APE Price: $0.47 (-5.48%)
    /

    Contract Diff Checker

    Contract Name:
    ERC721CMRoyalties

    Contract Source Code:

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import "@openzeppelin/contracts/utils/Context.sol";
    
    abstract contract OwnablePermissions is Context {
        function _requireCallerIsContractOwner() internal view virtual;
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import "./ICreatorTokenTransferValidator.sol";
    
    interface ICreatorToken {
        event TransferValidatorUpdated(address oldValidator, address newValidator);
    
        function getTransferValidator() external view returns (ICreatorTokenTransferValidator);
        function getSecurityPolicy() external view returns (CollectionSecurityPolicy memory);
        function getWhitelistedOperators() external view returns (address[] memory);
        function getPermittedContractReceivers() external view returns (address[] memory);
        function isOperatorWhitelisted(address operator) external view returns (bool);
        function isContractReceiverPermitted(address receiver) external view returns (bool);
        function isTransferAllowed(address caller, address from, address to) external view returns (bool);
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import "./IEOARegistry.sol";
    import "./ITransferSecurityRegistry.sol";
    import "./ITransferValidator.sol";
    
    interface ICreatorTokenTransferValidator is ITransferSecurityRegistry, ITransferValidator, IEOARegistry {}

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
    
    interface IEOARegistry is IERC165 {
        function isVerifiedEOA(address account) external view returns (bool);
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import "../utils/TransferPolicy.sol";
    
    interface ITransferSecurityRegistry {
        event AddedToAllowlist(AllowlistTypes indexed kind, uint256 indexed id, address indexed account);
        event CreatedAllowlist(AllowlistTypes indexed kind, uint256 indexed id, string indexed name);
        event ReassignedAllowlistOwnership(AllowlistTypes indexed kind, uint256 indexed id, address indexed newOwner);
        event RemovedFromAllowlist(AllowlistTypes indexed kind, uint256 indexed id, address indexed account);
        event SetAllowlist(AllowlistTypes indexed kind, address indexed collection, uint120 indexed id);
        event SetTransferSecurityLevel(address indexed collection, TransferSecurityLevels level);
    
        function createOperatorWhitelist(string calldata name) external returns (uint120);
        function createPermittedContractReceiverAllowlist(string calldata name) external returns (uint120);
        function reassignOwnershipOfOperatorWhitelist(uint120 id, address newOwner) external;
        function reassignOwnershipOfPermittedContractReceiverAllowlist(uint120 id, address newOwner) external;
        function renounceOwnershipOfOperatorWhitelist(uint120 id) external;
        function renounceOwnershipOfPermittedContractReceiverAllowlist(uint120 id) external;
        function setTransferSecurityLevelOfCollection(address collection, TransferSecurityLevels level) external;
        function setOperatorWhitelistOfCollection(address collection, uint120 id) external;
        function setPermittedContractReceiverAllowlistOfCollection(address collection, uint120 id) external;
        function addOperatorToWhitelist(uint120 id, address operator) external;
        function addPermittedContractReceiverToAllowlist(uint120 id, address receiver) external;
        function removeOperatorFromWhitelist(uint120 id, address operator) external;
        function removePermittedContractReceiverFromAllowlist(uint120 id, address receiver) external;
        function getCollectionSecurityPolicy(address collection) external view returns (CollectionSecurityPolicy memory);
        function getWhitelistedOperators(uint120 id) external view returns (address[] memory);
        function getPermittedContractReceivers(uint120 id) external view returns (address[] memory);
        function isOperatorWhitelisted(uint120 id, address operator) external view returns (bool);
        function isContractReceiverPermitted(uint120 id, address receiver) external view returns (bool);
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import "../utils/TransferPolicy.sol";
    
    interface ITransferValidator {
        function applyCollectionTransferPolicy(address caller, address from, address to) external view;
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    /** 
     * @dev Used in events to indicate the list type that an account or 
     * @dev codehash is being added to or removed from.
     * 
     * @dev Used in Creator Token Standards V2.
     */
    enum ListTypes {
        // 0: List type that will block a matching address/codehash that is on the list.
        Blacklist,
    
        // 1: List type that will block any matching address/codehash that is not on the list.
        Whitelist
    }
    
    /** 
     * @dev Used in events to indicate the list type that event relates to.
     * 
     * @dev Used in Creator Token Standards V1.
     */
    enum AllowlistTypes {
        // 0: List type that defines the allowed operator addresses.
        Operators,
    
        // 1: List type that defines the allowed contract receivers.
        PermittedContractReceivers
    }
    
    /**
     @dev Defines the constraints that will be applied for receipt of tokens.
     */
    enum ReceiverConstraints {
        // 0: Any address may receive tokens.
        None,
    
        // 1: Address must not have deployed bytecode.
        NoCode,
    
        // 2: Address must verify a signature with the EOA Registry to prove it is an EOA.
        EOA
    }
    
    /**
     * @dev Defines the constraints that will be applied to the transfer caller.
     */
    enum CallerConstraints {
        // 0: Any address may transfer tokens.
        None,
    
        // 1: Addresses and codehashes not on the blacklist may transfer tokens.
        OperatorBlacklistEnableOTC,
    
        // 2: Addresses and codehashes on the whitelist and the owner of the token may transfer tokens.
        OperatorWhitelistEnableOTC,
    
        // 3: Addresses and codehashes on the whitelist may transfer tokens.
        OperatorWhitelistDisableOTC
    }
    
    /**
     * @dev Defines constraints for staking tokens in token wrapper contracts.
     */
    enum StakerConstraints {
        // 0: No constraints applied to staker.
        None,
    
        // 1: Transaction originator must be the address that will receive the wrapped tokens.
        CallerIsTxOrigin,
    
        // 2: Address that will receive the wrapped tokens must be a verified EOA.
        EOA
    }
    
    /**
     * @dev Used in both Creator Token Standards V1 and V2.
     * @dev Levels may have different transfer restrictions in V1 and V2. Refer to the 
     * @dev Creator Token Transfer Validator implementation for the version being utilized
     * @dev to determine the effect of the selected level.
     */
    enum TransferSecurityLevels {
        Recommended,
        One,
        Two,
        Three,
        Four,
        Five,
        Six,
        Seven,
        Eight
    }
    
    /**
     * @dev Defines the caller and receiver constraints for a transfer security level.
     * @dev Used in Creator Token Standards V1.
     * 
     * @dev **callerConstraints**: The restrictions applied to the transfer caller.
     * @dev **receiverConstraints**: The restrictions applied to the transfer recipient.
     */
    struct TransferSecurityPolicy {
        CallerConstraints callerConstraints;
        ReceiverConstraints receiverConstraints;
    }
    
    /**
     * @dev Defines the security policy for a token collection in Creator Token Standards V1.
     * 
     * @dev **transferSecurityLevel**: The transfer security level set for the collection.
     * @dev **operatorWhitelistId**: The list id for the operator whitelist.
     * @dev **permittedContractReceiversId: The list id for the contracts that are allowed to receive tokens.
     */
    struct CollectionSecurityPolicy {
        TransferSecurityLevels transferSecurityLevel;
        uint120 operatorWhitelistId;
        uint120 permittedContractReceiversId;
    }
    
    /**
     * @dev Defines the security policy for a token collection in Creator Token Standards V2.
     * 
     * @dev **transferSecurityLevel**: The transfer security level set for the collection.
     * @dev **listId**: The list id that contains the blacklist and whitelist to apply to the collection.
     */
    struct CollectionSecurityPolicyV2 {
        TransferSecurityLevels transferSecurityLevel;
        uint120 listId;
    }
    
    /** 
     * @dev Used internally in the Creator Token Base V2 contract to pack transfer validator configuration.
     * 
     * @dev **isInitialized**: If not initialized by the collection owner or admin the default validator will be used.
     * @dev **version**: The transfer validator version.
     * @dev **transferValidator**: The address of the transfer validator to use for applying collection security settings.
     */
    struct TransferValidatorReference {
        bool isInitialized;
        uint16 version;
        address transferValidator;
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import "@openzeppelin/contracts/utils/Context.sol";
    
    /**
     * @title TransferValidation
     * @author Limit Break, Inc.
     * @notice A mix-in that can be combined with ERC-721 contracts to provide more granular hooks.
     * Openzeppelin's ERC721 contract only provides hooks for before and after transfer.  This allows
     * developers to validate or customize transfers within the context of a mint, a burn, or a transfer.
     */
    abstract contract TransferValidation is Context {
        
        /// @dev Thrown when the from and to address are both the zero address.
        error ShouldNotMintToBurnAddress();
    
        /// @dev Inheriting contracts should call this function in the _beforeTokenTransfer function to get more granular hooks.
        function _validateBeforeTransfer(address from, address to, uint256 tokenId) internal virtual {
            bool fromZeroAddress = from == address(0);
            bool toZeroAddress = to == address(0);
    
            if(fromZeroAddress && toZeroAddress) {
                revert ShouldNotMintToBurnAddress();
            } else if(fromZeroAddress) {
                _preValidateMint(_msgSender(), to, tokenId, msg.value);
            } else if(toZeroAddress) {
                _preValidateBurn(_msgSender(), from, tokenId, msg.value);
            } else {
                _preValidateTransfer(_msgSender(), from, to, tokenId, msg.value);
            }
        }
    
        /// @dev Inheriting contracts should call this function in the _afterTokenTransfer function to get more granular hooks.
        function _validateAfterTransfer(address from, address to, uint256 tokenId) internal virtual {
            bool fromZeroAddress = from == address(0);
            bool toZeroAddress = to == address(0);
    
            if(fromZeroAddress && toZeroAddress) {
                revert ShouldNotMintToBurnAddress();
            } else if(fromZeroAddress) {
                _postValidateMint(_msgSender(), to, tokenId, msg.value);
            } else if(toZeroAddress) {
                _postValidateBurn(_msgSender(), from, tokenId, msg.value);
            } else {
                _postValidateTransfer(_msgSender(), from, to, tokenId, msg.value);
            }
        }
    
        /// @dev Optional validation hook that fires before a mint
        function _preValidateMint(address caller, address to, uint256 tokenId, uint256 value) internal virtual {}
    
        /// @dev Optional validation hook that fires after a mint
        function _postValidateMint(address caller, address to, uint256 tokenId, uint256 value) internal virtual {}
    
        /// @dev Optional validation hook that fires before a burn
        function _preValidateBurn(address caller, address from, uint256 tokenId, uint256 value) internal virtual {}
    
        /// @dev Optional validation hook that fires after a burn
        function _postValidateBurn(address caller, address from, uint256 tokenId, uint256 value) internal virtual {}
    
        /// @dev Optional validation hook that fires before a transfer
        function _preValidateTransfer(address caller, address from, address to, uint256 tokenId, uint256 value) internal virtual {}
    
        /// @dev Optional validation hook that fires after a transfer
        function _postValidateTransfer(address caller, address from, address to, uint256 tokenId, uint256 value) internal virtual {}
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.20;
    
    import {Context} from "../utils/Context.sol";
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * The initial owner is set to the address provided by the deployer. This can
     * later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        /**
         * @dev The caller account is not authorized to perform an operation.
         */
        error OwnableUnauthorizedAccount(address account);
    
        /**
         * @dev The owner is not a valid owner account. (eg. `address(0)`)
         */
        error OwnableInvalidOwner(address owner);
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
         */
        constructor(address initialOwner) {
            if (initialOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(initialOwner);
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            if (owner() != _msgSender()) {
                revert OwnableUnauthorizedAccount(_msgSender());
            }
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            if (newOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC1271 standard signature validation method for
     * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
     */
    interface IERC1271 {
        /**
         * @dev Should return whether the signature provided is valid for the provided data
         * @param hash      Hash of the data to be signed
         * @param signature Signature byte array associated with _data
         */
        function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC165} from "../utils/introspection/IERC165.sol";

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC2981.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC165} from "../utils/introspection/IERC165.sol";
    
    /**
     * @dev Interface for the NFT Royalty Standard.
     *
     * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
     * support for royalty payments across all NFT marketplaces and ecosystem participants.
     */
    interface IERC2981 is IERC165 {
        /**
         * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
         * exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
         */
        function royaltyInfo(
            uint256 tokenId,
            uint256 salePrice
        ) external view returns (address receiver, uint256 royaltyAmount);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/common/ERC2981.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC2981} from "../../interfaces/IERC2981.sol";
    import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
    
    /**
     * @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
     *
     * Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
     * specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
     *
     * Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
     * fee is specified in basis points by default.
     *
     * IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
     * https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
     * voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
     */
    abstract contract ERC2981 is IERC2981, ERC165 {
        struct RoyaltyInfo {
            address receiver;
            uint96 royaltyFraction;
        }
    
        RoyaltyInfo private _defaultRoyaltyInfo;
        mapping(uint256 tokenId => RoyaltyInfo) private _tokenRoyaltyInfo;
    
        /**
         * @dev The default royalty set is invalid (eg. (numerator / denominator) >= 1).
         */
        error ERC2981InvalidDefaultRoyalty(uint256 numerator, uint256 denominator);
    
        /**
         * @dev The default royalty receiver is invalid.
         */
        error ERC2981InvalidDefaultRoyaltyReceiver(address receiver);
    
        /**
         * @dev The royalty set for an specific `tokenId` is invalid (eg. (numerator / denominator) >= 1).
         */
        error ERC2981InvalidTokenRoyalty(uint256 tokenId, uint256 numerator, uint256 denominator);
    
        /**
         * @dev The royalty receiver for `tokenId` is invalid.
         */
        error ERC2981InvalidTokenRoyaltyReceiver(uint256 tokenId, address receiver);
    
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
            return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
        }
    
