4.9, this implementation uses virtual assets and shares to mitigate that risk. The `_decimalsOffset()`
* corresponds to an offset in the decimal representation between the underlying asset's decimals and the vault
* decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which itself
* determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default offset
* (0) makes it non-profitable, as a result of the value being captured by the virtual shares (out of the attacker's
* donation) matching the attacker's expected gains. With a larger offset, the attack becomes orders of magnitude more
* expensive than it is profitable. More details about the underlying math can be found
* xref:erc4626.adoc#inflation-attack[here].
*
* The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
* to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
* will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
* bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
* `_convertToShares` and `_convertToAssets` functions.
*
* To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
* ====
*
* _Available since v4.7._
*/
abstract contract ERC4626Upgradeable is Initializable, ERC20Upgradeable, IERC4626Upgradeable {
using MathUpgradeable for uint256;
IERC20Upgradeable private _asset;
uint8 private _underlyingDecimals;
/**
* @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC20 or ERC777).
*/
function __ERC4626_init(IERC20Upgradeable asset_) internal onlyInitializing {
__ERC4626_init_unchained(asset_);
}
function __ERC4626_init_unchained(IERC20Upgradeable asset_) internal onlyInitializing {
(bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
_underlyingDecimals = success ? assetDecimals : 18;
_asset = asset_;
}
/**
* @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
*/
function _tryGetAssetDecimals(IERC20Upgradeable asset_) private view returns (bool, uint8) {
(bool success, bytes memory encodedDecimals) = address(asset_).staticcall(
abi.encodeWithSelector(IERC20MetadataUpgradeable.decimals.selector)
);
if (success && encodedDecimals.length >= 32) {
uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
if (returnedDecimals <= type(uint8).max) {
return (true, uint8(returnedDecimals));
}
}
return (false, 0);
}
/**
* @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
* "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
* asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
*
* See {IERC20Metadata-decimals}.
*/
function decimals() public view virtual override(IERC20MetadataUpgradeable, ERC20Upgradeable) returns (uint8) {
return _underlyingDecimals + _decimalsOffset();
}
/** @dev See {IERC4626-asset}. */
function asset() public view virtual override returns (address) {
return address(_asset);
}
/** @dev See {IERC4626-totalAssets}. */
function totalAssets() public view virtual override returns (uint256) {
return _asset.balanceOf(address(this));
}
/** @dev See {IERC4626-convertToShares}. */
function convertToShares(uint256 assets) public view virtual override returns (uint256) {
return _convertToShares(assets, MathUpgradeable.Rounding.Down);
}
/** @dev See {IERC4626-convertToAssets}. */
function convertToAssets(uint256 shares) public view virtual override returns (uint256) {
return _convertToAssets(shares, MathUpgradeable.Rounding.Down);
}
/** @dev See {IERC4626-maxDeposit}. */
function maxDeposit(address) public view virtual override returns (uint256) {
return type(uint256).max;
}
/** @dev See {IERC4626-maxMint}. */
function maxMint(address) public view virtual override returns (uint256) {
return type(uint256).max;
}
/** @dev See {IERC4626-maxWithdraw}. */
function maxWithdraw(address owner) public view virtual override returns (uint256) {
return _convertToAssets(balanceOf(owner), MathUpgradeable.Rounding.Down);
}
/** @dev See {IERC4626-maxRedeem}. */
function maxRedeem(address owner) public view virtual override returns (uint256) {
return balanceOf(owner);
}
/** @dev See {IERC4626-previewDeposit}. */
function previewDeposit(uint256 assets) public view virtual override returns (uint256) {
return _convertToShares(assets, MathUpgradeable.Rounding.Down);
}
/** @dev See {IERC4626-previewMint}. */
function previewMint(uint256 shares) public view virtual override returns (uint256) {
return _convertToAssets(shares, MathUpgradeable.Rounding.Up);
}
/** @dev See {IERC4626-previewWithdraw}. */
function previewWithdraw(uint256 assets) public view virtual override returns (uint256) {
return _convertToShares(assets, MathUpgradeable.Rounding.Up);
}
/** @dev See {IERC4626-previewRedeem}. */
function previewRedeem(uint256 shares) public view virtual override returns (uint256) {
return _convertToAssets(shares, MathUpgradeable.Rounding.Down);
}
/** @dev See {IERC4626-deposit}. */
function deposit(uint256 assets, address receiver) public virtual override returns (uint256) {
require(assets <= maxDeposit(receiver), "ERC4626: deposit more than max");
uint256 shares = previewDeposit(assets);
_deposit(_msgSender(), receiver, assets, shares);
return shares;
}
/** @dev See {IERC4626-mint}.
*
* As opposed to {deposit}, minting is allowed even if the vault is in a state where the price of a share is zero.
* In this case, the shares will be minted without requiring any assets to be deposited.
*/
function mint(uint256 shares, address receiver) public virtual override returns (uint256) {
require(shares <= maxMint(receiver), "ERC4626: mint more than max");
uint256 assets = previewMint(shares);
_deposit(_msgSender(), receiver, assets, shares);
return assets;
}
/** @dev See {IERC4626-withdraw}. */
function withdraw(uint256 assets, address receiver, address owner) public virtual override returns (uint256) {
require(assets <= maxWithdraw(owner), "ERC4626: withdraw more than max");
uint256 shares = previewWithdraw(assets);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return shares;
}
/** @dev See {IERC4626-redeem}. */
function redeem(uint256 shares, address receiver, address owner) public virtual override returns (uint256) {
require(shares <= maxRedeem(owner), "ERC4626: redeem more than max");
uint256 assets = previewRedeem(shares);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return assets;
}
/**
* @dev Internal conversion function (from assets to shares) with support for rounding direction.
*/
function _convertToShares(uint256 assets, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256) {
return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
}
/**
* @dev Internal conversion function (from shares to assets) with support for rounding direction.
*/
function _convertToAssets(uint256 shares, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256) {
return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
}
/**
* @dev Deposit/mint common workflow.
*/
function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
// If _asset is ERC777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
// `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
// assets are transferred and before the shares are minted, which is a valid state.
// slither-disable-next-line reentrancy-no-eth
SafeERC20Upgradeable.safeTransferFrom(_asset, caller, address(this), assets);
_mint(receiver, shares);
emit Deposit(caller, receiver, assets, shares);
}
/**
* @dev Withdraw/redeem common workflow.
*/
function _withdraw(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares
) internal virtual {
if (caller != owner) {
_spendAllowance(owner, caller, shares);
}
// If _asset is ERC777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
// `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
// shares are burned and after the assets are transferred, which is a valid state.
