Contract Name:
PaymentPlanV2Logic
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20PermitUpgradeable {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20Upgradeable {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20Upgradeable.sol";
import "../extensions/draft-IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20Upgradeable {
using AddressUpgradeable for address;
function safeTransfer(
IERC20Upgradeable token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20Upgradeable token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20Upgradeable token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20Upgradeable token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20Upgradeable token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20PermitUpgradeable token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165Upgradeable.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721Upgradeable is IERC165Upgradeable {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../StringsUpgradeable.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSAUpgradeable {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", StringsUpgradeable.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165Upgradeable {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library MathUpgradeable {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/MathUpgradeable.sol";
/**
* @dev String operations.
*/
library StringsUpgradeable {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = MathUpgradeable.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, MathUpgradeable.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
}
_balances[to] += amount;
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
}
_totalSupply -= amount;
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
enum ConduitItemType {
NATIVE, // unused
ERC20,
ERC721,
ERC1155
}
struct ConduitTransfer {
ConduitItemType itemType;
address collection;
address from;
address to;
uint256 identifier;
uint256 amount;
}
struct ConduitBatch1155Transfer {
address collection;
address from;
address to;
uint256[] ids;
uint256[] amounts;
}
interface ICyanConduit {
error ChannelClosed(address channel);
error ChannelStatusAlreadySet(address channel, bool isOpen);
error InvalidItemType();
error InvalidAdmin();
event ChannelUpdated(address indexed channel, bool open);
function execute(ConduitTransfer[] calldata transfers) external returns (bytes4 magicValue);
function executeBatch1155(ConduitBatch1155Transfer[] calldata batch1155Transfers)
external
returns (bytes4 magicValue);
function executeWithBatch1155(
ConduitTransfer[] calldata standardTransfers,
ConduitBatch1155Transfer[] calldata batch1155Transfers
) external returns (bytes4 magicValue);
function transferERC20(
address from,
address to,
address token,
uint256 amount
) external;
function transferERC721(
address from,
address to,
address collection,
uint256 tokenId
) external;
function transferERC1155(
address from,
address to,
address collection,
uint256 tokenId,
uint256 amount
) external;
function updateChannel(address channel, bool isOpen) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IFactory {
function getOrDeployWallet(address) external returns (address);
function getWalletOwner(address) external view returns (address);
function getOwnerWallet(address) external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import { Item } from "../../main/payment-plan/PaymentPlanTypes.sol";
interface IWallet {
function executeModule(bytes memory) external returns (bytes memory);
function transferNonLockedERC721(
address,
uint256,
address
) external;
function transferNonLockedERC1155(
address,
uint256,
uint256,
address
) external;
function transferNonLockedCryptoPunk(uint256, address) external;
function setLockedERC721Token(
address,
uint256,
bool
) external;
function increaseLockedERC1155Token(
address,
uint256,
uint256
) external;
function decreaseLockedERC1155Token(
address,
uint256,
uint256
) external;
function setLockedCryptoPunk(uint256, bool) external;
function autoPay(
uint256,
uint256,
uint8
) external;
function earlyUnwindOpensea(