        /**
         * @inheritdoc IERC2981
         */
        function royaltyInfo(uint256 tokenId, uint256 salePrice) public view virtual returns (address, uint256) {
            RoyaltyInfo memory royalty = _tokenRoyaltyInfo[tokenId];
    
            if (royalty.receiver == address(0)) {
                royalty = _defaultRoyaltyInfo;
            }
    
            uint256 royaltyAmount = (salePrice * royalty.royaltyFraction) / _feeDenominator();
    
            return (royalty.receiver, royaltyAmount);
        }
    
        /**
         * @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
         * fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
         * override.
         */
        function _feeDenominator() internal pure virtual returns (uint96) {
            return 10000;
        }
    
        /**
         * @dev Sets the royalty information that all ids in this contract will default to.
         *
         * Requirements:
         *
         * - `receiver` cannot be the zero address.
         * - `feeNumerator` cannot be greater than the fee denominator.
         */
        function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
            uint256 denominator = _feeDenominator();
            if (feeNumerator > denominator) {
                // Royalty fee will exceed the sale price
                revert ERC2981InvalidDefaultRoyalty(feeNumerator, denominator);
            }
            if (receiver == address(0)) {
                revert ERC2981InvalidDefaultRoyaltyReceiver(address(0));
            }
    
            _defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
        }
    
        /**
         * @dev Removes default royalty information.
         */
        function _deleteDefaultRoyalty() internal virtual {
            delete _defaultRoyaltyInfo;
        }
    
        /**
         * @dev Sets the royalty information for a specific token id, overriding the global default.
         *
         * Requirements:
         *
         * - `receiver` cannot be the zero address.
         * - `feeNumerator` cannot be greater than the fee denominator.
         */
        function _setTokenRoyalty(uint256 tokenId, address receiver, uint96 feeNumerator) internal virtual {
            uint256 denominator = _feeDenominator();
            if (feeNumerator > denominator) {
                // Royalty fee will exceed the sale price
                revert ERC2981InvalidTokenRoyalty(tokenId, feeNumerator, denominator);
            }
            if (receiver == address(0)) {
                revert ERC2981InvalidTokenRoyaltyReceiver(tokenId, address(0));
            }
    
            _tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
        }
    
        /**
         * @dev Resets royalty information for the token id back to the global default.
         */
        function _resetTokenRoyalty(uint256 tokenId) internal virtual {
            delete _tokenRoyaltyInfo[tokenId];
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
     * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
     *
     * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
     * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
     * need to send a transaction, and thus is not required to hold Ether at all.
     *
     * ==== Security Considerations
     *
     * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
     * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
     * considered as an intention to spend the allowance in any specific way. The second is that because permits have
     * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
     * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
     * generally recommended is:
     *
     * ```solidity
     * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
     *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
     *     doThing(..., value);
     * }
     *
     * function doThing(..., uint256 value) public {
     *     token.safeTransferFrom(msg.sender, address(this), value);
     *     ...
     * }
     * ```
     *
     * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
     * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
     * {SafeERC20-safeTransferFrom}).
     *
     * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
     * contracts should have entry points that don't rely on permit.
     */
    interface IERC20Permit {
        /**
         * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
         * given ``owner``'s signed approval.
         *
         * IMPORTANT: The same issues {IERC20-approve} has related to transaction
         * ordering also apply here.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `deadline` must be a timestamp in the future.
         * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
         * over the EIP712-formatted function arguments.
         * - the signature must use ``owner``'s current nonce (see {nonces}).
         *
         * For more information on the signature format, see the
         * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
         * section].
         *
         * CAUTION: See Security Considerations above.
         */
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) external;
    
        /**
         * @dev Returns the current nonce for `owner`. This value must be
         * included whenever a signature is generated for {permit}.
         *
         * Every successful call to {permit} increases ``owner``'s nonce by one. This
         * prevents a signature from being used multiple times.
         */
        function nonces(address owner) external view returns (uint256);
    
        /**
         * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
         */
        // solhint-disable-next-line func-name-mixedcase
        function DOMAIN_SEPARATOR() external view returns (bytes32);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    
        /**
         * @dev Returns the value of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the value of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 value) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 value) external returns (bool);
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the
         * allowance mechanism. `value` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 value) external returns (bool);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "../IERC20.sol";
    import {IERC20Permit} from "../extensions/IERC20Permit.sol";
    import {Address} from "../../../utils/Address.sol";
    
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using Address for address;
    
        /**
         * @dev An operation with an ERC20 token failed.
         */
        error SafeERC20FailedOperation(address token);
    
        /**
         * @dev Indicates a failed `decreaseAllowance` request.
         */
        error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
    
        /**
         * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
        }
    
        /**
         * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
         * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
         */
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
        }
    
        /**
         * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 oldAllowance = token.allowance(address(this), spender);
            forceApprove(token, spender, oldAllowance + value);
        }
    
        /**
         * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
         * value, non-reverting calls are assumed to be successful.
         */
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
            unchecked {
                uint256 currentAllowance = token.allowance(address(this), spender);
                if (currentAllowance < requestedDecrease) {
                    revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                }
                forceApprove(token, spender, currentAllowance - requestedDecrease);
            }
        }
    
        /**
         * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
         * to be set to zero before setting it to a non-zero value, such as USDT.
         */
        function forceApprove(IERC20 token, address spender, uint256 value) internal {
            bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
    
            if (!_callOptionalReturnBool(token, approvalCall)) {
                _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                _callOptionalReturn(token, approvalCall);
            }
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
    
            bytes memory returndata = address(token).functionCall(data);
            if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
                revert SafeERC20FailedOperation(address(token));
            }
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         *
         * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
         */
        function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
            // and not revert is the subcall reverts.
    
            (bool success, bytes memory returndata) = address(token).call(data);
            return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev The ETH balance of the account is not enough to perform the operation.
         */
        error AddressInsufficientBalance(address account);
    
        /**
         * @dev There's no code at `target` (it is not a contract).
         */
        error AddressEmptyCode(address target);
    
        /**
         * @dev A call to an address target failed. The target may have reverted.
         */
        error FailedInnerCall();
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            if (address(this).balance < amount) {
                revert AddressInsufficientBalance(address(this));
            }
    
            (bool success, ) = recipient.call{value: amount}("");
            if (!success) {
                revert FailedInnerCall();
            }
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason or custom error, it is bubbled
         * up by this function (like regular Solidity function calls). However, if
         * the call reverted with no returned reason, this function reverts with a
         * {FailedInnerCall} error.
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            if (address(this).balance < value) {
                revert AddressInsufficientBalance(address(this));
            }
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
         * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
         * unsuccessful call.
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata
        ) internal view returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                // only check if target is a contract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                if (returndata.length == 0 && target.code.length == 0) {
                    revert AddressEmptyCode(target);
                }
                return returndata;
            }
        }
    
        /**
         * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
         * revert reason or with a default {FailedInnerCall} error.
         */
        function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                return returndata;
            }
        }
    
        /**
         * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
         */
        function _revert(bytes memory returndata) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert FailedInnerCall();
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    
        function _contextSuffixLength() internal view virtual returns (uint256) {
            return 0;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
     *
     * These functions can be used to verify that a message was signed by the holder
     * of the private keys of a given address.
     */
    library ECDSA {
        enum RecoverError {
            NoError,
            InvalidSignature,
            InvalidSignatureLength,
            InvalidSignatureS
        }
    
        /**
         * @dev The signature derives the `address(0)`.
         */
        error ECDSAInvalidSignature();
    
        /**
         * @dev The signature has an invalid length.
         */
        error ECDSAInvalidSignatureLength(uint256 length);
    
        /**
         * @dev The signature has an S value that is in the upper half order.
         */
        error ECDSAInvalidSignatureS(bytes32 s);
    
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
         * return address(0) without also returning an error description. Errors are documented using an enum (error type)
         * and a bytes32 providing additional information about the error.
         *
         * If no error is returned, then the address can be used for verification purposes.
         *
         * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
         *
         * Documentation for signature generation:
         * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
         * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
         */
        function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
            if (signature.length == 65) {
                bytes32 r;
                bytes32 s;
                uint8 v;
                // ecrecover takes the signature parameters, and the only way to get them
                // currently is to use assembly.
                /// @solidity memory-safe-assembly
                assembly {
                    r := mload(add(signature, 0x20))
                    s := mload(add(signature, 0x40))
                    v := byte(0, mload(add(signature, 0x60)))
                }
                return tryRecover(hash, v, r, s);
            } else {
                return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
            }
        }
    
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature`. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
         */
        function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
            (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
            _throwError(error, errorArg);
            return recovered;
        }
    
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
         *
         * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
         */
        function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
            unchecked {
                bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                // We do not check for an overflow here since the shift operation results in 0 or 1.
                uint8 v = uint8((uint256(vs) >> 255) + 27);
                return tryRecover(hash, v, r, s);
            }
        }
    
        /**
         * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
         */
        function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
            (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
            _throwError(error, errorArg);
            return recovered;
        }
    
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
         * `r` and `s` signature fields separately.
         */
        function tryRecover(
            bytes32 hash,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal pure returns (address, RecoverError, bytes32) {
            // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
            // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
            // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
            // signatures from current libraries generate a unique signature with an s-value in the lower half order.
            //
            // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
            // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
            // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
            // these malleable signatures as well.
            if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                return (address(0), RecoverError.InvalidSignatureS, s);
            }
    
            // If the signature is valid (and not malleable), return the signer address
            address signer = ecrecover(hash, v, r, s);
            if (signer == address(0)) {
                return (address(0), RecoverError.InvalidSignature, bytes32(0));
            }
    
            return (signer, RecoverError.NoError, bytes32(0));
        }
    
        /**
         * @dev Overload of {ECDSA-recover} that receives the `v`,
         * `r` and `s` signature fields separately.
         */
        function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
            (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
            _throwError(error, errorArg);
            return recovered;
        }
    
        /**
         * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
         */
        function _throwError(RecoverError error, bytes32 errorArg) private pure {
            if (error == RecoverError.NoError) {
                return; // no error: do nothing
            } else if (error == RecoverError.InvalidSignature) {
                revert ECDSAInvalidSignature();
            } else if (error == RecoverError.InvalidSignatureLength) {
                revert ECDSAInvalidSignatureLength(uint256(errorArg));
            } else if (error == RecoverError.InvalidSignatureS) {
                revert ECDSAInvalidSignatureS(errorArg);
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the Merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates Merkle trees that are safe
     * against this attack out of the box.
     */
    library MerkleProof {
        /**
         *@dev The multiproof provided is not valid.
         */
        error MerkleProofInvalidMultiproof();
    
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
    
        /**
         * @dev Calldata version of {verify}
         */
        function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProofCalldata(proof, leaf) == root;
        }
    
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
    
        /**
         * @dev Calldata version of {processProof}
         */
        function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
    
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProof(proof, proofFlags, leaves) == root;
        }
    
        /**
         * @dev Calldata version of {multiProofVerify}
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves) == root;
        }
    
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
    
            // Check proof validity.
            if (leavesLen + proofLen != totalHashes + 1) {
                revert MerkleProofInvalidMultiproof();
            }
    
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
    
            if (totalHashes > 0) {
                if (proofPos != proofLen) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
    
        /**
         * @dev Calldata version of {processMultiProof}.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
    
            // Check proof validity.
            if (leavesLen + proofLen != totalHashes + 1) {
                revert MerkleProofInvalidMultiproof();
            }
    
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
    
            if (totalHashes > 0) {
                if (proofPos != proofLen) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
    
        /**
         * @dev Sorts the pair (a, b) and hashes the result.
         */
        function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
            return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
        }
    
        /**
         * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
         */
        function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
    
    pragma solidity ^0.8.20;
    
    import {Strings} from "../Strings.sol";
    
    /**
     * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
     *
     * The library provides methods for generating a hash of a message that conforms to the
     * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
     * specifications.
     */
    library MessageHashUtils {
        /**
         * @dev Returns the keccak256 digest of an EIP-191 signed data with version
         * `0x45` (`personal_sign` messages).
         *
         * The digest is calculated by prefixing a bytes32 `messageHash` with
         * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
         * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
         *
         * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
         * keccak256, although any bytes32 value can be safely used because the final digest will
         * be re-hashed.
         *
         * See {ECDSA-recover}.
         */
        function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
                mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
            }
        }
    
        /**
         * @dev Returns the keccak256 digest of an EIP-191 signed data with version
         * `0x45` (`personal_sign` messages).
         *
         * The digest is calculated by prefixing an arbitrary `message` with
         * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
         * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
         *
         * See {ECDSA-recover}.
         */
        function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
            return
                keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
        }
    
        /**
         * @dev Returns the keccak256 digest of an EIP-191 signed data with version
         * `0x00` (data with intended validator).
         *
         * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
         * `validator` address. Then hashing the result.
         *
         * See {ECDSA-recover}.
         */
        function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked(hex"19_00", validator, data));
        }
    
        /**
         * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
         *
         * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
         * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
         * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
         *
         * See {ECDSA-recover}.
         */
        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
            /// @solidity memory-safe-assembly
            assembly {
                let ptr := mload(0x40)
                mstore(ptr, hex"19_01")
                mstore(add(ptr, 0x02), domainSeparator)
                mstore(add(ptr, 0x22), structHash)
                digest := keccak256(ptr, 0x42)
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol)
    
    pragma solidity ^0.8.20;
    
    import {ECDSA} from "./ECDSA.sol";
    import {IERC1271} from "../../interfaces/IERC1271.sol";
    
    /**
     * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
     * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
     * Argent and Safe Wallet (previously Gnosis Safe).
     */
    library SignatureChecker {
        /**
         * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
         * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
         *
         * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
         * change through time. It could return true at block N and false at block N+1 (or the opposite).
         */
        function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
            (address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature);
            return
                (error == ECDSA.RecoverError.NoError && recovered == signer) ||
                isValidERC1271SignatureNow(signer, hash, signature);
        }
    