_burn(owner, shares);
SafeERC20Upgradeable.safeTransfer(_asset, receiver, assets);
emit Withdraw(caller, receiver, owner, assets, shares);
}
function _decimalsOffset() internal view virtual returns (uint8) {
return 0;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20Upgradeable.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20MetadataUpgradeable is IERC20Upgradeable {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20PermitUpgradeable {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20Upgradeable {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20Upgradeable.sol";
import "../extensions/IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20Upgradeable {
using AddressUpgradeable for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20PermitUpgradeable token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20Upgradeable token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && AddressUpgradeable.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library MathUpgradeable {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {ERC20Upgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
import {ERC4626Upgradeable, SafeERC20Upgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC4626Upgradeable.sol";
import {MathUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol";
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "../interfaces/IGToken.sol";
import "../interfaces/IERC20.sol";
import "../interfaces/IGTokenLockedDepositNft.sol";
import "../interfaces/IGTokenOpenPnlFeed.sol";
import "../libraries/ChainUtils.sol";
import "../libraries/CollateralUtils.sol";
import "../libraries/TokenTransferUtils.sol";
/**
* @dev GToken vault contract, direct counterparty to trades happening on gTrade
*/
contract GToken is ERC20Upgradeable, ERC4626Upgradeable, OwnableUpgradeable, IGToken {
using MathUpgradeable for uint256;
using TokenTransferUtils for address;
// Contracts & Addresses (constant)
address public gnsToken;
IGTokenLockedDepositNft public lockedDepositNft;
// Contracts & Addresses (adjustable)
address public manager; // 3-day timelock contract
address public admin; // bypasses timelock, access to emergency functions
address public pnlHandler;
IGTokenOpenPnlFeed public openTradesPnlFeed;
GnsPriceProvider public gnsPriceProvider;
// Parameters (constant)
uint256 constant PRECISION_18 = 1e18;
uint256 constant PRECISION_10 = 1e10; // 10 decimals (gns/asset oracle)
uint256 constant MIN_DAILY_ACC_PNL_DELTA = PRECISION_18 / 10; // 0.1, price delta (1e18)
uint256 constant MAX_SUPPLY_INCREASE_DAILY_P = 50 * PRECISION_18; // 50% / day, when under collat (1e18)
uint256 constant MAX_LOSSES_BURN_P = 25 * PRECISION_18; // 25% of all losses (1e18)
uint256 constant MAX_GNS_SUPPLY_MINT_DAILY_P = PRECISION_18 / 20; // 0.05% / day => 18.25% / yr max (1e18)
uint256 constant MAX_DISCOUNT_P = 10 * PRECISION_18; // 10% (1e18)
uint256 public MIN_LOCK_DURATION; // min locked asset deposit duration
uint256 constant MAX_LOCK_DURATION = 365 days; // max locked asset deposit duration
uint256 constant MAX_NATIVE_TRANSFER_GAS_LIMIT = 40_000; // the amount of gas to forward on native token transfers
uint256[] WITHDRAW_EPOCHS_LOCKS; // epochs withdraw locks at over collat thresholds
// Parameters (adjustable)
uint256 public maxAccOpenPnlDelta; // PRECISION_18 (max price delta on new epochs from open pnl)
uint256 public maxDailyAccPnlDelta; // PRECISION_18 (max daily price delta from closed pnl)
uint256[2] public withdrawLockThresholdsP; // PRECISION_18 (% of over collat, used with WITHDRAW_EPOCHS_LOCKS)
uint256 public maxSupplyIncreaseDailyP; // PRECISION_18 (% per day, when under collat)
uint256 public lossesBurnP; // PRECISION_18 (% of all losses)
uint256 public maxGnsSupplyMintDailyP; // PRECISION_18 (% of gns supply)
uint256 public maxDiscountP; // PRECISION_18 (%, maximum discount for locked deposits)
uint256 public maxDiscountThresholdP; // PRECISION_18 (maximum collat %, for locked deposits)
// Price state
uint256 public shareToAssetsPrice; // PRECISION_18
int256 public accPnlPerTokenUsed; // PRECISION_18 (snapshot of accPnlPerToken)
int256 public accPnlPerToken; // PRECISION_18 (updated in real-time)
uint256 public accRewardsPerToken; // PRECISION_18
// Closed Pnl state
int256 public dailyAccPnlDelta; // PRECISION_18
uint256 public lastDailyAccPnlDeltaReset; // timestamp
// Epochs state (withdrawals)
uint256 public currentEpoch; // global id
uint256 public currentEpochStart; // timestamp
uint256 public currentEpochPositiveOpenPnl; // 1e18
// Deposit / Withdraw state
uint256 public currentMaxSupply; // collateralConfig.precision
uint256 public lastMaxSupplyUpdate; // timestamp
mapping(address => mapping(uint256 => uint256)) public withdrawRequests; // owner => unlock epoch => shares
// Locked deposits state
uint256 public lockedDepositsCount; // global id
mapping(uint256 => LockedDeposit) public lockedDeposits;
// Deplete / Refill state
uint256 public assetsToDeplete; // collateralConfig.precision
uint256 public dailyMintedGns; // 1e18
uint256 public lastDailyMintedGnsReset; // timestamp
// Statistics (not used for contract logic)
uint256 public totalDeposited; // collateralConfig.precision (assets)
int256 public totalClosedPnl; // collateralConfig.precision (assets)
uint256 public totalRewards; // collateralConfig.precision (assets)
int256 public totalLiability; // collateralConfig.precision (assets)
uint256 public totalLockedDiscounts; // collateralConfig.precision (assets)
uint256 public totalDiscounts; // collateralConfig.precision (assets)
uint256 public totalDepleted; // collateralConfig.precision (assets)
uint256 public totalDepletedGns; // 1e18 (gns)
uint256 public totalRefilled; // collateralConfig.precision (assets)
uint256 public totalRefilledGns; // 1e18 (gns)
/// @custom:deprecated acc values
uint256 public accBlockWeightedMarketCap;
uint256 public accBlockWeightedMarketCapLastStored;
// Multi-Collat support
CollateralUtils.CollateralConfig public collateralConfig;
// Allows the contract to receive ether
receive() external payable {}
// Initializer function called when this contract is deployed
function initialize(
Meta memory _meta,