uint256,
uint256,
Item memory,
bytes memory
) external;
function earlyUnwindCyan(uint256, address) external;
function isLockedNFT(address, uint256) external view returns (bool);
function repayBendDaoLoan(
address collection,
uint256 tokenId,
uint256 amount,
address currency
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import "./IWallet.sol";
interface IWalletApeCoin is IWallet {
function depositBAYCAndLock(uint32 tokenId, uint224 amount) external;
function depositMAYCAndLock(uint32 tokenId, uint224 amount) external;
function depositBAKCAndLock(
address mainCollection,
uint32 mainTokenId,
uint32 bakcTokenId,
uint224 amount
) external;
function withdrawBAYCAndUnlock(uint32 tokenId) external;
function withdrawMAYCAndUnlock(uint32 tokenId) external;
function withdrawBAKCAndUnlock(uint32 tokenId) external;
function autoCompound(uint256 poolId, uint32 tokenId) external;
function getApeLockState(address collection, uint256 tokenId) external view returns (uint8);
function completeApeCoinPlan(uint256 planId) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface ICyanVaultV2 {
function getCurrencyAddress() external view returns (address);
function lend(address to, uint256 amount) external;
function earn(uint256 amount, uint256 profit) external payable;
function nftDefaulted(uint256 unpaidAmount, uint256 estimatedPriceOfNFT) external;
function withdrawLocked(address cyanWalletAddress) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
/// @title Cyan AddressProvider contract
/// @author Bulgantamir Gankhuyag - <[email protected]>
/// @author Naranbayar Uuganbayar - <[email protected]>
contract AddressProvider is Ownable {
error AddressNotFound(bytes32 id);
event AddressSet(bytes32 id, address newAddress);
mapping(bytes32 => address) public addresses;
constructor(address owner) {
transferOwnership(owner);
}
// @dev Sets an address for an id replacing the address saved in the addresses map
// @param id The id
// @param newAddress The address to set
function setAddress(bytes32 id, address newAddress) external onlyOwner {
addresses[id] = newAddress;
emit AddressSet(id, newAddress);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
// DataTypes
enum PawnCreateType {
REGULAR,
BEND_DAO,
REFINANCE
}
enum PaymentPlanStatus {
BNPL_CREATED,
BNPL_FUNDED,
BNPL_ACTIVE,
BNPL_DEFAULTED,
BNPL_REJECTED,
BNPL_COMPLETED,
BNPL_LIQUIDATED,
PAWN_ACTIVE,
PAWN_DEFAULTED,
PAWN_COMPLETED,
PAWN_LIQUIDATED
}
struct Plan {
uint256 amount;
uint32 downPaymentPercent;
uint32 interestRate;
uint32 serviceFeeRate;
uint32 term;
uint8 totalNumberOfPayments;
uint8 counterPaidPayments;
uint8 autoRepayStatus;
}
struct PaymentPlan {
Plan plan;
uint256 createdDate;
address cyanWalletAddress;
PaymentPlanStatus status;
}
struct Item {
uint256 amount;
uint256 tokenId;
address contractAddress;
address cyanVaultAddress;
// 1 -> ERC721
// 2 -> ERC1155
// 3 -> CryptoPunks
uint8 itemType;
}
struct PaymentAmountInfo {
uint256 loanAmount;
uint256 interestAmount;
uint256 serviceAmount;
}
// Errors
error InvalidSender();
error InvalidBlockNumber();
error InvalidSignature();
error InvalidServiceFeeRate();
error InvalidTokenPrice();
error InvalidInterestRate();
error InvalidDownPaymentPercent();
error InvalidDownPayment();
error InvalidAmount();
error InvalidTerm();
error InvalidPaidCount();
error InvalidStage();
error InvalidAddress();
error InvalidAutoRepaymentDate();
error InvalidAutoRepaymentStatus();
error InvalidTotalNumberOfPayments();
error InvalidReviveDate();
error InvalidItem();
error InvalidBaseDiscountRate();
error InvalidApeCoinPlan();
error InvalidBendDaoPlan();
error InvalidCurrency();
error InvalidCyanBuyer();
error InvalidSelector();
error EthTransferFailed();
error PaymentPlanAlreadyExists();
error PaymentPlanNotFound();
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import "@openzeppelin/contracts-upgradeable/utils/cryptography/ECDSAUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC721/IERC721Upgradeable.sol";
import "./PaymentPlanTypes.sol";
import "../../thirdparty/ICryptoPunk.sol";
import "../../thirdparty/IWETH.sol";
import "../../interfaces/core/IWalletApeCoin.sol";