        /**
         * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
         * against the signer smart contract using ERC1271.
         *
         * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
         * change through time. It could return true at block N and false at block N+1 (or the opposite).
         */
        function isValidERC1271SignatureNow(
            address signer,
            bytes32 hash,
            bytes memory signature
        ) internal view returns (bool) {
            (bool success, bytes memory result) = signer.staticcall(
                abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
            );
            return (success &&
                result.length >= 32 &&
                abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC165} from "./IERC165.sol";
    
    /**
     * @dev Implementation of the {IERC165} interface.
     *
     * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
     * for the additional interface id that will be supported. For example:
     *
     * ```solidity
     * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
     *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
     * }
     * ```
     */
    abstract contract ERC165 is IERC165 {
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
            return interfaceId == type(IERC165).interfaceId;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        /**
         * @dev Muldiv operation overflow.
         */
        error MathOverflowedMulDiv();
    
        enum Rounding {
            Floor, // Toward negative infinity
            Ceil, // Toward positive infinity
            Trunc, // Toward zero
            Expand // Away from zero
        }
    
        /**
         * @dev Returns the addition of two unsigned integers, with an overflow flag.
         */
        function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                uint256 c = a + b;
                if (c < a) return (false, 0);
                return (true, c);
            }
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
         */
        function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b > a) return (false, 0);
                return (true, a - b);
            }
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
         */
        function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) return (true, 0);
                uint256 c = a * b;
                if (c / a != b) return (false, 0);
                return (true, c);
            }
        }
    
        /**
         * @dev Returns the division of two unsigned integers, with a division by zero flag.
         */
        function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a / b);
            }
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
         */
        function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a % b);
            }
        }
    
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
    
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
    
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
    
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds towards infinity instead
         * of rounding towards zero.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            if (b == 0) {
                // Guarantee the same behavior as in a regular Solidity division.
                return a / b;
            }
    
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
    
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
         * denominator == 0.
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
         * Uniswap Labs also under MIT license.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0 = x * y; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
    
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                    // The surrounding unchecked block does not change this fact.
                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                    return prod0 / denominator;
                }
    
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                if (denominator <= prod1) {
                    revert MathOverflowedMulDiv();
                }
    
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
    
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
    
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
    
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
    
                uint256 twos = denominator & (0 - denominator);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
    
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
    
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
    
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
    
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
    
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                // works in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
    
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
    
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
    
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
         * towards zero.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
    
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
    
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
    
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
            }
        }
    
        /**
         * @dev Return the log in base 2 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
            }
        }
    
        /**
         * @dev Return the log in base 10 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10 ** 64) {
                    value /= 10 ** 64;
                    result += 64;
                }
                if (value >= 10 ** 32) {
                    value /= 10 ** 32;
                    result += 32;
                }
                if (value >= 10 ** 16) {
                    value /= 10 ** 16;
                    result += 16;
                }
                if (value >= 10 ** 8) {
                    value /= 10 ** 8;
                    result += 8;
                }
                if (value >= 10 ** 4) {
                    value /= 10 ** 4;
                    result += 4;
                }
                if (value >= 10 ** 2) {
                    value /= 10 ** 2;
                    result += 2;
                }
                if (value >= 10 ** 1) {
                    result += 1;
                }
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
            }
        }
    
        /**
         * @dev Return the log in base 256 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
            }
        }
    
        /**
         * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
         */
        function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
            return uint8(rounding) % 2 == 1;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMath {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a > b ? a : b;
        }
    
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
    
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
    
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
    
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant NOT_ENTERED = 1;
        uint256 private constant ENTERED = 2;
    
        uint256 private _status;
    
        /**
         * @dev Unauthorized reentrant call.
         */
        error ReentrancyGuardReentrantCall();
    
        constructor() {
            _status = NOT_ENTERED;
        }
    
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            _nonReentrantBefore();
            _;
            _nonReentrantAfter();
        }
    
        function _nonReentrantBefore() private {
            // On the first call to nonReentrant, _status will be NOT_ENTERED
            if (_status == ENTERED) {
                revert ReentrancyGuardReentrantCall();
            }
    
            // Any calls to nonReentrant after this point will fail
            _status = ENTERED;
        }
    
        function _nonReentrantAfter() private {
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = NOT_ENTERED;
        }
    
        /**
         * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
         * `nonReentrant` function in the call stack.
         */
        function _reentrancyGuardEntered() internal view returns (bool) {
            return _status == ENTERED;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
    
    pragma solidity ^0.8.20;
    
    import {Math} from "./math/Math.sol";
    import {SignedMath} from "./math/SignedMath.sol";
    
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant HEX_DIGITS = "0123456789abcdef";
        uint8 private constant ADDRESS_LENGTH = 20;
    
        /**
         * @dev The `value` string doesn't fit in the specified `length`.
         */
        error StringsInsufficientHexLength(uint256 value, uint256 length);
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = Math.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
    
        /**
         * @dev Converts a `int256` to its ASCII `string` decimal representation.
         */
        function toStringSigned(int256 value) internal pure returns (string memory) {
            return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
        }
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, Math.log256(value) + 1);
            }
        }
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            uint256 localValue = value;
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = HEX_DIGITS[localValue & 0xf];
                localValue >>= 4;
            }
            if (localValue != 0) {
                revert StringsInsufficientHexLength(value, length);
            }
            return string(buffer);
        }
    
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
         * representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
        }
    
        /**
         * @dev Returns true if the two strings are equal.
         */
        function equal(string memory a, string memory b) internal pure returns (bool) {
            return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
        }
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import "@limitbreak/creator-token-standards/src/access/OwnablePermissions.sol";
    import "@limitbreak/creator-token-standards/src/interfaces/ICreatorToken.sol";
    import "@limitbreak/creator-token-standards/src/interfaces/ICreatorTokenTransferValidator.sol";
    import "@limitbreak/creator-token-standards/src/utils/TransferValidation.sol";
    import "@openzeppelin/contracts/interfaces/IERC165.sol";
    
    /**
     * @title CreatorTokenBase
     * @author Limit Break, Inc.
     * @notice CreatorTokenBase is an abstract contract that provides basic functionality for managing token
     * transfer policies through an implementation of ICreatorTokenTransferValidator. This contract is intended to be used
     * as a base for creator-specific token contracts, enabling customizable transfer restrictions and security policies.
     *
     * <h4>Features:</h4>
     * <ul>Ownable: This contract can have an owner who can set and update the transfer validator.</ul>
     * <ul>TransferValidation: Implements the basic token transfer validation interface.</ul>
     * <ul>ICreatorToken: Implements the interface for creator tokens, providing view functions for token security policies.</ul>
     *
     * <h4>Benefits:</h4>
     * <ul>Provides a flexible and modular way to implement custom token transfer restrictions and security policies.</ul>
     * <ul>Allows creators to enforce policies such as whitelisted operators and permitted contract receivers.</ul>
     * <ul>Can be easily integrated into other token contracts as a base contract.</ul>
     *
     * <h4>Intended Usage:</h4>
     * <ul>Use as a base contract for creator token implementations that require advanced transfer restrictions and
     *   security policies.</ul>
     * <ul>Set and update the ICreatorTokenTransferValidator implementation contract to enforce desired policies for the
     *   creator token.</ul>
     */
    abstract contract CreatorTokenBase is
        OwnablePermissions,
        TransferValidation,
        ICreatorToken
    {
        /**
         * @dev Thrown when the transfer validator address is the zero address
         * @dev or it does not implement the `ICreatorTokenTransferValidator` interface.
         */
        error CreatorTokenBase__InvalidTransferValidatorContract();
    
        /// @dev Thrown when attempting to set transfer security settings before a transfer validator is set.
        error CreatorTokenBase__SetTransferValidatorFirst();
    
        /// @dev The default transfer validator address for calls to `setToDefaultSecurityPolicy`.
        address public constant DEFAULT_TRANSFER_VALIDATOR =
            address(0x721C00182a990771244d7A71B9FA2ea789A3b433);
    
        /// @dev The default transfer security level for calls to `setToDefaultSecurityPolicy`.
        TransferSecurityLevels public constant DEFAULT_TRANSFER_SECURITY_LEVEL =
            TransferSecurityLevels.Two;
    
        /// @dev The default operator whitelist id for calls to `setToDefaultSecurityPolicy`.
        uint120 public constant DEFAULT_OPERATOR_WHITELIST_ID = uint120(1);
    
        ICreatorTokenTransferValidator private transferValidator;
    
        /**
         * @notice Allows the contract owner to set the transfer validator to the official validator contract
         *         and set the security policy to the recommended default settings.
         * @dev    May be overridden to change the default behavior of an individual collection.
         */
        function setToDefaultSecurityPolicy() public virtual {
            _requireCallerIsContractOwner();
            setTransferValidator(DEFAULT_TRANSFER_VALIDATOR);
            ICreatorTokenTransferValidator(DEFAULT_TRANSFER_VALIDATOR)
                .setTransferSecurityLevelOfCollection(
                    address(this),
                    DEFAULT_TRANSFER_SECURITY_LEVEL
                );
            ICreatorTokenTransferValidator(DEFAULT_TRANSFER_VALIDATOR)
                .setOperatorWhitelistOfCollection(
                    address(this),
                    DEFAULT_OPERATOR_WHITELIST_ID
                );
        }
    
        /**
         * @notice Allows the contract owner to set the transfer validator to a custom validator contract
         *         and set the security policy to their own custom settings.
         */
        function setToCustomValidatorAndSecurityPolicy(
            address validator,
            TransferSecurityLevels level,
            uint120 operatorWhitelistId,
            uint120 permittedContractReceiversAllowlistId
        ) public {
            _requireCallerIsContractOwner();
    
            setTransferValidator(validator);
    
            ICreatorTokenTransferValidator(validator)
                .setTransferSecurityLevelOfCollection(address(this), level);
    
            ICreatorTokenTransferValidator(validator)
                .setOperatorWhitelistOfCollection(
                    address(this),
                    operatorWhitelistId
                );
    
            ICreatorTokenTransferValidator(validator)
                .setPermittedContractReceiverAllowlistOfCollection(
                    address(this),
                    permittedContractReceiversAllowlistId
                );
        }
    
        /**
         * @notice Allows the contract owner to set the security policy to their own custom settings.
         * @dev    Reverts if the transfer validator has not been set.
         */
        function setToCustomSecurityPolicy(
            TransferSecurityLevels level,
            uint120 operatorWhitelistId,
            uint120 permittedContractReceiversAllowlistId
        ) public {
            _requireCallerIsContractOwner();
    
            ICreatorTokenTransferValidator validator = getTransferValidator();
            if (address(validator) == address(0)) {
                revert CreatorTokenBase__SetTransferValidatorFirst();
            }
    
            validator.setTransferSecurityLevelOfCollection(address(this), level);
            validator.setOperatorWhitelistOfCollection(
                address(this),
                operatorWhitelistId
            );
            validator.setPermittedContractReceiverAllowlistOfCollection(
                address(this),
                permittedContractReceiversAllowlistId
            );
        }
    
        /**
         * @notice Sets the transfer validator for the token contract.
         *
         * @dev    Throws when provided validator contract is not the zero address and doesn't support
         *         the ICreatorTokenTransferValidator interface.
         * @dev    Throws when the caller is not the contract owner.
         *
         * @dev    <h4>Postconditions:</h4>
         *         1. The transferValidator address is updated.
         *         2. The `TransferValidatorUpdated` event is emitted.
         *
         * @param transferValidator_ The address of the transfer validator contract.
         */
        function setTransferValidator(address transferValidator_) public {
            _requireCallerIsContractOwner();
    
            bool isValidTransferValidator = false;
    
            if (transferValidator_.code.length > 0) {
                try
                    IERC165(transferValidator_).supportsInterface(
                        type(ICreatorTokenTransferValidator).interfaceId
                    )
                returns (bool supportsInterface) {
                    isValidTransferValidator = supportsInterface;
                } catch {}
            }
    
            if (transferValidator_ != address(0) && !isValidTransferValidator) {
                revert CreatorTokenBase__InvalidTransferValidatorContract();
            }
    
            emit TransferValidatorUpdated(
                address(transferValidator),
                transferValidator_
            );
    
            transferValidator = ICreatorTokenTransferValidator(transferValidator_);
        }
    
        /**
         * @notice Returns the transfer validator contract address for this token contract.
         */
        function getTransferValidator()
            public
            view
            override
            returns (ICreatorTokenTransferValidator)
        {
            return transferValidator;
        }
    
        /**
         * @notice Returns the security policy for this token contract, which includes:
         *         Transfer security level, operator whitelist id, permitted contract receiver allowlist id.
         */
        function getSecurityPolicy()
            public
            view
            override
            returns (CollectionSecurityPolicy memory)
        {
            if (address(transferValidator) != address(0)) {
                return transferValidator.getCollectionSecurityPolicy(address(this));
            }
    
            return
                CollectionSecurityPolicy({
                    transferSecurityLevel: TransferSecurityLevels.Recommended,
                    operatorWhitelistId: 0,
                    permittedContractReceiversId: 0
                });
        }
    