ContractAddresses memory _contractAddresses,
uint256 _MIN_LOCK_DURATION,
uint256 _maxAccOpenPnlDelta,
uint256 _maxDailyAccPnlDelta,
uint256[2] memory _withdrawLockThresholdsP,
uint256 _maxSupplyIncreaseDailyP,
uint256 _lossesBurnP,
uint256 _maxGnsSupplyMintDailyP,
uint256 _maxDiscountP,
uint256 _maxDiscountThresholdP
) external initializer {
if (
!(_contractAddresses.asset != address(0) &&
_contractAddresses.owner != address(0) &&
_contractAddresses.manager != address(0) &&
_contractAddresses.admin != address(0) &&
_contractAddresses.owner != _contractAddresses.manager &&
_contractAddresses.manager != _contractAddresses.admin &&
_contractAddresses.gnsToken != address(0) &&
_contractAddresses.lockedDepositNft != address(0) &&
_contractAddresses.pnlHandler != address(0) &&
_contractAddresses.openTradesPnlFeed != address(0) &&
_contractAddresses.gnsPriceProvider.addr != address(0) &&
_contractAddresses.gnsPriceProvider.signature.length > 0 &&
_maxDailyAccPnlDelta >= MIN_DAILY_ACC_PNL_DELTA &&
_withdrawLockThresholdsP[1] > _withdrawLockThresholdsP[0] &&
_maxSupplyIncreaseDailyP <= MAX_SUPPLY_INCREASE_DAILY_P &&
_lossesBurnP <= MAX_LOSSES_BURN_P &&
_maxGnsSupplyMintDailyP <= MAX_GNS_SUPPLY_MINT_DAILY_P &&
_maxDiscountP <= MAX_DISCOUNT_P &&
_maxDiscountThresholdP >= 100 * PRECISION_18)
) {
revert WrongValues();
}
__ERC20_init(_meta.name, _meta.symbol);
__ERC4626_init(IERC20MetadataUpgradeable(_contractAddresses.asset));
_transferOwnership(_contractAddresses.owner);
gnsToken = _contractAddresses.gnsToken;
lockedDepositNft = IGTokenLockedDepositNft(_contractAddresses.lockedDepositNft);
manager = _contractAddresses.manager;
admin = _contractAddresses.admin;
pnlHandler = _contractAddresses.pnlHandler;
openTradesPnlFeed = IGTokenOpenPnlFeed(_contractAddresses.openTradesPnlFeed);
gnsPriceProvider = _contractAddresses.gnsPriceProvider;
MIN_LOCK_DURATION = _MIN_LOCK_DURATION;
maxAccOpenPnlDelta = _maxAccOpenPnlDelta;
maxDailyAccPnlDelta = _maxDailyAccPnlDelta;
withdrawLockThresholdsP = _withdrawLockThresholdsP;
maxSupplyIncreaseDailyP = _maxSupplyIncreaseDailyP;
lossesBurnP = _lossesBurnP;
maxGnsSupplyMintDailyP = _maxGnsSupplyMintDailyP;
maxDiscountP = _maxDiscountP;
maxDiscountThresholdP = _maxDiscountThresholdP;
shareToAssetsPrice = PRECISION_18;
currentEpoch = 1;
currentEpochStart = block.timestamp;
WITHDRAW_EPOCHS_LOCKS = [3, 2, 1];
}
function initializeV3() external reinitializer(3) {
collateralConfig = CollateralUtils.getCollateralConfig(asset());
}
// Modifiers
modifier onlyManager() {
_onlyManager();
_;
}
modifier checks(uint256 assetsOrShares) {
_checks(assetsOrShares);
_;
}
modifier validDiscount(uint256 lockDuration) {
_validDiscount(lockDuration);
_;
}
// Modifier helpers - saves bytecode size
function _onlyManager() private view {
if (_msgSender() != manager) revert OnlyManager();
}
function _checks(uint256 assetsOrShares) private view {
if (shareToAssetsPrice == 0) revert PriceZero();
if (assetsOrShares == 0) revert ValueZero();
}
function _validDiscount(uint256 lockDuration) private view {
if (maxDiscountP == 0) revert NoActiveDiscount();
if (lockDuration < MIN_LOCK_DURATION) revert BelowMin();
if (lockDuration > MAX_LOCK_DURATION) revert AboveMax();
}
// Manage addresses
function transferOwnership(address newOwner) public override onlyOwner {
if (newOwner == address(0)) revert OwnableInvalidOwner(address(0));
if (newOwner == manager || newOwner == admin) revert WrongValue();
_transferOwnership(newOwner);
}
function updateManager(address newValue) external onlyOwner {
if (newValue == address(0)) revert AddressZero();
if (newValue == owner() || newValue == admin) revert WrongValue();
manager = newValue;
emit ManagerUpdated(newValue);
}
function updateAdmin(address newValue) external onlyManager {
if (newValue == address(0)) revert AddressZero();
if (newValue == owner() || newValue == manager) revert WrongValue();
admin = newValue;
emit AdminUpdated(newValue);
}
function updatePnlHandler(address newValue) external onlyOwner {
if (newValue == address(0)) revert AddressZero();
pnlHandler = newValue;
emit PnlHandlerUpdated(newValue);
}
function updateGnsPriceProvider(GnsPriceProvider memory newValue) external onlyManager {
if (newValue.addr == address(0)) revert AddressZero();
if (newValue.signature.length == 0) revert BytesZero();
gnsPriceProvider = newValue;
emit GnsPriceProviderUpdated(newValue);
}
function updateOpenTradesPnlFeed(address newValue) external onlyOwner {
if (newValue == address(0)) revert AddressZero();
openTradesPnlFeed = IGTokenOpenPnlFeed(newValue);
emit OpenTradesPnlFeedUpdated(newValue);
}
// Manage parameters
function updateMaxAccOpenPnlDelta(uint256 newValue) external onlyOwner {
maxAccOpenPnlDelta = newValue;
emit MaxAccOpenPnlDeltaUpdated(newValue);
}
function updateMaxDailyAccPnlDelta(uint256 newValue) external onlyManager {
if (newValue < MIN_DAILY_ACC_PNL_DELTA) revert BelowMin();
maxDailyAccPnlDelta = newValue;
emit MaxDailyAccPnlDeltaUpdated(newValue);
}
function updateWithdrawLockThresholdsP(uint256[2] memory newValue) external onlyOwner {
if (newValue[1] <= newValue[0]) revert WrongValues();
withdrawLockThresholdsP = newValue;
emit WithdrawLockThresholdsPUpdated(newValue);
}
function updateMaxSupplyIncreaseDailyP(uint256 newValue) external onlyManager {
if (newValue > MAX_SUPPLY_INCREASE_DAILY_P) revert AboveMax();
maxSupplyIncreaseDailyP = newValue;
emit MaxSupplyIncreaseDailyPUpdated(newValue);
}
function updateLossesBurnP(uint256 newValue) external onlyManager {
if (newValue > MAX_LOSSES_BURN_P) revert AboveMax();
lossesBurnP = newValue;
emit LossesBurnPUpdated(newValue);
}
function updateMaxGnsSupplyMintDailyP(uint256 newValue) external onlyManager {
if (newValue > MAX_GNS_SUPPLY_MINT_DAILY_P) revert AboveMax();
maxGnsSupplyMintDailyP = newValue;
emit MaxGnsSupplyMintDailyPUpdated(newValue);
}
function updateMaxDiscountP(uint256 newValue) external onlyManager {
if (newValue > MAX_DISCOUNT_P) revert AboveMax();
maxDiscountP = newValue;
emit MaxDiscountPUpdated(newValue);
}
function updateMaxDiscountThresholdP(uint256 newValue) external onlyManager {
if (newValue < 100 * PRECISION_18) revert BelowMin();
maxDiscountThresholdP = newValue;