        /**
         * @notice Returns the list of all whitelisted operators for this token contract.
         * @dev    This can be an expensive call and should only be used in view-only functions.
         */
        function getWhitelistedOperators()
            public
            view
            override
            returns (address[] memory)
        {
            if (address(transferValidator) != address(0)) {
                return
                    transferValidator.getWhitelistedOperators(
                        transferValidator
                            .getCollectionSecurityPolicy(address(this))
                            .operatorWhitelistId
                    );
            }
    
            return new address[](0);
        }
    
        /**
         * @notice Returns the list of permitted contract receivers for this token contract.
         * @dev    This can be an expensive call and should only be used in view-only functions.
         */
        function getPermittedContractReceivers()
            public
            view
            override
            returns (address[] memory)
        {
            if (address(transferValidator) != address(0)) {
                return
                    transferValidator.getPermittedContractReceivers(
                        transferValidator
                            .getCollectionSecurityPolicy(address(this))
                            .permittedContractReceiversId
                    );
            }
    
            return new address[](0);
        }
    
        /**
         * @notice Checks if an operator is whitelisted for this token contract.
         * @param operator The address of the operator to check.
         */
        function isOperatorWhitelisted(
            address operator
        ) public view override returns (bool) {
            if (address(transferValidator) != address(0)) {
                return
                    transferValidator.isOperatorWhitelisted(
                        transferValidator
                            .getCollectionSecurityPolicy(address(this))
                            .operatorWhitelistId,
                        operator
                    );
            }
    
            return false;
        }
    
        /**
         * @notice Checks if a contract receiver is permitted for this token contract.
         * @param receiver The address of the receiver to check.
         */
        function isContractReceiverPermitted(
            address receiver
        ) public view override returns (bool) {
            if (address(transferValidator) != address(0)) {
                return
                    transferValidator.isContractReceiverPermitted(
                        transferValidator
                            .getCollectionSecurityPolicy(address(this))
                            .permittedContractReceiversId,
                        receiver
                    );
            }
    
            return false;
        }
    
        /**
         * @notice Determines if a transfer is allowed based on the token contract's security policy.  Use this function
         *         to simulate whether or not a transfer made by the specified `caller` from the `from` address to the `to`
         *         address would be allowed by this token's security policy.
         *
         * @notice This function only checks the security policy restrictions and does not check whether token ownership
         *         or approvals are in place.
         *
         * @param caller The address of the simulated caller.
         * @param from   The address of the sender.
         * @param to     The address of the receiver.
         * @return       True if the transfer is allowed, false otherwise.
         */
        function isTransferAllowed(
            address caller,
            address from,
            address to
        ) public view override returns (bool) {
            if (address(transferValidator) != address(0)) {
                try
                    transferValidator.applyCollectionTransferPolicy(
                        caller,
                        from,
                        to
                    )
                {
                    return true;
                } catch {
                    return false;
                }
            }
            return true;
        }
    
        /**
         * @dev Pre-validates a token transfer, reverting if the transfer is not allowed by this token's security policy.
         *      Inheriting contracts are responsible for overriding the _beforeTokenTransfer function, or its equivalent
         *      and calling _validateBeforeTransfer so that checks can be properly applied during token transfers.
         *
         * @dev Throws when the transfer doesn't comply with the collection's transfer policy, if the transferValidator is
         *      set to a non-zero address.
         *
         * @param caller  The address of the caller.
         * @param from    The address of the sender.
         * @param to      The address of the receiver.
         */
        function _preValidateTransfer(
            address caller,
            address from,
            address to,
            uint256 /*tokenId*/,
            uint256 /*value*/
        ) internal virtual override {
            if (address(transferValidator) != address(0)) {
                transferValidator.applyCollectionTransferPolicy(caller, from, to);
            }
        }
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import "./CreatorTokenBase.sol";
    import "erc721a/contracts/extensions/ERC721AQueryable.sol";
    
    /**
     * @title ERC721ACQueryable
     */
    abstract contract ERC721ACQueryable is ERC721AQueryable, CreatorTokenBase {
        constructor(
            string memory name_,
            string memory symbol_
        ) CreatorTokenBase() ERC721A(name_, symbol_) {}
    
        function supportsInterface(
            bytes4 interfaceId
        ) public view virtual override(ERC721A, IERC721A) returns (bool) {
            return
                interfaceId == type(ICreatorToken).interfaceId ||
                ERC721A.supportsInterface(interfaceId);
        }
    
        /// @dev Ties the erc721a _beforeTokenTransfers hook to more granular transfer validation logic
        function _beforeTokenTransfers(
            address from,
            address to,
            uint256 startTokenId,
            uint256 quantity
        ) internal virtual override {
            for (uint256 i = 0; i < quantity; ) {
                _validateBeforeTransfer(from, to, startTokenId + i);
                unchecked {
                    ++i;
                }
            }
        }
    
        /// @dev Ties the erc721a _afterTokenTransfer hook to more granular transfer validation logic
        function _afterTokenTransfers(
            address from,
            address to,
            uint256 startTokenId,
            uint256 quantity
        ) internal virtual override {
            for (uint256 i = 0; i < quantity; ) {
                _validateAfterTransfer(from, to, startTokenId + i);
                unchecked {
                    ++i;
                }
            }
        }
    
        function _msgSenderERC721A()
            internal
            view
            virtual
            override
            returns (address)
        {
            return _msgSender();
        }
    }

    //SPDX-License-Identifier: MIT
    
    pragma solidity ^0.8.4;
    
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "@openzeppelin/contracts/token/common/ERC2981.sol";
    import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
    import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
    import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
    import "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
    import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
    import "./creator-token-standards/ERC721ACQueryable.sol";
    import "./utils/Constants.sol";
    import "../magicdrop-types/contracts/IERC721M.sol";
    
    /**
     * @title ERC721CM
     *
     * @dev ERC721ACQueryable and ERC721C subclass with MagicEden launchpad features including
     *  - multiple minting stages with time-based auto stage switch
     *  - global and stage wallet-level minting limit
     *  - whitelist using merkle tree
     *  - crossmint support
     *  - anti-botting
     */
    contract ERC721CM is IERC721M, ERC721ACQueryable, Ownable, ReentrancyGuard {
        using ECDSA for bytes32;
        using SafeERC20 for IERC20;
    
        // Whether this contract is mintable.
        bool private _mintable;
    
        // Specify how long a signature from cosigner is valid for, recommend 300 seconds.
        uint64 private _timestampExpirySeconds;
    
        // The address of the cosigner server.
        address private _cosigner;
    
        // The crossmint address. Need to set if using crossmint.
        address private _crossmintAddress;
    
        // The total mintable supply.
        uint256 internal _maxMintableSupply;
    
        // Global wallet limit, across all stages.
        uint256 private _globalWalletLimit;
    
        // Current base URI.
        string private _currentBaseURI;
    
        // The suffix for the token URL, e.g. ".json".
        string private _tokenURISuffix;
    
        // The uri for the storefront-level metadata for better indexing. e.g. "ipfs://UyNGgv3jx2HHfBjQX9RnKtxj2xv2xQDtbVXoRi5rJ31234"
        string private _contractURI;
    
        // Mint stage infomation. See MintStageInfo for details.
        MintStageInfo[] private _mintStages;
    
        // Minted count per stage per wallet.
        mapping(uint256 => mapping(address => uint32))
            private _stageMintedCountsPerWallet;
    
        // Minted count per stage.
        mapping(uint256 => uint256) private _stageMintedCounts;
    
        // Address of ERC-20 token used to pay for minting. If 0 address, use native currency.
        address private _mintCurrency;
    
        // Total mint fee
        uint256 private _totalMintFee;
    
        // Fund receiver
        address public immutable FUND_RECEIVER;
    
        // Authorized minters
        mapping(address => bool) private _authorizedMinters;
    
        constructor(
            string memory collectionName,
            string memory collectionSymbol,
            string memory tokenURISuffix,
            uint256 maxMintableSupply,
            uint256 globalWalletLimit,
            address cosigner,
            uint64 timestampExpirySeconds,
            address mintCurrency,
            address fundReceiver
        ) Ownable(msg.sender) ERC721ACQueryable(collectionName, collectionSymbol) {
            if (globalWalletLimit > maxMintableSupply)
                revert GlobalWalletLimitOverflow();
            _mintable = true;
            _maxMintableSupply = maxMintableSupply;
            _globalWalletLimit = globalWalletLimit;
            _tokenURISuffix = tokenURISuffix;
            _cosigner = cosigner; // ethers.constants.AddressZero for no cosigning
            _timestampExpirySeconds = timestampExpirySeconds;
            _mintCurrency = mintCurrency;
            FUND_RECEIVER = fundReceiver;
        }
    
        /**
         * @dev Returns whether mintable.
         */
        modifier canMint() {
            if (!_mintable) revert NotMintable();
            _;
        }
    
        /**
         * @dev Returns whether it has enough supply for the given qty.
         */
        modifier hasSupply(uint256 qty) {
            if (totalSupply() + qty > _maxMintableSupply) revert NoSupplyLeft();
            _;
        }
    
        /**
         * @dev Returns whether the msg sender is authorized to mint.
         */
        modifier onlyAuthorizedMinter() {
            if (_authorizedMinters[_msgSender()] != true) revert NotAuthorized();
            _;
        }
    
        /**
         * @dev Returns cosign nonce.
         */
        function getCosignNonce(
            address minter
        ) public view override returns (uint256) {
            return _numberMinted(minter);
        }
    
        /**
         * @dev Sets cosigner.
         */
        function setCosigner(address cosigner) external onlyOwner {
            _cosigner = cosigner;
            emit SetCosigner(cosigner);
        }
    
        /**
         * @dev Sets expiry in seconds. This timestamp specifies how long a signature from cosigner is valid for.
         */
        function setTimestampExpirySeconds(uint64 expiry) external onlyOwner {
            _timestampExpirySeconds = expiry;
            emit SetTimestampExpirySeconds(expiry);
        }
    
        /**
         * @dev Sets crossmint address if using crossmint. This allows the specified address to call `crossmint`.
         */
        function setCrossmintAddress(address crossmintAddress) external onlyOwner {
            _crossmintAddress = crossmintAddress;
            emit SetCrossmintAddress(crossmintAddress);
        }
    
        /**
         * @dev Add authorized minter. Can only be called by contract owner.
         */
        function addAuthorizedMinter(address minter) external onlyOwner {
            _authorizedMinters[minter] = true;
        }
    
        /**
         * @dev Remove authorized minter. Can only be called by contract owner.
         */
        function removeAuthorizedMinter(address minter) external onlyOwner {
            _authorizedMinters[minter] = false;
        }
    
        /**
         * @dev Sets stages in the format of an array of `MintStageInfo`.
         *
         * Following is an example of launch with two stages. The first stage is exclusive for whitelisted wallets
         * specified by merkle root.
         *    [{
         *      price: 10000000000000000000,
         *      maxStageSupply: 2000,
         *      walletLimit: 1,
         *      merkleRoot: 0x559fadeb887449800b7b320bf1e92d309f329b9641ac238bebdb74e15c0a5218,
         *      startTimeUnixSeconds: 1667768000,
         *      endTimeUnixSeconds: 1667771600,
         *     },
         *     {
         *      price: 20000000000000000000,
         *      maxStageSupply: 3000,
         *      walletLimit: 2,
         *      merkleRoot: 0,
         *      startTimeUnixSeconds: 1667771600,
         *      endTimeUnixSeconds: 1667775200,
         *     }
         * ]
         */
        function setStages(MintStageInfo[] calldata newStages) external onlyOwner {
            delete _mintStages;
    
            for (uint256 i = 0; i < newStages.length; ) {
                if (i >= 1) {
                    if (
                        newStages[i].startTimeUnixSeconds <
                        newStages[i - 1].endTimeUnixSeconds +
                            _timestampExpirySeconds
                    ) {
                        revert InsufficientStageTimeGap();
                    }
                }
                _assertValidStartAndEndTimestamp(
                    newStages[i].startTimeUnixSeconds,
                    newStages[i].endTimeUnixSeconds
                );
                _mintStages.push(
                    MintStageInfo({
                        price: newStages[i].price,
                        mintFee: newStages[i].mintFee,
                        walletLimit: newStages[i].walletLimit,
                        merkleRoot: newStages[i].merkleRoot,
                        maxStageSupply: newStages[i].maxStageSupply,
                        startTimeUnixSeconds: newStages[i].startTimeUnixSeconds,
                        endTimeUnixSeconds: newStages[i].endTimeUnixSeconds
                    })
                );
                emit UpdateStage(
                    i,
                    newStages[i].price,
                    newStages[i].mintFee,
                    newStages[i].walletLimit,
                    newStages[i].merkleRoot,
                    newStages[i].maxStageSupply,
                    newStages[i].startTimeUnixSeconds,
                    newStages[i].endTimeUnixSeconds
                );
    
                unchecked {
                    ++i;
                }
            }
        }
    
        /**
         * @dev Gets whether mintable.
         */
        function getMintable() external view returns (bool) {
            return _mintable;
        }
    
        /**
         * @dev Sets mintable.
         */
        function setMintable(bool mintable) external onlyOwner {
            _mintable = mintable;
            emit SetMintable(mintable);
        }
    
        /**
         * @dev Returns number of stages.
         */
        function getNumberStages() external view override returns (uint256) {
            return _mintStages.length;
        }
    
        /**
         * @dev Returns maximum mintable supply.
         */
        function getMaxMintableSupply() external view override returns (uint256) {
            return _maxMintableSupply;
        }
    
        /**
         * @dev Sets maximum mintable supply.
         *
         * New supply cannot be larger than the old.
         */
        function setMaxMintableSupply(
            uint256 maxMintableSupply
        ) external virtual onlyOwner {
            if (maxMintableSupply > _maxMintableSupply) {
                revert CannotIncreaseMaxMintableSupply();
            }
            _maxMintableSupply = maxMintableSupply;
            emit SetMaxMintableSupply(maxMintableSupply);
        }
    
        /**
         * @dev Returns global wallet limit. This is the max number of tokens can be minted by one wallet.
         */
        function getGlobalWalletLimit() external view override returns (uint256) {
            return _globalWalletLimit;
        }
    
        /**
         * @dev Sets global wallet limit.
         */
        function setGlobalWalletLimit(
            uint256 globalWalletLimit
        ) external onlyOwner {
            if (globalWalletLimit > _maxMintableSupply)
                revert GlobalWalletLimitOverflow();
            _globalWalletLimit = globalWalletLimit;
            emit SetGlobalWalletLimit(globalWalletLimit);
        }
    
        /**
         * @dev Returns number of minted token for a given address.
         */
        function totalMintedByAddress(
            address a
        ) external view virtual override returns (uint256) {
            return _numberMinted(a);
        }
    
        /**
         * @dev Returns info for one stage specified by index (starting from 0).
         */
        function getStageInfo(
            uint256 index
        ) external view override returns (MintStageInfo memory, uint32, uint256) {
            if (index >= _mintStages.length) {
                revert("InvalidStage");
            }
            uint32 walletMinted = _stageMintedCountsPerWallet[index][msg.sender];
            uint256 stageMinted = _stageMintedCounts[index];
            return (_mintStages[index], walletMinted, stageMinted);
        }
    
        /**
         * @dev Returns mint currency address.
         */
        function getMintCurrency() external view returns (address) {
            return _mintCurrency;
        }
    
        /**
         * @dev Mints token(s).
         *
         * qty - number of tokens to mint
         * proof - the merkle proof generated on client side. This applies if using whitelist.
         * timestamp - the current timestamp
         * signature - the signature from cosigner if using cosigner.
         */
        function mint(
            uint32 qty,
            bytes32[] calldata proof,
            uint64 timestamp,
            bytes calldata signature
        ) external payable virtual nonReentrant {
            _mintInternal(qty, msg.sender, 0, proof, timestamp, signature);
        }
    
        /**
         * @dev Mints token(s) with limit.
         *
         * qty - number of tokens to mint
         * limit - limit for the given minter
         * proof - the merkle proof generated on client side. This applies if using whitelist.
         * timestamp - the current timestamp
         * signature - the signature from cosigner if using cosigner.
         */
        function mintWithLimit(
            uint32 qty,
            uint32 limit,
            bytes32[] calldata proof,
            uint64 timestamp,
            bytes calldata signature
        ) external payable virtual nonReentrant {
            _mintInternal(qty, msg.sender, limit, proof, timestamp, signature);
        }
    
        /**
         * @dev Mints token(s) through crossmint. This function is supposed to be called by crossmint.
         *
         * qty - number of tokens to mint
         * to - the address to mint tokens to
         * proof - the merkle proof generated on client side. This applies if using whitelist.
         * timestamp - the current timestamp
         * signature - the signature from cosigner if using cosigner.
         */
        function crossmint(
            uint32 qty,
            address to,
            bytes32[] calldata proof,
            uint64 timestamp,
            bytes calldata signature
        ) external payable nonReentrant {
            if (_crossmintAddress == address(0)) revert CrossmintAddressNotSet();
    
            // Check the caller is Crossmint
            if (msg.sender != _crossmintAddress) revert CrossmintOnly();
    
            _mintInternal(qty, to, 0, proof, timestamp, signature);
        }
    
        /**
         * @dev Authorized mints token(s) with limit
         *
         * qty - number of tokens to mint
         * to - the address to mint tokens to
         * limit - limit for the given minter
         * proof - the merkle proof generated on client side. This applies if using whitelist.
         * timestamp - the current timestamp
         * signature - the signature from cosigner if using cosigner.
         */
        function authorizedMint(
            uint32 qty,
            address to,
            uint32 limit,
            bytes32[] calldata proof,
            uint64 timestamp,
            bytes calldata signature
        ) external payable onlyAuthorizedMinter {
            _mintInternal(qty, to, limit, proof, timestamp, signature);
        }
    
        /**
         * @dev Implementation of minting.
         */
        function _mintInternal(
            uint32 qty,
            address to,
            uint32 limit,
            bytes32[] calldata proof,
            uint64 timestamp,
            bytes calldata signature
        ) internal canMint hasSupply(qty) {
            uint64 stageTimestamp = uint64(block.timestamp);
            bool waiveMintFee = false;
    
            if (_cosigner != address(0)) {
                waiveMintFee = assertValidCosign(
                    msg.sender,
                    qty,
                    timestamp,
                    signature
                );
                _assertValidTimestamp(timestamp);
                stageTimestamp = timestamp;
            }
    
            uint256 activeStage = getActiveStageFromTimestamp(stageTimestamp);
            MintStageInfo memory stage = _mintStages[activeStage];
    
            uint80 adjustedMintFee = waiveMintFee ? 0 : stage.mintFee;
    
            // Check value if minting with ETH
            if (
                _mintCurrency == address(0) &&
                msg.value < (stage.price + adjustedMintFee) * qty
            ) revert NotEnoughValue();
    
            // Check stage supply if applicable
            if (stage.maxStageSupply > 0) {
                if (_stageMintedCounts[activeStage] + qty > stage.maxStageSupply)
                    revert StageSupplyExceeded();
            }
    
            // Check global wallet limit if applicable
            if (_globalWalletLimit > 0) {
                if (_numberMinted(to) + qty > _globalWalletLimit)
                    revert WalletGlobalLimitExceeded();
            }
    
            // Check wallet limit for stage if applicable, limit == 0 means no limit enforced
            if (stage.walletLimit > 0) {
                if (
                    _stageMintedCountsPerWallet[activeStage][to] + qty >
                    stage.walletLimit
                ) revert WalletStageLimitExceeded();
            }
    
            // Check merkle proof if applicable, merkleRoot == 0x00...00 means no proof required
            if (stage.merkleRoot != 0) {
                if (
                    MerkleProof.processProof(
                        proof,
                        keccak256(abi.encodePacked(to, limit))
                    ) != stage.merkleRoot
                ) revert InvalidProof();
    
                // Verify merkle proof mint limit
                if (
                    limit > 0 &&
                    _stageMintedCountsPerWallet[activeStage][to] + qty > limit
                ) {
                    revert WalletStageLimitExceeded();
                }
            }
    
            if (_mintCurrency != address(0)) {
                IERC20(_mintCurrency).safeTransferFrom(
                    msg.sender,
                    address(this),
                    (stage.price + adjustedMintFee) * qty
                );
            }
    
            _totalMintFee += adjustedMintFee * qty;
    
            _stageMintedCountsPerWallet[activeStage][to] += qty;
            _stageMintedCounts[activeStage] += qty;
            _safeMint(to, qty);
        }
    
        /**
         * @dev Mints token(s) by owner.
         *
         * NOTE: This function bypasses validations thus only available for owner.
         * This is typically used for owner to  pre-mint or mint the remaining of the supply.
         */
        function ownerMint(
            uint32 qty,
            address to
        ) external onlyOwner hasSupply(qty) {
            _safeMint(to, qty);
        }
    
        /**
         * @dev Withdraws funds by owner.
         */
        function withdraw() external onlyOwner {
            (bool success, ) = MINT_FEE_RECEIVER.call{value: _totalMintFee}("");
            if (!success) revert TransferFailed();
            _totalMintFee = 0;
    
            uint256 remainingValue = address(this).balance;
            (success, ) = FUND_RECEIVER.call{value: remainingValue}("");
            if (!success) revert WithdrawFailed();
    
            emit Withdraw(_totalMintFee + remainingValue);
        }
    
        /**
         * @dev Withdraws ERC-20 funds by owner.
         */
        function withdrawERC20() external onlyOwner {
            if (_mintCurrency == address(0)) revert WrongMintCurrency();
    
            IERC20(_mintCurrency).safeTransfer(MINT_FEE_RECEIVER, _totalMintFee);
            _totalMintFee = 0;
    
            uint256 remaining = IERC20(_mintCurrency).balanceOf(address(this));
            IERC20(_mintCurrency).safeTransfer(FUND_RECEIVER, remaining);
    
            emit WithdrawERC20(_mintCurrency, _totalMintFee + remaining);
        }
    
        /**
         * @dev Sets token base URI.
         */
        function setBaseURI(string calldata baseURI) external onlyOwner {
            _currentBaseURI = baseURI;
            emit SetBaseURI(baseURI);
        }
    
        /**
         * @dev Sets token URI suffix. e.g. ".json".
         */
        function setTokenURISuffix(string calldata suffix) external onlyOwner {
            _tokenURISuffix = suffix;
        }
    
        /**
         * @dev Returns token URI for a given token id.
         */
        function tokenURI(
            uint256 tokenId
        ) public view override(ERC721A, IERC721A) returns (string memory) {
            if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
    
            string memory baseURI = _currentBaseURI;
            return
                bytes(baseURI).length != 0
                    ? string(
                        abi.encodePacked(
                            baseURI,
                            _toString(tokenId),
                            _tokenURISuffix
                        )
                    )
                    : "";
        }
    
        /**
         * @dev Returns URI for the collection-level metadata.
         */
        function contractURI() public view returns (string memory) {
            return _contractURI;
        }
    
        /**
         * @dev Set the URI for the collection-level metadata.
         */
        function setContractURI(string calldata uri) external onlyOwner {
            _contractURI = uri;
        }
    
        /**
         * @dev Returns data hash for the given minter, qty, waiveMintFee and timestamp.
         */
        function getCosignDigest(
            address minter,
            uint32 qty,
            bool waiveMintFee,
            uint64 timestamp
        ) public view returns (bytes32) {
            if (_cosigner == address(0)) revert CosignerNotSet();
            return
                MessageHashUtils.toEthSignedMessageHash(
                    keccak256(
                        abi.encodePacked(
                            address(this),
                            minter,
                            qty,
                            waiveMintFee,
                            _cosigner,
                            timestamp,
                            _chainID(),
                            getCosignNonce(minter)
                        )
                    )
                );
        }
    
        /**
         * @dev Validates the the given signature. Returns whether mint fee is waived.
         */
        function assertValidCosign(
            address minter,
            uint32 qty,
            uint64 timestamp,
            bytes memory signature
        ) public view returns (bool) {
            if (
                SignatureChecker.isValidSignatureNow(
                    _cosigner,
                    getCosignDigest(
                        minter,
                        qty,
                        /* waiveMintFee= */ true,
                        timestamp
                    ),
                    signature
                )
            ) {
                return true;
            }
    
            if (
                SignatureChecker.isValidSignatureNow(
                    _cosigner,
                    getCosignDigest(
                        minter,
                        qty,
                        /* waiveMintFee= */ false,
                        timestamp
                    ),
                    signature
                )
            ) {
                return false;
            }
    
            revert InvalidCosignSignature();
        }
    
        /**
         * @dev Returns the current active stage based on timestamp.
         */
        function getActiveStageFromTimestamp(
            uint64 timestamp
        ) public view returns (uint256) {
            for (uint256 i = 0; i < _mintStages.length; ) {
                if (
                    timestamp >= _mintStages[i].startTimeUnixSeconds &&
                    timestamp < _mintStages[i].endTimeUnixSeconds
                ) {
                    return i;
                }
                unchecked {
                    ++i;
                }
            }
            revert InvalidStage();
        }
    
        /**
         * @dev Validates the timestamp is not expired.
         */
        function _assertValidTimestamp(uint64 timestamp) internal view {
            if (timestamp < block.timestamp - _timestampExpirySeconds)
                revert TimestampExpired();
        }
    
        /**
         * @dev Validates the start timestamp is before end timestamp. Used when updating stages.
         */
        function _assertValidStartAndEndTimestamp(
            uint64 start,
            uint64 end
        ) internal pure {
            if (start >= end) revert InvalidStartAndEndTimestamp();
        }
    
        /**
         * @dev Returns chain id.
         */
        function _chainID() private view returns (uint256) {
            uint256 chainID;
            assembly {
                chainID := chainid()
            }
            return chainID;
        }
    
        function _requireCallerIsContractOwner() internal view virtual override {
            _checkOwner();
        }
    }

    //SPDX-License-Identifier: MIT
    
    pragma solidity ^0.8.4;
    
    import {ERC2981, UpdatableRoyalties} from "./royalties/UpdatableRoyalties.sol";
    import {ERC721CM, ERC721ACQueryable, IERC721A} from "./ERC721CM.sol";
    
    /**
     * @title ERC721CMRoyalties
     */
    contract ERC721CMRoyalties is ERC721CM, UpdatableRoyalties {
        constructor(
            string memory collectionName,
            string memory collectionSymbol,
            string memory tokenURISuffix,
            uint256 maxMintableSupply,
            uint256 globalWalletLimit,
            address cosigner,
            uint64 timestampExpirySeconds,
            address mintCurrency,
            address fundReceiver,
            address royaltyReceiver,
            uint96 royaltyFeeNumerator
        )
            ERC721CM(
                collectionName,
                collectionSymbol,
                tokenURISuffix,
                maxMintableSupply,
                globalWalletLimit,
                cosigner,
                timestampExpirySeconds,
                mintCurrency,
                fundReceiver
            )
            UpdatableRoyalties(royaltyReceiver, royaltyFeeNumerator)
        {}
    
        function supportsInterface(
            bytes4 interfaceId
        )
            public
            view
            virtual
            override(ERC2981, ERC721ACQueryable, IERC721A)
            returns (bool)
        {
            return
                ERC721ACQueryable.supportsInterface(interfaceId) ||
                ERC2981.supportsInterface(interfaceId);
        }
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
    import {ERC2981} from "@openzeppelin/contracts/token/common/ERC2981.sol";
    
    /**
     * @title BasicRoyaltiesBase
     */
    abstract contract UpdatableRoyalties is ERC2981, Ownable {
        event DefaultRoyaltySet(address indexed receiver, uint96 feeNumerator);
        event TokenRoyaltySet(
            uint256 indexed tokenId,
            address indexed receiver,
            uint96 feeNumerator
        );
    
        constructor(address receiver, uint96 feeNumerator) {
            _setDefaultRoyalty(receiver, feeNumerator);
        }
    
        function setDefaultRoyalty(
            address receiver,
            uint96 feeNumerator
        ) public onlyOwner {
            super._setDefaultRoyalty(receiver, feeNumerator);
            emit DefaultRoyaltySet(receiver, feeNumerator);
        }
    
        function setTokenRoyalty(
            uint256 tokenId,
            address receiver,
            uint96 feeNumerator
        ) public onlyOwner {
            super._setTokenRoyalty(tokenId, receiver, feeNumerator);
            emit TokenRoyaltySet(tokenId, receiver, feeNumerator);
        }
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    address constant CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS = 0x000000000000AAeB6D7670E522A718067333cd4E;
    address constant ME_SUBSCRIPTION = 0x0403c10721Ff2936EfF684Bbb57CD792Fd4b1B6c;
    
    address constant MINT_FEE_RECEIVER = 0x0B98151bEdeE73f9Ba5F2C7b72dEa02D38Ce49Fc;
    
    uint64 constant TIMESTAMP_EXPIRY_SECONDS = 300;