emit MaxDiscountThresholdPUpdated(newValue);
}
// View helper functions
function maxAccPnlPerToken() public view returns (uint256) {
// PRECISION_18
return PRECISION_18 + accRewardsPerToken;
}
function collateralizationP() public view returns (uint256) {
// PRECISION_18 (%)
uint256 _maxAccPnlPerToken = maxAccPnlPerToken();
return
((
accPnlPerTokenUsed > 0
? (_maxAccPnlPerToken - uint256(accPnlPerTokenUsed))
: (_maxAccPnlPerToken + uint256(accPnlPerTokenUsed * (-1)))
) *
100 *
PRECISION_18) / _maxAccPnlPerToken;
}
function gnsTokenToAssetsPrice() public view returns (uint256 price) {
// PRECISION_10
(bool success, bytes memory result) = gnsPriceProvider.addr.staticcall(
abi.encodeWithSelector(bytes4(gnsPriceProvider.signature), asset())
);
if (!success) revert GnsPriceCallFailed();
(price) = abi.decode(result, (uint256));
if (price == 0) revert GnsTokenPriceZero();
}
function withdrawEpochsTimelock() public view returns (uint256) {
uint256 collatP = collateralizationP();
uint256 overCollatP = (collatP - MathUpgradeable.min(collatP, 100 * PRECISION_18));
return
overCollatP > withdrawLockThresholdsP[1]
? WITHDRAW_EPOCHS_LOCKS[2]
: (overCollatP > withdrawLockThresholdsP[0] ? WITHDRAW_EPOCHS_LOCKS[1] : WITHDRAW_EPOCHS_LOCKS[0]);
}
function lockDiscountP(uint256 collatP, uint256 lockDuration) public view returns (uint256) {
return
((
collatP <= 100 * PRECISION_18
? maxDiscountP
: (
collatP <= maxDiscountThresholdP
? (maxDiscountP * (maxDiscountThresholdP - collatP)) /
(maxDiscountThresholdP - 100 * PRECISION_18)
: 0
)
) * lockDuration) / MAX_LOCK_DURATION;
}
function totalSharesBeingWithdrawn(address owner) public view returns (uint256 shares) {
for (uint256 i = currentEpoch; i <= currentEpoch + WITHDRAW_EPOCHS_LOCKS[0]; ++i) {
shares += withdrawRequests[owner][i];
}
}
// Public helper functions
function tryUpdateCurrentMaxSupply() public {
if (block.timestamp - lastMaxSupplyUpdate >= 24 hours) {
currentMaxSupply = (totalSupply() * (PRECISION_18 * 100 + maxSupplyIncreaseDailyP)) / (PRECISION_18 * 100);
lastMaxSupplyUpdate = block.timestamp;
emit CurrentMaxSupplyUpdated(currentMaxSupply);
}
}
function tryResetDailyAccPnlDelta() public {
if (block.timestamp - lastDailyAccPnlDeltaReset >= 24 hours) {
dailyAccPnlDelta = 0;
lastDailyAccPnlDeltaReset = block.timestamp;
emit DailyAccPnlDeltaReset();
}
}
function tryNewOpenPnlRequestOrEpoch() public {
// Fault tolerance so that activity can continue anyway
(bool success, ) = address(openTradesPnlFeed).call(abi.encodeWithSignature("newOpenPnlRequestOrEpoch()"));
if (!success) {
emit OpenTradesPnlFeedCallFailed();
}
}
// Private helper functions
function updateShareToAssetsPrice() private {
shareToAssetsPrice = maxAccPnlPerToken() - (accPnlPerTokenUsed > 0 ? uint256(accPnlPerTokenUsed) : uint256(0)); // PRECISION_18
emit ShareToAssetsPriceUpdated(shareToAssetsPrice);
}
function _assetIERC20() private view returns (IERC20Upgradeable) {
return IERC20Upgradeable(asset());
}
// Override ERC-20 functions (prevent sending to address that is withdrawing)
function transfer(address to, uint256 amount) public override(ERC20Upgradeable, IERC20Upgradeable) returns (bool) {
address sender = _msgSender();
if (totalSharesBeingWithdrawn(sender) > balanceOf(sender) - amount) revert PendingWithdrawal();
_transfer(sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public override(ERC20Upgradeable, IERC20Upgradeable) returns (bool) {
if (totalSharesBeingWithdrawn(from) > balanceOf(from) - amount) revert PendingWithdrawal();
_spendAllowance(from, _msgSender(), amount);
_transfer(from, to, amount);
return true;
}
// Override ERC-4626 view functions
function decimals() public view override(ERC20Upgradeable, ERC4626Upgradeable) returns (uint8) {
return ERC4626Upgradeable.decimals();
}
function _convertToShares(
uint256 assets,
MathUpgradeable.Rounding rounding
) internal view override returns (uint256 shares) {
return assets.mulDiv(PRECISION_18, shareToAssetsPrice, rounding);
}
function _convertToAssets(
uint256 shares,
MathUpgradeable.Rounding rounding
) internal view override returns (uint256 assets) {
// Prevent overflow when called from maxDeposit with maxMint = uint256.max
if (shares == type(uint256).max && shareToAssetsPrice >= PRECISION_18) {
return shares;
}
return shares.mulDiv(shareToAssetsPrice, PRECISION_18, rounding);
}
function maxMint(address) public view override returns (uint256) {
return
accPnlPerTokenUsed > 0
? currentMaxSupply - MathUpgradeable.min(currentMaxSupply, totalSupply())
: type(uint256).max;
}
function maxDeposit(address owner) public view override returns (uint256) {
return _convertToAssets(maxMint(owner), MathUpgradeable.Rounding.Down);
}
function maxRedeem(address owner) public view override returns (uint256) {
return
openTradesPnlFeed.nextEpochValuesRequestCount() == 0
? MathUpgradeable.min(withdrawRequests[owner][currentEpoch], totalSupply() - 1)
: 0;
}
function maxWithdraw(address owner) public view override returns (uint256) {
return _convertToAssets(maxRedeem(owner), MathUpgradeable.Rounding.Down);
}
// Override ERC-4626 interactions (call scaleVariables on every deposit / withdrawal)
function deposit(uint256 assets, address receiver) public override checks(assets) returns (uint256) {
if (assets > maxDeposit(receiver)) revert ERC4626ExceededMaxDeposit();
uint256 shares = previewDeposit(assets);
scaleVariables(shares, assets, true);
_deposit(_msgSender(), receiver, assets, shares);
return shares;
}
function mint(uint256 shares, address receiver) public override checks(shares) returns (uint256) {
if (shares > maxMint(receiver)) revert ERC4626ExceededMaxMint();
uint256 assets = previewMint(shares);
scaleVariables(shares, assets, true);
_deposit(_msgSender(), receiver, assets, shares);
return assets;
}
// Override ERC-4626 internal withdraw (unwraps native tokens)
function _withdraw(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares
) internal override {
if (caller != owner) {
_spendAllowance(owner, caller, shares);
}
// If _asset is ERC777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
// `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
// shares are burned and after the assets are transferred, which is a valid state.
_burn(owner, shares);
_transferAssets(receiver, assets);
emit Withdraw(caller, receiver, owner, assets, shares);
}
// Handles transferring of assets including unwrapping when asset is a native token
function _transferAssets(address receiver, uint256 assets) internal {
address asset = asset();
// If asset is a wrapped native token, unwrap and send
if (ChainUtils.isWrappedNativeToken(asset)) {
asset.unwrapAndTransferNative(receiver, assets, MAX_NATIVE_TRANSFER_GAS_LIMIT);
} else {
asset.transfer(receiver, assets);
}
}
function withdraw(
uint256 assets,
address receiver,
address owner
) public override checks(assets) returns (uint256) {
if (assets > maxWithdraw(owner)) revert ERC4626ExceededMaxWithdraw();
uint256 shares = previewWithdraw(assets);
withdrawRequests[owner][currentEpoch] -= shares;
scaleVariables(shares, assets, false);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return shares;
}
function redeem(uint256 shares, address receiver, address owner) public override checks(shares) returns (uint256) {
if (shares > maxRedeem(owner)) revert ERC4626ExceededMaxRedeem();
withdrawRequests[owner][currentEpoch] -= shares;
uint256 assets = previewRedeem(shares);
scaleVariables(shares, assets, false);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return assets;
}
function scaleVariables(uint256 shares, uint256 assets, bool isDeposit) private {
uint256 supply = totalSupply();
if (accPnlPerToken < 0) {
accPnlPerToken =
(accPnlPerToken * int256(supply)) /
(isDeposit ? int256(supply + shares) : int256(supply - shares));
} else if (accPnlPerToken > 0) {
totalLiability +=
((int256(shares) * totalLiability) / int256(supply)) *
(isDeposit ? int256(1) : int256(-1));
}
totalDeposited = isDeposit ? totalDeposited + assets : totalDeposited - assets;
}
// Withdraw requests (need to be done before calling 'withdraw' / 'redeem')
function makeWithdrawRequest(uint256 shares, address owner) external {
if (openTradesPnlFeed.nextEpochValuesRequestCount() > 0) revert EndOfEpoch();
address sender = _msgSender();
uint256 allowance = allowance(owner, sender);
if (sender != owner && (allowance == 0 || allowance < shares)) revert NotAllowed();
if (totalSharesBeingWithdrawn(owner) + shares > balanceOf(owner)) revert AboveMax();
uint256 unlockEpoch = currentEpoch + withdrawEpochsTimelock();
withdrawRequests[owner][unlockEpoch] += shares;
emit WithdrawRequested(sender, owner, shares, currentEpoch, unlockEpoch);
}
function cancelWithdrawRequest(uint256 shares, address owner, uint256 unlockEpoch) external {
if (shares > withdrawRequests[owner][unlockEpoch]) revert AboveMax();
address sender = _msgSender();
uint256 allowance = allowance(owner, sender);
if (sender != owner && (allowance == 0 || allowance < shares)) revert NotAllowed();
withdrawRequests[owner][unlockEpoch] -= shares;
emit WithdrawCanceled(sender, owner, shares, currentEpoch, unlockEpoch);
}
// Locked and discounted deposits
function depositWithDiscountAndLock(
uint256 assets,
uint256 lockDuration,
address receiver
) external checks(assets) validDiscount(lockDuration) returns (uint256) {
uint256 simulatedAssets = (assets * (PRECISION_18 * 100 + lockDiscountP(collateralizationP(), lockDuration))) /
(PRECISION_18 * 100);
if (simulatedAssets > maxDeposit(receiver)) revert AboveMax();
return
_executeDiscountAndLock(simulatedAssets, assets, previewDeposit(simulatedAssets), lockDuration, receiver);
}
function mintWithDiscountAndLock(
uint256 shares,
uint256 lockDuration,
address receiver
) external checks(shares) validDiscount(lockDuration) returns (uint256) {
if (shares > maxMint(receiver)) revert AboveMax();
uint256 assets = previewMint(shares);
return
_executeDiscountAndLock(
assets,
(assets * (PRECISION_18 * 100)) /
(PRECISION_18 * 100 + lockDiscountP(collateralizationP(), lockDuration)),
shares,
lockDuration,
receiver
);
}
function _executeDiscountAndLock(
uint256 assets,
uint256 assetsDeposited,
uint256 shares,
uint256 lockDuration,
address receiver
) private returns (uint256) {
if (assets <= assetsDeposited) revert NoDiscount();
uint256 depositId = ++lockedDepositsCount;
uint256 assetsDiscount = assets - assetsDeposited;
LockedDeposit storage d = lockedDeposits[depositId];
d.owner = receiver;
d.shares = shares;
d.assetsDeposited = assetsDeposited;
d.assetsDiscount = assetsDiscount;
d.atTimestamp = block.timestamp;
d.lockDuration = lockDuration;
scaleVariables(shares, assetsDeposited, true);
address sender = _msgSender();
_deposit(sender, address(this), assetsDeposited, shares);
totalDiscounts += assetsDiscount;
totalLockedDiscounts += assetsDiscount;
lockedDepositNft.mint(receiver, depositId);
emit DepositLocked(sender, d.owner, depositId, d);
return depositId;
}
function unlockDeposit(uint256 depositId, address receiver) external {
LockedDeposit storage d = lockedDeposits[depositId];
address sender = _msgSender();
address owner = lockedDepositNft.ownerOf(depositId);
if (
owner != sender &&
lockedDepositNft.getApproved(depositId) != sender &&
!lockedDepositNft.isApprovedForAll(owner, sender)
) revert NotAllowed();
if (block.timestamp < d.atTimestamp + d.lockDuration) revert NotUnlocked();
int256 accPnlDelta = int256(
d.assetsDiscount.mulDiv(
collateralConfig.precisionDelta * collateralConfig.precision,
totalSupply(),
MathUpgradeable.Rounding.Up
)
);
accPnlPerToken += accPnlDelta;
if (accPnlPerToken > int256(maxAccPnlPerToken())) revert NotEnoughAssets();
lockedDepositNft.burn(depositId);
accPnlPerTokenUsed += accPnlDelta;
updateShareToAssetsPrice();
totalLiability += int256(d.assetsDiscount);
totalLockedDiscounts -= d.assetsDiscount;
_transfer(address(this), receiver, d.shares);
emit DepositUnlocked(sender, receiver, owner, depositId, d);
}
// Distributes a reward evenly to all stakers of the vault
function distributeReward(uint256 assets) external {
address sender = _msgSender();
SafeERC20Upgradeable.safeTransferFrom(_assetIERC20(), sender, address(this), assets);
accRewardsPerToken += (assets * collateralConfig.precisionDelta * collateralConfig.precision) / totalSupply();
updateShareToAssetsPrice();
totalRewards += assets;
totalDeposited += assets;
emit RewardDistributed(sender, assets);
}
// PnL interactions (happens often, so also used to trigger other actions)
function sendAssets(uint256 assets, address receiver) external {
address sender = _msgSender();
if (sender != pnlHandler) revert OnlyTradingPnlHandler();
int256 accPnlDelta = int256(
assets.mulDiv(
collateralConfig.precisionDelta * collateralConfig.precision,
totalSupply(),
MathUpgradeable.Rounding.Up
)
);
accPnlPerToken += accPnlDelta;