    // SPDX-License-Identifier: MIT
    // ERC721A Contracts v4.2.3
    // Creator: Chiru Labs
    
    pragma solidity ^0.8.4;
    
    import './IERC721A.sol';
    
    /**
     * @dev Interface of ERC721 token receiver.
     */
    interface ERC721A__IERC721Receiver {
        function onERC721Received(
            address operator,
            address from,
            uint256 tokenId,
            bytes calldata data
        ) external returns (bytes4);
    }
    
    /**
     * @title ERC721A
     *
     * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
     * Non-Fungible Token Standard, including the Metadata extension.
     * Optimized for lower gas during batch mints.
     *
     * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
     * starting from `_startTokenId()`.
     *
     * Assumptions:
     *
     * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
     * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
     */
    contract ERC721A is IERC721A {
        // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
        struct TokenApprovalRef {
            address value;
        }
    
        // =============================================================
        //                           CONSTANTS
        // =============================================================
    
        // Mask of an entry in packed address data.
        uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
    
        // The bit position of `numberMinted` in packed address data.
        uint256 private constant _BITPOS_NUMBER_MINTED = 64;
    
        // The bit position of `numberBurned` in packed address data.
        uint256 private constant _BITPOS_NUMBER_BURNED = 128;
    
        // The bit position of `aux` in packed address data.
        uint256 private constant _BITPOS_AUX = 192;
    
        // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
        uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
    
        // The bit position of `startTimestamp` in packed ownership.
        uint256 private constant _BITPOS_START_TIMESTAMP = 160;
    
        // The bit mask of the `burned` bit in packed ownership.
        uint256 private constant _BITMASK_BURNED = 1 << 224;
    
        // The bit position of the `nextInitialized` bit in packed ownership.
        uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
    
        // The bit mask of the `nextInitialized` bit in packed ownership.
        uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
    
        // The bit position of `extraData` in packed ownership.
        uint256 private constant _BITPOS_EXTRA_DATA = 232;
    
        // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
        uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
    
        // The mask of the lower 160 bits for addresses.
        uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
    
        // The maximum `quantity` that can be minted with {_mintERC2309}.
        // This limit is to prevent overflows on the address data entries.
        // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
        // is required to cause an overflow, which is unrealistic.
        uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
    
        // The `Transfer` event signature is given by:
        // `keccak256(bytes("Transfer(address,address,uint256)"))`.
        bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
            0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
    
        // =============================================================
        //                            STORAGE
        // =============================================================
    
        // The next token ID to be minted.
        uint256 private _currentIndex;
    
        // The number of tokens burned.
        uint256 private _burnCounter;
    
        // Token name
        string private _name;
    
        // Token symbol
        string private _symbol;
    
        // Mapping from token ID to ownership details
        // An empty struct value does not necessarily mean the token is unowned.
        // See {_packedOwnershipOf} implementation for details.
        //
        // Bits Layout:
        // - [0..159]   `addr`
        // - [160..223] `startTimestamp`
        // - [224]      `burned`
        // - [225]      `nextInitialized`
        // - [232..255] `extraData`
        mapping(uint256 => uint256) private _packedOwnerships;
    
        // Mapping owner address to address data.
        //
        // Bits Layout:
        // - [0..63]    `balance`
        // - [64..127]  `numberMinted`
        // - [128..191] `numberBurned`
        // - [192..255] `aux`
        mapping(address => uint256) private _packedAddressData;
    
        // Mapping from token ID to approved address.
        mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
    
        // Mapping from owner to operator approvals
        mapping(address => mapping(address => bool)) private _operatorApprovals;
    
        // =============================================================
        //                          CONSTRUCTOR
        // =============================================================
    
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
            _currentIndex = _startTokenId();
        }
    
        // =============================================================
        //                   TOKEN COUNTING OPERATIONS
        // =============================================================
    
        /**
         * @dev Returns the starting token ID.
         * To change the starting token ID, please override this function.
         */
        function _startTokenId() internal view virtual returns (uint256) {
            return 0;
        }
    
        /**
         * @dev Returns the next token ID to be minted.
         */
        function _nextTokenId() internal view virtual returns (uint256) {
            return _currentIndex;
        }
    
        /**
         * @dev Returns the total number of tokens in existence.
         * Burned tokens will reduce the count.
         * To get the total number of tokens minted, please see {_totalMinted}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            // Counter underflow is impossible as _burnCounter cannot be incremented
            // more than `_currentIndex - _startTokenId()` times.
            unchecked {
                return _currentIndex - _burnCounter - _startTokenId();
            }
        }
    
        /**
         * @dev Returns the total amount of tokens minted in the contract.
         */
        function _totalMinted() internal view virtual returns (uint256) {
            // Counter underflow is impossible as `_currentIndex` does not decrement,
            // and it is initialized to `_startTokenId()`.
            unchecked {
                return _currentIndex - _startTokenId();
            }
        }
    
        /**
         * @dev Returns the total number of tokens burned.
         */
        function _totalBurned() internal view virtual returns (uint256) {
            return _burnCounter;
        }
    
        // =============================================================
        //                    ADDRESS DATA OPERATIONS
        // =============================================================
    
        /**
         * @dev Returns the number of tokens in `owner`'s account.
         */
        function balanceOf(address owner) public view virtual override returns (uint256) {
            if (owner == address(0)) revert BalanceQueryForZeroAddress();
            return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
        }
    
        /**
         * Returns the number of tokens minted by `owner`.
         */
        function _numberMinted(address owner) internal view returns (uint256) {
            return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
        }
    
        /**
         * Returns the number of tokens burned by or on behalf of `owner`.
         */
        function _numberBurned(address owner) internal view returns (uint256) {
            return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
        }
    
        /**
         * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
         */
        function _getAux(address owner) internal view returns (uint64) {
            return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
        }
    
        /**
         * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
         * If there are multiple variables, please pack them into a uint64.
         */
        function _setAux(address owner, uint64 aux) internal virtual {
            uint256 packed = _packedAddressData[owner];
            uint256 auxCasted;
            // Cast `aux` with assembly to avoid redundant masking.
            assembly {
                auxCasted := aux
            }
            packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
            _packedAddressData[owner] = packed;
        }
    
        // =============================================================
        //                            IERC165
        // =============================================================
    
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30000 gas.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            // The interface IDs are constants representing the first 4 bytes
            // of the XOR of all function selectors in the interface.
            // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
            // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
            return
                interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
                interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
                interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
        }
    
        // =============================================================
        //                        IERC721Metadata
        // =============================================================
    
        /**
         * @dev Returns the token collection name.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the token collection symbol.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
         */
        function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
            if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
    
            string memory baseURI = _baseURI();
            return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
        }
    
        /**
         * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
         * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
         * by default, it can be overridden in child contracts.
         */
        function _baseURI() internal view virtual returns (string memory) {
            return '';
        }
    
        // =============================================================
        //                     OWNERSHIPS OPERATIONS
        // =============================================================
    
        /**
         * @dev Returns the owner of the `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function ownerOf(uint256 tokenId) public view virtual override returns (address) {
            return address(uint160(_packedOwnershipOf(tokenId)));
        }
    
        /**
         * @dev Gas spent here starts off proportional to the maximum mint batch size.
         * It gradually moves to O(1) as tokens get transferred around over time.
         */
        function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
            return _unpackedOwnership(_packedOwnershipOf(tokenId));
        }
    
        /**
         * @dev Returns the unpacked `TokenOwnership` struct at `index`.
         */
        function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
            return _unpackedOwnership(_packedOwnerships[index]);
        }
    
        /**
         * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
         */
        function _initializeOwnershipAt(uint256 index) internal virtual {
            if (_packedOwnerships[index] == 0) {
                _packedOwnerships[index] = _packedOwnershipOf(index);
            }
        }
    
        /**
         * Returns the packed ownership data of `tokenId`.
         */
        function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
            uint256 curr = tokenId;
    
            unchecked {
                if (_startTokenId() <= curr)
                    if (curr < _currentIndex) {
                        uint256 packed = _packedOwnerships[curr];
                        // If not burned.
                        if (packed & _BITMASK_BURNED == 0) {
                            // Invariant:
                            // There will always be an initialized ownership slot
                            // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                            // before an unintialized ownership slot
                            // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                            // Hence, `curr` will not underflow.
                            //
                            // We can directly compare the packed value.
                            // If the address is zero, packed will be zero.
                            while (packed == 0) {
                                packed = _packedOwnerships[--curr];
                            }
                            return packed;
                        }
                    }
            }
            revert OwnerQueryForNonexistentToken();
        }
    
        /**
         * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
         */
        function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
            ownership.addr = address(uint160(packed));
            ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
            ownership.burned = packed & _BITMASK_BURNED != 0;
            ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
        }
    
        /**
         * @dev Packs ownership data into a single uint256.
         */
        function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
            assembly {
                // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                owner := and(owner, _BITMASK_ADDRESS)
                // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
                result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
            }
        }
    
        /**
         * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
         */
        function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
            // For branchless setting of the `nextInitialized` flag.
            assembly {
                // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
                result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
            }
        }
    
        // =============================================================
        //                      APPROVAL OPERATIONS
        // =============================================================
    
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account.
         * The approval is cleared when the token is transferred.
         *
         * Only a single account can be approved at a time, so approving the
         * zero address clears previous approvals.
         *
         * Requirements:
         *
         * - The caller must own the token or be an approved operator.
         * - `tokenId` must exist.
         *
         * Emits an {Approval} event.
         */
        function approve(address to, uint256 tokenId) public payable virtual override {
            address owner = ownerOf(tokenId);
    
            if (_msgSenderERC721A() != owner)
                if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                    revert ApprovalCallerNotOwnerNorApproved();
                }
    
            _tokenApprovals[tokenId].value = to;
            emit Approval(owner, to, tokenId);
        }
    
        /**
         * @dev Returns the account approved for `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function getApproved(uint256 tokenId) public view virtual override returns (address) {
            if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
    
            return _tokenApprovals[tokenId].value;
        }
    
        /**
         * @dev Approve or remove `operator` as an operator for the caller.
         * Operators can call {transferFrom} or {safeTransferFrom}
         * for any token owned by the caller.
         *
         * Requirements:
         *
         * - The `operator` cannot be the caller.
         *
         * Emits an {ApprovalForAll} event.
         */
        function setApprovalForAll(address operator, bool approved) public virtual override {
            _operatorApprovals[_msgSenderERC721A()][operator] = approved;
            emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
        }
    
        /**
         * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
         *
         * See {setApprovalForAll}.
         */
        function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
            return _operatorApprovals[owner][operator];
        }
    
        /**
         * @dev Returns whether `tokenId` exists.
         *
         * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
         *
         * Tokens start existing when they are minted. See {_mint}.
         */
        function _exists(uint256 tokenId) internal view virtual returns (bool) {
            return
                _startTokenId() <= tokenId &&
                tokenId < _currentIndex && // If within bounds,
                _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
        }
    
        /**
         * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
         */
        function _isSenderApprovedOrOwner(
            address approvedAddress,
            address owner,
            address msgSender
        ) private pure returns (bool result) {
            assembly {
                // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                owner := and(owner, _BITMASK_ADDRESS)
                // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
                msgSender := and(msgSender, _BITMASK_ADDRESS)
                // `msgSender == owner || msgSender == approvedAddress`.
                result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
            }
        }
    
        /**
         * @dev Returns the storage slot and value for the approved address of `tokenId`.
         */
        function _getApprovedSlotAndAddress(uint256 tokenId)
            private
            view
            returns (uint256 approvedAddressSlot, address approvedAddress)
        {
            TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
            // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
            assembly {
                approvedAddressSlot := tokenApproval.slot
                approvedAddress := sload(approvedAddressSlot)
            }
        }
    
        // =============================================================
        //                      TRANSFER OPERATIONS
        // =============================================================
    
        /**
         * @dev Transfers `tokenId` from `from` to `to`.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token
         * by either {approve} or {setApprovalForAll}.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 tokenId
        ) public payable virtual override {
            uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
    
            if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();
    
            (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
    
            // The nested ifs save around 20+ gas over a compound boolean condition.
            if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
    
            if (to == address(0)) revert TransferToZeroAddress();
    
            _beforeTokenTransfers(from, to, tokenId, 1);
    
            // Clear approvals from the previous owner.
            assembly {
                if approvedAddress {
                    // This is equivalent to `delete _tokenApprovals[tokenId]`.
                    sstore(approvedAddressSlot, 0)
                }
            }
    
            // Underflow of the sender's balance is impossible because we check for
            // ownership above and the recipient's balance can't realistically overflow.
            // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
            unchecked {
                // We can directly increment and decrement the balances.
                --_packedAddressData[from]; // Updates: `balance -= 1`.
                ++_packedAddressData[to]; // Updates: `balance += 1`.
    