if (accPnlPerToken > int256(maxAccPnlPerToken())) revert NotEnoughAssets();
tryResetDailyAccPnlDelta();
dailyAccPnlDelta += accPnlDelta;
if (dailyAccPnlDelta > int256(maxDailyAccPnlDelta)) revert MaxDailyPnl();
totalLiability += int256(assets);
totalClosedPnl += int256(assets);
tryNewOpenPnlRequestOrEpoch();
tryUpdateCurrentMaxSupply();
SafeERC20Upgradeable.safeTransfer(_assetIERC20(), receiver, assets);
emit AssetsSent(sender, receiver, assets);
}
function receiveAssets(uint256 assets, address user) external {
address sender = _msgSender();
SafeERC20Upgradeable.safeTransferFrom(_assetIERC20(), sender, address(this), assets);
uint256 assetsLessDeplete = assets;
if (accPnlPerTokenUsed < 0 && accPnlPerToken < 0) {
uint256 depleteAmount = (assets * lossesBurnP) / PRECISION_18 / 100;
assetsToDeplete += depleteAmount;
assetsLessDeplete -= depleteAmount;
}
int256 accPnlDelta = int256(
(assetsLessDeplete * collateralConfig.precisionDelta * collateralConfig.precision) / totalSupply()
);
accPnlPerToken -= accPnlDelta;
tryResetDailyAccPnlDelta();
dailyAccPnlDelta -= accPnlDelta;
totalLiability -= int256(assetsLessDeplete);
totalClosedPnl -= int256(assetsLessDeplete);
tryNewOpenPnlRequestOrEpoch();
tryUpdateCurrentMaxSupply();
emit AssetsReceived(sender, user, assets, assetsLessDeplete);
}
// GNS mint / burn mechanism
function deplete(uint256 assets) external {
if (assets > assetsToDeplete) revert AboveMax();
assetsToDeplete -= assets;
uint256 amountGns = assets.mulDiv(
collateralConfig.precisionDelta * PRECISION_10,
gnsTokenToAssetsPrice(),
MathUpgradeable.Rounding.Up
);
address sender = _msgSender();
IERC20(gnsToken).burn(sender, amountGns);
totalDepleted += assets;
totalDepletedGns += amountGns;
_transferAssets(sender, assets);
emit Depleted(sender, assets, amountGns);
}
function refill(uint256 assets) external {
if (accPnlPerTokenUsed <= 0) revert NotUnderCollateralized();
uint256 supply = totalSupply();
if (assets > (uint256(accPnlPerTokenUsed) * supply) / PRECISION_18) revert AboveMax();
if (block.timestamp - lastDailyMintedGnsReset >= 24 hours) {
dailyMintedGns = 0;
lastDailyMintedGnsReset = block.timestamp;
}
uint256 amountGns = (assets * collateralConfig.precisionDelta * PRECISION_10) / gnsTokenToAssetsPrice();
dailyMintedGns += amountGns;
if (dailyMintedGns > (maxGnsSupplyMintDailyP * IERC20Upgradeable(gnsToken).totalSupply()) / PRECISION_18 / 100)
revert AboveInflationLimit();
address sender = _msgSender();
SafeERC20Upgradeable.safeTransferFrom(_assetIERC20(), sender, address(this), assets);
int256 accPnlDelta = int256((assets * PRECISION_18) / supply);
accPnlPerToken -= accPnlDelta;
accPnlPerTokenUsed -= accPnlDelta;
updateShareToAssetsPrice();
totalRefilled += assets;
totalRefilledGns += amountGns;
IERC20(gnsToken).mint(sender, amountGns);
emit Refilled(sender, assets, amountGns);
}
// Updates shareToAssetsPrice based on the new PnL and starts a new epoch
function updateAccPnlPerTokenUsed(
uint256 prevPositiveOpenPnl, // 1e18
uint256 newPositiveOpenPnl // 1e18
) external returns (uint256) {
address sender = _msgSender();
if (sender != address(openTradesPnlFeed)) revert OnlyPnlFeed();
int256 delta = int256(newPositiveOpenPnl) - int256(prevPositiveOpenPnl); // 1e18
uint256 supply = totalSupply();
int256 maxDelta = int256(
MathUpgradeable.min(
(uint256(int256(maxAccPnlPerToken()) - accPnlPerToken) * supply) / collateralConfig.precision,
(maxAccOpenPnlDelta * supply) / collateralConfig.precision
)
); // PRECISION_18
delta = delta > maxDelta ? maxDelta : delta;
accPnlPerToken += (delta * int256(uint256(collateralConfig.precision))) / int256(supply);
totalLiability += delta / int256(uint256(collateralConfig.precisionDelta));
accPnlPerTokenUsed = accPnlPerToken;
updateShareToAssetsPrice();
currentEpoch++;
currentEpochStart = block.timestamp;
currentEpochPositiveOpenPnl = uint256(int256(prevPositiveOpenPnl) + delta);
tryUpdateCurrentMaxSupply();
emit AccPnlPerTokenUsedUpdated(
sender,
currentEpoch,
prevPositiveOpenPnl,
newPositiveOpenPnl,
currentEpochPositiveOpenPnl,
accPnlPerTokenUsed
);
return currentEpochPositiveOpenPnl;
}
// Getters
function getLockedDeposit(uint256 depositId) external view returns (LockedDeposit memory) {
return lockedDeposits[depositId];
}
function tvl() public view returns (uint256) {
return (maxAccPnlPerToken() * totalSupply()) / PRECISION_18; // collateralConfig.precision
}
function availableAssets() public view returns (uint256) {
return (uint256(int256(maxAccPnlPerToken()) - accPnlPerTokenUsed) * totalSupply()) / PRECISION_18; // collateralConfig.precision
}
function marketCap() public view returns (uint256) {
return (totalSupply() * shareToAssetsPrice) / PRECISION_18; // collateralConfig.precision
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
/**
* @dev Interface for Arbitrum special l2 functions
*/
interface IArbSys {
function arbBlockNumber() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface for ERC20 tokens
*/
interface IERC20 is IERC20Metadata {
function burn(address, uint256) external;
function mint(address, uint256) external;
function hasRole(bytes32, address) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
/**
* @dev Interface for errors potentially used in all libraries (general names)
*/
interface IGeneralErrors {
error InitError();
error InvalidAddresses();
error InvalidAddress();
error InvalidInputLength();
error InvalidCollateralIndex();
error WrongParams();
error WrongLength();
error WrongOrder();
error WrongIndex();
error BlockOrder();
error Overflow();
error ZeroAddress();
error ZeroValue();
error AlreadyExists();
error DoesntExist();
error Paused();
error BelowMin();
error AboveMax();
error NotAuthorized();
error WrongTradeType();
error WrongOrderType();
error InsufficientBalance();
error UnsupportedChain();
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
/**
* @dev Interface for GToken contract
*/
interface IGToken {
struct GnsPriceProvider {
address addr;
bytes signature;
}
struct LockedDeposit {
address owner;
uint256 shares; // collateralConfig.precision
uint256 assetsDeposited; // collateralConfig.precision
uint256 assetsDiscount; // collateralConfig.precision
uint256 atTimestamp; // timestamp
uint256 lockDuration; // timestamp
}
struct ContractAddresses {
address asset;
address owner; // 2-week timelock contract
address manager; // 3-day timelock contract
address admin; // bypasses timelock, access to emergency functions
address gnsToken;
address lockedDepositNft;
address pnlHandler;
address openTradesPnlFeed;
GnsPriceProvider gnsPriceProvider;
}
struct Meta {
string name;