                // Updates:
                // - `address` to the next owner.
                // - `startTimestamp` to the timestamp of transfering.
                // - `burned` to `false`.
                // - `nextInitialized` to `true`.
                _packedOwnerships[tokenId] = _packOwnershipData(
                    to,
                    _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
                );
    
                // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                    uint256 nextTokenId = tokenId + 1;
                    // If the next slot's address is zero and not burned (i.e. packed value is zero).
                    if (_packedOwnerships[nextTokenId] == 0) {
                        // If the next slot is within bounds.
                        if (nextTokenId != _currentIndex) {
                            // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                            _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                        }
                    }
                }
            }
    
            emit Transfer(from, to, tokenId);
            _afterTokenTransfers(from, to, tokenId, 1);
        }
    
        /**
         * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) public payable virtual override {
            safeTransferFrom(from, to, tokenId, '');
        }
    
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token
         * by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement
         * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId,
            bytes memory _data
        ) public payable virtual override {
            transferFrom(from, to, tokenId);
            if (to.code.length != 0)
                if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                    revert TransferToNonERC721ReceiverImplementer();
                }
        }
    
        /**
         * @dev Hook that is called before a set of serially-ordered token IDs
         * are about to be transferred. This includes minting.
         * And also called before burning one token.
         *
         * `startTokenId` - the first token ID to be transferred.
         * `quantity` - the amount to be transferred.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
         * transferred to `to`.
         * - When `from` is zero, `tokenId` will be minted for `to`.
         * - When `to` is zero, `tokenId` will be burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _beforeTokenTransfers(
            address from,
            address to,
            uint256 startTokenId,
            uint256 quantity
        ) internal virtual {}
    
        /**
         * @dev Hook that is called after a set of serially-ordered token IDs
         * have been transferred. This includes minting.
         * And also called after one token has been burned.
         *
         * `startTokenId` - the first token ID to be transferred.
         * `quantity` - the amount to be transferred.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
         * transferred to `to`.
         * - When `from` is zero, `tokenId` has been minted for `to`.
         * - When `to` is zero, `tokenId` has been burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _afterTokenTransfers(
            address from,
            address to,
            uint256 startTokenId,
            uint256 quantity
        ) internal virtual {}
    
        /**
         * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
         *
         * `from` - Previous owner of the given token ID.
         * `to` - Target address that will receive the token.
         * `tokenId` - Token ID to be transferred.
         * `_data` - Optional data to send along with the call.
         *
         * Returns whether the call correctly returned the expected magic value.
         */
        function _checkContractOnERC721Received(
            address from,
            address to,
            uint256 tokenId,
            bytes memory _data
        ) private returns (bool) {
            try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
                bytes4 retval
            ) {
                return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert TransferToNonERC721ReceiverImplementer();
                } else {
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    
        // =============================================================
        //                        MINT OPERATIONS
        // =============================================================
    
        /**
         * @dev Mints `quantity` tokens and transfers them to `to`.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `quantity` must be greater than 0.
         *
         * Emits a {Transfer} event for each mint.
         */
        function _mint(address to, uint256 quantity) internal virtual {
            uint256 startTokenId = _currentIndex;
            if (quantity == 0) revert MintZeroQuantity();
    
            _beforeTokenTransfers(address(0), to, startTokenId, quantity);
    
            // Overflows are incredibly unrealistic.
            // `balance` and `numberMinted` have a maximum limit of 2**64.
            // `tokenId` has a maximum limit of 2**256.
            unchecked {
                // Updates:
                // - `balance += quantity`.
                // - `numberMinted += quantity`.
                //
                // We can directly add to the `balance` and `numberMinted`.
                _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
    
                // Updates:
                // - `address` to the owner.
                // - `startTimestamp` to the timestamp of minting.
                // - `burned` to `false`.
                // - `nextInitialized` to `quantity == 1`.
                _packedOwnerships[startTokenId] = _packOwnershipData(
                    to,
                    _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                );
    
                uint256 toMasked;
                uint256 end = startTokenId + quantity;
    
                // Use assembly to loop and emit the `Transfer` event for gas savings.
                // The duplicated `log4` removes an extra check and reduces stack juggling.
                // The assembly, together with the surrounding Solidity code, have been
                // delicately arranged to nudge the compiler into producing optimized opcodes.
                assembly {
                    // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                    toMasked := and(to, _BITMASK_ADDRESS)
                    // Emit the `Transfer` event.
                    log4(
                        0, // Start of data (0, since no data).
                        0, // End of data (0, since no data).
                        _TRANSFER_EVENT_SIGNATURE, // Signature.
                        0, // `address(0)`.
                        toMasked, // `to`.
                        startTokenId // `tokenId`.
                    )
    
                    // The `iszero(eq(,))` check ensures that large values of `quantity`
                    // that overflows uint256 will make the loop run out of gas.
                    // The compiler will optimize the `iszero` away for performance.
                    for {
                        let tokenId := add(startTokenId, 1)
                    } iszero(eq(tokenId, end)) {
                        tokenId := add(tokenId, 1)
                    } {
                        // Emit the `Transfer` event. Similar to above.
                        log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
                    }
                }
                if (toMasked == 0) revert MintToZeroAddress();
    
                _currentIndex = end;
            }
            _afterTokenTransfers(address(0), to, startTokenId, quantity);
        }
    
        /**
         * @dev Mints `quantity` tokens and transfers them to `to`.
         *
         * This function is intended for efficient minting only during contract creation.
         *
         * It emits only one {ConsecutiveTransfer} as defined in
         * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
         * instead of a sequence of {Transfer} event(s).
         *
         * Calling this function outside of contract creation WILL make your contract
         * non-compliant with the ERC721 standard.
         * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
         * {ConsecutiveTransfer} event is only permissible during contract creation.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `quantity` must be greater than 0.
         *
         * Emits a {ConsecutiveTransfer} event.
         */
        function _mintERC2309(address to, uint256 quantity) internal virtual {
            uint256 startTokenId = _currentIndex;
            if (to == address(0)) revert MintToZeroAddress();
            if (quantity == 0) revert MintZeroQuantity();
            if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();
    
            _beforeTokenTransfers(address(0), to, startTokenId, quantity);
    
            // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
            unchecked {
                // Updates:
                // - `balance += quantity`.
                // - `numberMinted += quantity`.
                //
                // We can directly add to the `balance` and `numberMinted`.
                _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
    
                // Updates:
                // - `address` to the owner.
                // - `startTimestamp` to the timestamp of minting.
                // - `burned` to `false`.
                // - `nextInitialized` to `quantity == 1`.
                _packedOwnerships[startTokenId] = _packOwnershipData(
                    to,
                    _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                );
    
                emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
    
                _currentIndex = startTokenId + quantity;
            }
            _afterTokenTransfers(address(0), to, startTokenId, quantity);
        }
    
        /**
         * @dev Safely mints `quantity` tokens and transfers them to `to`.
         *
         * Requirements:
         *
         * - If `to` refers to a smart contract, it must implement
         * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
         * - `quantity` must be greater than 0.
         *
         * See {_mint}.
         *
         * Emits a {Transfer} event for each mint.
         */
        function _safeMint(
            address to,
            uint256 quantity,
            bytes memory _data
        ) internal virtual {
            _mint(to, quantity);
    
            unchecked {
                if (to.code.length != 0) {
                    uint256 end = _currentIndex;
                    uint256 index = end - quantity;
                    do {
                        if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                            revert TransferToNonERC721ReceiverImplementer();
                        }
                    } while (index < end);
                    // Reentrancy protection.
                    if (_currentIndex != end) revert();
                }
            }
        }
    
        /**
         * @dev Equivalent to `_safeMint(to, quantity, '')`.
         */
        function _safeMint(address to, uint256 quantity) internal virtual {
            _safeMint(to, quantity, '');
        }
    
        // =============================================================
        //                        BURN OPERATIONS
        // =============================================================
    
        /**
         * @dev Equivalent to `_burn(tokenId, false)`.
         */
        function _burn(uint256 tokenId) internal virtual {
            _burn(tokenId, false);
        }
    
        /**
         * @dev Destroys `tokenId`.
         * The approval is cleared when the token is burned.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         *
         * Emits a {Transfer} event.
         */
        function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
            uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
    
            address from = address(uint160(prevOwnershipPacked));
    
            (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
    
            if (approvalCheck) {
                // The nested ifs save around 20+ gas over a compound boolean condition.
                if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                    if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
            }
    
            _beforeTokenTransfers(from, address(0), tokenId, 1);
    
            // Clear approvals from the previous owner.
            assembly {
                if approvedAddress {
                    // This is equivalent to `delete _tokenApprovals[tokenId]`.
                    sstore(approvedAddressSlot, 0)
                }
            }
    
            // Underflow of the sender's balance is impossible because we check for
            // ownership above and the recipient's balance can't realistically overflow.
            // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
            unchecked {
                // Updates:
                // - `balance -= 1`.
                // - `numberBurned += 1`.
                //
                // We can directly decrement the balance, and increment the number burned.
                // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
                _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
    
                // Updates:
                // - `address` to the last owner.
                // - `startTimestamp` to the timestamp of burning.
                // - `burned` to `true`.
                // - `nextInitialized` to `true`.
                _packedOwnerships[tokenId] = _packOwnershipData(
                    from,
                    (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
                );
    
                // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                    uint256 nextTokenId = tokenId + 1;
                    // If the next slot's address is zero and not burned (i.e. packed value is zero).
                    if (_packedOwnerships[nextTokenId] == 0) {
                        // If the next slot is within bounds.
                        if (nextTokenId != _currentIndex) {
                            // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                            _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                        }
                    }
                }
            }
    
            emit Transfer(from, address(0), tokenId);
            _afterTokenTransfers(from, address(0), tokenId, 1);
    
            // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
            unchecked {
                _burnCounter++;
            }
        }
    
        // =============================================================
        //                     EXTRA DATA OPERATIONS
        // =============================================================
    
        /**
         * @dev Directly sets the extra data for the ownership data `index`.
         */
        function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
            uint256 packed = _packedOwnerships[index];
            if (packed == 0) revert OwnershipNotInitializedForExtraData();
            uint256 extraDataCasted;
            // Cast `extraData` with assembly to avoid redundant masking.
            assembly {
                extraDataCasted := extraData
            }
            packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
            _packedOwnerships[index] = packed;
        }
    
        /**
         * @dev Called during each token transfer to set the 24bit `extraData` field.
         * Intended to be overridden by the cosumer contract.
         *
         * `previousExtraData` - the value of `extraData` before transfer.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
         * transferred to `to`.
         * - When `from` is zero, `tokenId` will be minted for `to`.
         * - When `to` is zero, `tokenId` will be burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _extraData(
            address from,
            address to,
            uint24 previousExtraData
        ) internal view virtual returns (uint24) {}
    
        /**
         * @dev Returns the next extra data for the packed ownership data.
         * The returned result is shifted into position.
         */
        function _nextExtraData(
            address from,
            address to,
            uint256 prevOwnershipPacked
        ) private view returns (uint256) {
            uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
            return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
        }
    
        // =============================================================
        //                       OTHER OPERATIONS
        // =============================================================
    
        /**
         * @dev Returns the message sender (defaults to `msg.sender`).
         *
         * If you are writing GSN compatible contracts, you need to override this function.
         */
        function _msgSenderERC721A() internal view virtual returns (address) {
            return msg.sender;
        }
    
        /**
         * @dev Converts a uint256 to its ASCII string decimal representation.
         */
        function _toString(uint256 value) internal pure virtual returns (string memory str) {
            assembly {
                // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                // We will need 1 word for the trailing zeros padding, 1 word for the length,
                // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
                let m := add(mload(0x40), 0xa0)
                // Update the free memory pointer to allocate.
                mstore(0x40, m)
                // Assign the `str` to the end.
                str := sub(m, 0x20)
                // Zeroize the slot after the string.
                mstore(str, 0)
    
                // Cache the end of the memory to calculate the length later.
                let end := str
    
                // We write the string from rightmost digit to leftmost digit.
                // The following is essentially a do-while loop that also handles the zero case.
                // prettier-ignore
                for { let temp := value } 1 {} {
                    str := sub(str, 1)
                    // Write the character to the pointer.
                    // The ASCII index of the '0' character is 48.
                    mstore8(str, add(48, mod(temp, 10)))
                    // Keep dividing `temp` until zero.
                    temp := div(temp, 10)
                    // prettier-ignore
                    if iszero(temp) { break }
                }
    
                let length := sub(end, str)
                // Move the pointer 32 bytes leftwards to make room for the length.
                str := sub(str, 0x20)
                // Store the length.
                mstore(str, length)
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // ERC721A Contracts v4.2.3
    // Creator: Chiru Labs
    
    pragma solidity ^0.8.4;
    
    import './IERC721AQueryable.sol';
    import '../ERC721A.sol';
    
    /**
     * @title ERC721AQueryable.
     *
     * @dev ERC721A subclass with convenience query functions.
     */
    abstract contract ERC721AQueryable is ERC721A, IERC721AQueryable {
        /**
         * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
         *
         * If the `tokenId` is out of bounds:
         *
         * - `addr = address(0)`
         * - `startTimestamp = 0`
         * - `burned = false`
         * - `extraData = 0`
         *
         * If the `tokenId` is burned:
         *
         * - `addr = <Address of owner before token was burned>`
         * - `startTimestamp = <Timestamp when token was burned>`
         * - `burned = true`
         * - `extraData = <Extra data when token was burned>`
         *
         * Otherwise:
         *
         * - `addr = <Address of owner>`
         * - `startTimestamp = <Timestamp of start of ownership>`
         * - `burned = false`
         * - `extraData = <Extra data at start of ownership>`
         */
        function explicitOwnershipOf(uint256 tokenId) public view virtual override returns (TokenOwnership memory) {
            TokenOwnership memory ownership;
            if (tokenId < _startTokenId() || tokenId >= _nextTokenId()) {
                return ownership;
            }
            ownership = _ownershipAt(tokenId);
            if (ownership.burned) {
                return ownership;
            }
            return _ownershipOf(tokenId);
        }
    
        /**
         * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
         * See {ERC721AQueryable-explicitOwnershipOf}
         */
        function explicitOwnershipsOf(uint256[] calldata tokenIds)
            external
            view
            virtual
            override
            returns (TokenOwnership[] memory)
        {
            unchecked {
                uint256 tokenIdsLength = tokenIds.length;
                TokenOwnership[] memory ownerships = new TokenOwnership[](tokenIdsLength);
                for (uint256 i; i != tokenIdsLength; ++i) {
                    ownerships[i] = explicitOwnershipOf(tokenIds[i]);
                }
                return ownerships;
            }
        }
    