string symbol;
}
function manager() external view returns (address);
function admin() external view returns (address);
function currentEpoch() external view returns (uint256);
function currentEpochStart() external view returns (uint256);
function currentEpochPositiveOpenPnl() external view returns (uint256);
function updateAccPnlPerTokenUsed(
uint256 prevPositiveOpenPnl,
uint256 newPositiveOpenPnl
) external returns (uint256);
function getLockedDeposit(uint256 depositId) external view returns (LockedDeposit memory);
function sendAssets(uint256 assets, address receiver) external;
function receiveAssets(uint256 assets, address user) external;
function distributeReward(uint256 assets) external;
function tvl() external view returns (uint256);
function marketCap() external view returns (uint256);
function shareToAssetsPrice() external view returns (uint256);
function collateralConfig() external view returns (uint128, uint128);
event ManagerUpdated(address newValue);
event AdminUpdated(address newValue);
event PnlHandlerUpdated(address newValue);
event OpenTradesPnlFeedUpdated(address newValue);
event GnsPriceProviderUpdated(GnsPriceProvider newValue);
event WithdrawLockThresholdsPUpdated(uint256[2] newValue);
event MaxAccOpenPnlDeltaUpdated(uint256 newValue);
event MaxDailyAccPnlDeltaUpdated(uint256 newValue);
event MaxSupplyIncreaseDailyPUpdated(uint256 newValue);
event LossesBurnPUpdated(uint256 newValue);
event MaxGnsSupplyMintDailyPUpdated(uint256 newValue);
event MaxDiscountPUpdated(uint256 newValue);
event MaxDiscountThresholdPUpdated(uint256 newValue);
event CurrentMaxSupplyUpdated(uint256 newValue);
event DailyAccPnlDeltaReset();
event ShareToAssetsPriceUpdated(uint256 newValue);
event OpenTradesPnlFeedCallFailed();
event WithdrawRequested(
address indexed sender,
address indexed owner,
uint256 shares,
uint256 currEpoch,
uint256 indexed unlockEpoch
);
event WithdrawCanceled(
address indexed sender,
address indexed owner,
uint256 shares,
uint256 currEpoch,
uint256 indexed unlockEpoch
);
event DepositLocked(address indexed sender, address indexed owner, uint256 depositId, LockedDeposit d);
event DepositUnlocked(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 depositId,
LockedDeposit d
);
event RewardDistributed(address indexed sender, uint256 assets);
event AssetsSent(address indexed sender, address indexed receiver, uint256 assets);
event AssetsReceived(address indexed sender, address indexed user, uint256 assets, uint256 assetsLessDeplete);
event Depleted(address indexed sender, uint256 assets, uint256 amountGns);
event Refilled(address indexed sender, uint256 assets, uint256 amountGns);
event AccPnlPerTokenUsedUpdated(
address indexed sender,
uint256 indexed newEpoch,
uint256 prevPositiveOpenPnl,
uint256 newPositiveOpenPnl,
uint256 newEpochPositiveOpenPnl,
int256 newAccPnlPerTokenUsed
);
error OnlyManager();
error OnlyTradingPnlHandler();
error OnlyPnlFeed();
error AddressZero();
error PriceZero();
error ValueZero();
error BytesZero();
error NoActiveDiscount();
error BelowMin();
error AboveMax();
error WrongValue();
error WrongValues();
error GnsPriceCallFailed();
error GnsTokenPriceZero();
error PendingWithdrawal();
error EndOfEpoch();
error NotAllowed();
error NoDiscount();
error NotUnlocked();
error NotEnoughAssets();
error MaxDailyPnl();
error NotUnderCollateralized();
error AboveInflationLimit();
// Ownable
error OwnableInvalidOwner(address owner);
// ERC4626
error ERC4626ExceededMaxDeposit();
error ERC4626ExceededMaxMint();
error ERC4626ExceededMaxWithdraw();
error ERC4626ExceededMaxRedeem();
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "./IGTokenLockedDepositNftDesign.sol";
/**
* @dev Interface for GTokenLockedDepositNft contract
*/
interface IGTokenLockedDepositNft is IERC721 {
function mint(address to, uint256 tokenId) external;
function burn(uint256 tokenId) external;
event DesignUpdated(IGTokenLockedDepositNftDesign newValue);
event DesignDecimalsUpdated(uint8 newValue);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import "./IGToken.sol";
/**
* @dev Interface for GTokenLockedDepositNftDesign contract
*/
interface IGTokenLockedDepositNftDesign {
function buildTokenURI(
uint256 tokenId,
IGToken.LockedDeposit memory lockedDeposit,
string memory gTokenSymbol,
string memory assetSymbol,
uint8 numberInputDecimals,
uint8 numberOutputDecimals
) external pure returns (string memory);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
/**
* @dev Interface for GTokenOpenPnlFeed contract
*/
interface IGTokenOpenPnlFeed {
struct Request {
bool initiated;
bool active;
uint256 linkFeePerNode;
}
function nextEpochValuesRequestCount() external view returns (uint256);
function newOpenPnlRequestOrEpoch() external;
function fulfill(bytes32 requestId, int256 value) external;
event NumberParamUpdated(string name, uint256 newValue);
event OracleUpdated(uint256 index, address newValue);
event OraclesUpdated(address[] newValues);
event JobUpdated(bytes32 newValue);
event NextEpochValuesReset(uint256 indexed currEpoch, uint256 requestsResetCount);
event NewEpochForced(uint256 indexed newEpoch);
event NextEpochValueRequested(
uint256 indexed currEpoch,
uint256 indexed requestId,
bytes32 job,
uint256 oraclesCount,
uint256 linkFeePerNode
);
event NewEpoch(
uint256 indexed newEpoch,
uint256 indexed requestId,
int256[] epochMedianValues,
int256 epochAverageValue,
uint256 newEpochPositiveOpenPnl
);
event RequestValueReceived(
bool isLate,
uint256 indexed currEpoch,
uint256 indexed requestId,
bytes32 oracleRequestId,
address indexed oracle,
int256 requestValue,
uint256 linkFee
);
event RequestMedianValueSet(
uint256 indexed currEpoch,
uint256 indexed requestId,
int256[] requestValues,
int256 medianValue
);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
/**
* @dev Interface for WETH9 token
*/
interface IWETH9 {
function approve(address spender, uint256 amount) external returns (bool);
function transfer(address to, uint256 amount) external returns (bool);
function deposit() external payable;
function withdraw(uint256) external;
function balanceOf(address account) external view returns (uint256);
event Approval(address indexed src, address indexed guy, uint256 wad);
event Transfer(address indexed src, address indexed dst, uint256 wad);
event Deposit(address indexed dst, uint256 wad);
event Withdrawal(address indexed src, uint256 wad);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
/**
* @dev Interface for BlockManager_Mock contract (test helper)
*/
interface IBlockManager_Mock {