        /**
         * @dev Returns an array of token IDs owned by `owner`,
         * in the range [`start`, `stop`)
         * (i.e. `start <= tokenId < stop`).
         *
         * This function allows for tokens to be queried if the collection
         * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
         *
         * Requirements:
         *
         * - `start < stop`
         */
        function tokensOfOwnerIn(
            address owner,
            uint256 start,
            uint256 stop
        ) external view virtual override returns (uint256[] memory) {
            unchecked {
                if (start >= stop) revert InvalidQueryRange();
                uint256 tokenIdsIdx;
                uint256 stopLimit = _nextTokenId();
                // Set `start = max(start, _startTokenId())`.
                if (start < _startTokenId()) {
                    start = _startTokenId();
                }
                // Set `stop = min(stop, stopLimit)`.
                if (stop > stopLimit) {
                    stop = stopLimit;
                }
                uint256 tokenIdsMaxLength = balanceOf(owner);
                // Set `tokenIdsMaxLength = min(balanceOf(owner), stop - start)`,
                // to cater for cases where `balanceOf(owner)` is too big.
                if (start < stop) {
                    uint256 rangeLength = stop - start;
                    if (rangeLength < tokenIdsMaxLength) {
                        tokenIdsMaxLength = rangeLength;
                    }
                } else {
                    tokenIdsMaxLength = 0;
                }
                uint256[] memory tokenIds = new uint256[](tokenIdsMaxLength);
                if (tokenIdsMaxLength == 0) {
                    return tokenIds;
                }
                // We need to call `explicitOwnershipOf(start)`,
                // because the slot at `start` may not be initialized.
                TokenOwnership memory ownership = explicitOwnershipOf(start);
                address currOwnershipAddr;
                // If the starting slot exists (i.e. not burned), initialize `currOwnershipAddr`.
                // `ownership.address` will not be zero, as `start` is clamped to the valid token ID range.
                if (!ownership.burned) {
                    currOwnershipAddr = ownership.addr;
                }
                for (uint256 i = start; i != stop && tokenIdsIdx != tokenIdsMaxLength; ++i) {
                    ownership = _ownershipAt(i);
                    if (ownership.burned) {
                        continue;
                    }
                    if (ownership.addr != address(0)) {
                        currOwnershipAddr = ownership.addr;
                    }
                    if (currOwnershipAddr == owner) {
                        tokenIds[tokenIdsIdx++] = i;
                    }
                }
                // Downsize the array to fit.
                assembly {
                    mstore(tokenIds, tokenIdsIdx)
                }
                return tokenIds;
            }
        }
    
        /**
         * @dev Returns an array of token IDs owned by `owner`.
         *
         * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
         * It is meant to be called off-chain.
         *
         * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
         * multiple smaller scans if the collection is large enough to cause
         * an out-of-gas error (10K collections should be fine).
         */
        function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) {
            unchecked {
                uint256 tokenIdsIdx;
                address currOwnershipAddr;
                uint256 tokenIdsLength = balanceOf(owner);
                uint256[] memory tokenIds = new uint256[](tokenIdsLength);
                TokenOwnership memory ownership;
                for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) {
                    ownership = _ownershipAt(i);
                    if (ownership.burned) {
                        continue;
                    }
                    if (ownership.addr != address(0)) {
                        currOwnershipAddr = ownership.addr;
                    }
                    if (currOwnershipAddr == owner) {
                        tokenIds[tokenIdsIdx++] = i;
                    }
                }
                return tokenIds;
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // ERC721A Contracts v4.2.3
    // Creator: Chiru Labs
    
    pragma solidity ^0.8.4;
    
    import '../IERC721A.sol';
    
    /**
     * @dev Interface of ERC721AQueryable.
     */
    interface IERC721AQueryable is IERC721A {
        /**
         * Invalid query range (`start` >= `stop`).
         */
        error InvalidQueryRange();
    
        /**
         * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
         *
         * If the `tokenId` is out of bounds:
         *
         * - `addr = address(0)`
         * - `startTimestamp = 0`
         * - `burned = false`
         * - `extraData = 0`
         *
         * If the `tokenId` is burned:
         *
         * - `addr = <Address of owner before token was burned>`
         * - `startTimestamp = <Timestamp when token was burned>`
         * - `burned = true`
         * - `extraData = <Extra data when token was burned>`
         *
         * Otherwise:
         *
         * - `addr = <Address of owner>`
         * - `startTimestamp = <Timestamp of start of ownership>`
         * - `burned = false`
         * - `extraData = <Extra data at start of ownership>`
         */
        function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory);
    
        /**
         * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
         * See {ERC721AQueryable-explicitOwnershipOf}
         */
        function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory);
    
        /**
         * @dev Returns an array of token IDs owned by `owner`,
         * in the range [`start`, `stop`)
         * (i.e. `start <= tokenId < stop`).
         *
         * This function allows for tokens to be queried if the collection
         * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
         *
         * Requirements:
         *
         * - `start < stop`
         */
        function tokensOfOwnerIn(
            address owner,
            uint256 start,
            uint256 stop
        ) external view returns (uint256[] memory);
    
        /**
         * @dev Returns an array of token IDs owned by `owner`.
         *
         * This function scans the ownership mapping and is O(`totalSupply`) in complexity.
         * It is meant to be called off-chain.
         *
         * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
         * multiple smaller scans if the collection is large enough to cause
         * an out-of-gas error (10K collections should be fine).
         */
        function tokensOfOwner(address owner) external view returns (uint256[] memory);
    }

    // SPDX-License-Identifier: MIT
    // ERC721A Contracts v4.2.3
    // Creator: Chiru Labs
    
    pragma solidity ^0.8.4;
    
    /**
     * @dev Interface of ERC721A.
     */
    interface IERC721A {
        /**
         * The caller must own the token or be an approved operator.
         */
        error ApprovalCallerNotOwnerNorApproved();
    
        /**
         * The token does not exist.
         */
        error ApprovalQueryForNonexistentToken();
    
        /**
         * Cannot query the balance for the zero address.
         */
        error BalanceQueryForZeroAddress();
    
        /**
         * Cannot mint to the zero address.
         */
        error MintToZeroAddress();
    
        /**
         * The quantity of tokens minted must be more than zero.
         */
        error MintZeroQuantity();
    
        /**
         * The token does not exist.
         */
        error OwnerQueryForNonexistentToken();
    
        /**
         * The caller must own the token or be an approved operator.
         */
        error TransferCallerNotOwnerNorApproved();
    
        /**
         * The token must be owned by `from`.
         */
        error TransferFromIncorrectOwner();
    
        /**
         * Cannot safely transfer to a contract that does not implement the
         * ERC721Receiver interface.
         */
        error TransferToNonERC721ReceiverImplementer();
    
        /**
         * Cannot transfer to the zero address.
         */
        error TransferToZeroAddress();
    
        /**
         * The token does not exist.
         */
        error URIQueryForNonexistentToken();
    
        /**
         * The `quantity` minted with ERC2309 exceeds the safety limit.
         */
        error MintERC2309QuantityExceedsLimit();
    
        /**
         * The `extraData` cannot be set on an unintialized ownership slot.
         */
        error OwnershipNotInitializedForExtraData();
    
        // =============================================================
        //                            STRUCTS
        // =============================================================
    
        struct TokenOwnership {
            // The address of the owner.
            address addr;
            // Stores the start time of ownership with minimal overhead for tokenomics.
            uint64 startTimestamp;
            // Whether the token has been burned.
            bool burned;
            // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
            uint24 extraData;
        }
    
        // =============================================================
        //                         TOKEN COUNTERS
        // =============================================================
    
        /**
         * @dev Returns the total number of tokens in existence.
         * Burned tokens will reduce the count.
         * To get the total number of tokens minted, please see {_totalMinted}.
         */
        function totalSupply() external view returns (uint256);
    
        // =============================================================
        //                            IERC165
        // =============================================================
    
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    
        // =============================================================
        //                            IERC721
        // =============================================================
    
        /**
         * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
         */
        event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
    
        /**
         * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
         */
        event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
    
        /**
         * @dev Emitted when `owner` enables or disables
         * (`approved`) `operator` to manage all of its assets.
         */
        event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
    
        /**
         * @dev Returns the number of tokens in `owner`'s account.
         */
        function balanceOf(address owner) external view returns (uint256 balance);
    
        /**
         * @dev Returns the owner of the `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function ownerOf(uint256 tokenId) external view returns (address owner);
    
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`,
         * checking first that contract recipients are aware of the ERC721 protocol
         * to prevent tokens from being forever locked.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be have been allowed to move
         * this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement
         * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId,
            bytes calldata data
        ) external payable;
    
        /**
         * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external payable;
    
        /**
         * @dev Transfers `tokenId` from `from` to `to`.
         *
         * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
         * whenever possible.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token
         * by either {approve} or {setApprovalForAll}.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external payable;
    
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account.
         * The approval is cleared when the token is transferred.
         *
         * Only a single account can be approved at a time, so approving the
         * zero address clears previous approvals.
         *
         * Requirements:
         *
         * - The caller must own the token or be an approved operator.
         * - `tokenId` must exist.
         *
         * Emits an {Approval} event.
         */
        function approve(address to, uint256 tokenId) external payable;
    
        /**
         * @dev Approve or remove `operator` as an operator for the caller.
         * Operators can call {transferFrom} or {safeTransferFrom}
         * for any token owned by the caller.
         *
         * Requirements:
         *
         * - The `operator` cannot be the caller.
         *
         * Emits an {ApprovalForAll} event.
         */
        function setApprovalForAll(address operator, bool _approved) external;
    
        /**
         * @dev Returns the account approved for `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function getApproved(uint256 tokenId) external view returns (address operator);
    
        /**
         * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
         *
         * See {setApprovalForAll}.
         */
        function isApprovedForAll(address owner, address operator) external view returns (bool);
    
        // =============================================================
        //                        IERC721Metadata
        // =============================================================
    
        /**
         * @dev Returns the token collection name.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the token collection symbol.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
         */
        function tokenURI(uint256 tokenId) external view returns (string memory);
    
        // =============================================================
        //                           IERC2309
        // =============================================================
    
        /**
         * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
         * (inclusive) is transferred from `from` to `to`, as defined in the
         * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
         *
         * See {_mintERC2309} for more details.
         */
        event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
    }

    //SPDX-License-Identifier: MIT
    pragma solidity ^0.8.4;
    
    import "erc721a/contracts/extensions/IERC721AQueryable.sol";
    
    interface IERC721M is IERC721AQueryable {
        error CannotIncreaseMaxMintableSupply();
        error CosignerNotSet();
        error CrossmintAddressNotSet();
        error CrossmintOnly();
        error GlobalWalletLimitOverflow();
        error InsufficientStageTimeGap();
        error InvalidCosignSignature();
        error InvalidProof();
        error InvalidStage();
        error InvalidStageArgsLength();
        error InvalidStartAndEndTimestamp();
        error NoSupplyLeft();
        error NotAuthorized();
        error NotEnoughValue();
        error NotMintable();
        error Mintable();
        error StageSupplyExceeded();
        error TimestampExpired();
        error TransferFailed();
        error WalletGlobalLimitExceeded();
        error WalletStageLimitExceeded();
        error WithdrawFailed();
        error WrongMintCurrency();
        error NotSupported();
    
        struct MintStageInfo {
            uint80 price;
            uint80 mintFee;
            uint32 walletLimit; // 0 for unlimited
            bytes32 merkleRoot; // 0x0 for no presale enforced
            uint24 maxStageSupply; // 0 for unlimited
            uint64 startTimeUnixSeconds;
            uint64 endTimeUnixSeconds;
        }
    
        event UpdateStage(
            uint256 stage,
            uint80 price,
            uint80 mintFee,
            uint32 walletLimit,
            bytes32 merkleRoot,
            uint24 maxStageSupply,
            uint64 startTimeUnixSeconds,
            uint64 endTimeUnixSeconds
        );
    
        event SetCosigner(address cosigner);
        event SetCrossmintAddress(address crossmintAddress);
        event SetMintable(bool mintable);
        event SetMaxMintableSupply(uint256 maxMintableSupply);
        event SetGlobalWalletLimit(uint256 globalWalletLimit);
        event SetActiveStage(uint256 activeStage);
        event SetBaseURI(string baseURI);
        event SetTimestampExpirySeconds(uint64 expiry);
        event SetMintCurrency(address mintCurrency);
        event Withdraw(uint256 value);
        event WithdrawERC20(address mintCurrency, uint256 value);
    
        function getNumberStages() external view returns (uint256);
    
        function getGlobalWalletLimit() external view returns (uint256);
    
        function getMaxMintableSupply() external view returns (uint256);
    
        function totalMintedByAddress(address a) external view returns (uint256);
    
        function getCosignNonce(address minter) external view returns (uint256);
    
        function getStageInfo(
            uint256 index
        ) external view returns (MintStageInfo memory, uint32, uint256);
    
        function mint(
            uint32 qty,
            bytes32[] calldata proof,
            uint64 timestamp,
            bytes calldata signature
        ) external payable;
    
        function mintWithLimit(
            uint32 qty,
            uint32 limit,
            bytes32[] calldata proof,
            uint64 timestamp,
            bytes calldata signature
        ) external payable;
    
        function crossmint(
            uint32 qty,
            address to,
            bytes32[] calldata proof,
            uint64 timestamp,
            bytes calldata signature
        ) external payable;
    
        function authorizedMint(
            uint32 qty,
            address to,
            uint32 limit,
            bytes32[] calldata proof,
            uint64 timestamp,
            bytes calldata signature
        ) external payable;
    }

    Please enter a contract address above to load the contract details and source code.

    Context size (optional):