function getBlockNumber() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import "../interfaces/IArbSys.sol";
import "../interfaces/IGeneralErrors.sol";
import "../interfaces/mock/IBlockManager_Mock.sol";
/**
* @dev Chain helpers internal library
*/
library ChainUtils {
// Supported chains
uint256 internal constant ARBITRUM_MAINNET = 42161;
uint256 internal constant ARBITRUM_SEPOLIA = 421614;
uint256 internal constant POLYGON_MAINNET = 137;
uint256 internal constant BASE_MAINNET = 8453;
uint256 internal constant APECHAIN_MAINNET = 33139;
uint256 internal constant TESTNET = 31337;
// Wrapped native tokens
address private constant ARBITRUM_MAINNET_WETH = 0x82aF49447D8a07e3bd95BD0d56f35241523fBab1;
address private constant ARBITRUM_SEPOLIA_WETH = 0x980B62Da83eFf3D4576C647993b0c1D7faf17c73;
address private constant POLYGON_MAINNET_WMATIC = 0x0d500B1d8E8eF31E21C99d1Db9A6444d3ADf1270;
address private constant BASE_MAINNET_WETH = 0x4200000000000000000000000000000000000006;
address private constant APECHAIN_MAINNET_WAPE = 0x00000000000f7e000644657dC9417b185962645a; // Custom non-rebasing WAPE
IArbSys private constant ARB_SYS = IArbSys(address(100));
error Overflow();
/**
* @dev Returns the current block number (l2 block for arbitrum)
*/
function getBlockNumber() internal view returns (uint256) {
if (block.chainid == ARBITRUM_MAINNET || block.chainid == ARBITRUM_SEPOLIA) {
return ARB_SYS.arbBlockNumber();
}
if (block.chainid == TESTNET) {
return IBlockManager_Mock(address(420)).getBlockNumber();
}
return block.number;
}
/**
* @dev Returns blockNumber converted to uint48
* @param blockNumber block number to convert
*/
function getUint48BlockNumber(uint256 blockNumber) internal pure returns (uint48) {
if (blockNumber > type(uint48).max) revert Overflow();
return uint48(blockNumber);
}
/**
* @dev Returns the wrapped native token address for the current chain
*/
function getWrappedNativeToken() internal view returns (address) {
if (block.chainid == ARBITRUM_MAINNET) {
return ARBITRUM_MAINNET_WETH;
}
if (block.chainid == BASE_MAINNET) {
return BASE_MAINNET_WETH;
}
if (block.chainid == APECHAIN_MAINNET) {
return APECHAIN_MAINNET_WAPE;
}
if (block.chainid == POLYGON_MAINNET) {
return POLYGON_MAINNET_WMATIC;
}
if (block.chainid == ARBITRUM_SEPOLIA) {
return ARBITRUM_SEPOLIA_WETH;
}
if (block.chainid == TESTNET) {
return address(421);
}
return address(0);
}
/**
* @dev Returns whether a token is the wrapped native token for the current chain
* @param _token token address to check
*/
function isWrappedNativeToken(address _token) internal view returns (bool) {
return _token != address(0) && _token == getWrappedNativeToken();
}
/**
* @dev Converts blocks to seconds for the current chain.
* @dev Important: the result is an estimation and may not be accurate. Use with caution.
* @param _blocks block count to convert to seconds
*/
function convertBlocksToSeconds(uint256 _blocks) internal view returns (uint256) {
uint256 millisecondsPerBlock;
if (block.chainid == ARBITRUM_MAINNET || block.chainid == ARBITRUM_SEPOLIA) {
millisecondsPerBlock = 300; // 0.3 seconds per block
} else if (block.chainid == BASE_MAINNET) {
millisecondsPerBlock = 2000; // 2 seconds per block
} else if (block.chainid == POLYGON_MAINNET) {
millisecondsPerBlock = 2200; // 2.2 seconds per block
} else if (block.chainid == APECHAIN_MAINNET) {
millisecondsPerBlock = 12000; // for apescan we use L1 blocktime (12s)
} else if (block.chainid == TESTNET) {
millisecondsPerBlock = 1000; // 1 second per block
} else {
revert IGeneralErrors.UnsupportedChain();
}
return Math.mulDiv(_blocks, millisecondsPerBlock, 1000, Math.Rounding.Up);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import "../interfaces/IERC20.sol";
/**
* @dev Collaterals decimal precision internal library
*/
library CollateralUtils {
struct CollateralConfig {
uint128 precision;
uint128 precisionDelta;
}
/**
* @dev Calculates `precision` (10^decimals) and `precisionDelta` (precision difference
* between 18 decimals and `token` decimals) of a given IERC20 `token`
*
* Notice: not compatible with tokens with more than 18 decimals
*
* @param _token collateral token address
*/
function getCollateralConfig(address _token) internal view returns (CollateralConfig memory _meta) {
uint256 _decimals = uint256(IERC20(_token).decimals());
_meta.precision = uint128(10 ** _decimals);
_meta.precisionDelta = uint128(10 ** (18 - _decimals));
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../interfaces/IWETH9.sol";
import "../interfaces/IERC20.sol";
/**
* @dev Library to handle transfers of tokens, including native tokens.
*/
library TokenTransferUtils {
using SafeERC20 for IERC20;
/**
* @dev Unwraps and transfers `_amount` of native tokens to a recipient, `_to`.
*
* IMPORTANT:
* If the recipient does not accept the native transfer then the tokens are re-wrapped and transferred as ERC20.
* Always ensure CEI pattern is followed or reentrancy guards are in place before performing native transfers.
*
* @param _token the wrapped native token address
* @param _to the recipient
* @param _amount the amount of tokens to transfer
* @param _gasLimit how much gas to forward.
*/
function unwrapAndTransferNative(address _token, address _to, uint256 _amount, uint256 _gasLimit) internal {
// 1. Unwrap `_amount` of `_token`
IWETH9(_token).withdraw(_amount);
// 2. Attempt to transfer native tokens
// Uses low-level call and loads no return data into memory to prevent `returnbomb` attacks
// See https://gist.github.com/pcaversaccio/3b487a24922c839df22f925babd3c809 for an example
bool success;
assembly {
// call(gas, address, value, argsOffset, argsSize, retOffset, retSize)
success := call(_gasLimit, _to, _amount, 0, 0, 0, 0)
}
// 3. If the native transfer was successful, return
if (success) return;
// 4. Otherwise re-wrap `_amount` of `_token`
IWETH9(_token).deposit{value: _amount}();
// 5. Send with an ERC20 transfer
transfer(_token, _to, _amount);
}
/**
* @dev Transfers `_amount` of `_token` to a recipient, `to`
* @param _token the token address
* @param _to the recipient
* @param _amount amount of tokens to transfer
*/
function transfer(address _token, address _to, uint256 _amount) internal {
IERC20(_token).safeTransfer(_to, _amount);
}
/**
* @dev Transfers `_amount` of `_token` from a sender, `_from`, to a recipient, `to`.
* @param _token the token address
* @param _from the sender
* @param _to the recipient
* @param _amount amount of tokens to transfer
*/
function transferFrom(address _token, address _from, address _to, uint256 _amount) internal {
IERC20(_token).safeTransferFrom(_from, _to, _amount);
}
}