import "../../interfaces/main/ICyanVaultV2.sol";
import "../../interfaces/core/IFactory.sol";
import { ICyanConduit } from "../../interfaces/conduit/ICyanConduit.sol";
import { ILendPoolLoan as IBDaoLendPoolLoan } from "../../thirdparty/benddao/ILendPoolLoan.sol";
import { DataTypes as BDaoDataTypes } from "../../thirdparty/benddao/DataTypes.sol";
import { AddressProvider } from "../../main/AddressProvider.sol";
/// @title Cyan Core Payment Plan V2 Logic
/// @author Bulgantamir Gankhuyag - <[email protected]>
/// @author Naranbayar Uuganbayar - <[email protected]>
library PaymentPlanV2Logic {
AddressProvider private constant addressProvider = AddressProvider(0xCF9A19D879769aDaE5e4f31503AAECDa82568E55);
using ECDSAUpgradeable for bytes32;
using SafeERC20Upgradeable for IERC20Upgradeable;
function checkAndCompleteApePlans(
address cyanWalletAddress,
address collection,
uint256 tokenId,
uint256[2] calldata apePlanIds
) external {
IWalletApeCoin cyanWallet = IWalletApeCoin(cyanWalletAddress);
_checkAndCompleteApePlan(cyanWallet, apePlanIds[0], collection, tokenId);
_checkAndCompleteApePlan(cyanWallet, apePlanIds[1], collection, tokenId);
}
function _checkAndCompleteApePlan(
IWalletApeCoin cyanWallet,
uint256 apePlanId,
address collection,
uint256 tokenId
) private {
if (apePlanId == 0) return;
uint8 apeLockStateBefore = cyanWallet.getApeLockState(collection, tokenId);
cyanWallet.executeModule(abi.encodeWithSelector(IWalletApeCoin.completeApeCoinPlan.selector, apePlanId));
uint8 apeLockStateAfter = cyanWallet.getApeLockState(collection, tokenId);
if (apeLockStateAfter >= apeLockStateBefore) revert InvalidApeCoinPlan();
}
/**
* @notice Return expected payment plan for given price and interest rate
* @param plan Plan details
* @return Expected down payment amount
* @return Expected total interest fee
* @return Expected total service fee
* @return Estimated subsequent payments after down payment
* @return Expected total financing amount
*/
function getExpectedPlan(Plan calldata plan)
external
pure
returns (
uint256,
uint256,
uint256,
uint256,
uint256
)
{
if (plan.totalNumberOfPayments == 0) revert InvalidTotalNumberOfPayments();
(
PaymentAmountInfo memory singleAmounts,
PaymentAmountInfo memory totalAmounts,
uint256 downPaymentAmount,
) = calculatePaymentInfo(plan);
uint256 totalFinancingAmount = plan.amount + totalAmounts.interestAmount + totalAmounts.serviceAmount;
return (
plan.downPaymentPercent > 0 ? downPaymentAmount + singleAmounts.serviceAmount : 0,
totalAmounts.interestAmount,
totalAmounts.serviceAmount,
singleAmounts.loanAmount + singleAmounts.interestAmount + singleAmounts.serviceAmount,
totalFinancingAmount
);
}
function calculatePaymentInfo(Plan memory plan)
internal
pure
returns (
PaymentAmountInfo memory singleAmounts,
PaymentAmountInfo memory totalAmounts,
uint256 downPaymentAmount,
uint8 payCountWithoutDownPayment
)
{
payCountWithoutDownPayment = plan.totalNumberOfPayments - (plan.downPaymentPercent > 0 ? 1 : 0);
downPaymentAmount = (plan.amount * plan.downPaymentPercent) / 10000;
totalAmounts.loanAmount = plan.amount - downPaymentAmount;
totalAmounts.interestAmount = (totalAmounts.loanAmount * plan.interestRate) / 10000;
totalAmounts.serviceAmount = (plan.amount * plan.serviceFeeRate) / 10000;
singleAmounts.loanAmount = totalAmounts.loanAmount / payCountWithoutDownPayment;
singleAmounts.interestAmount = totalAmounts.interestAmount / payCountWithoutDownPayment;
singleAmounts.serviceAmount = totalAmounts.serviceAmount / plan.totalNumberOfPayments;
}
/**
* @notice Return payment info
* @param plan Plan details
* @param isEarlyPayment Is paying early
* @return Remaining payment amount for collateral
* @return Remaining payment amount for interest fee
* @return Remaining payment amount for service fee
* @return Remaining total payment amount
*/
function getPaymentInfo(
Plan memory plan,
bool isEarlyPayment,
uint256 createdDate
)
external
view
returns (
uint256,
uint256,
uint256,
uint256,
uint256
)
{
(PaymentAmountInfo memory singleAmounts, PaymentAmountInfo memory totalAmounts, , ) = calculatePaymentInfo(
plan
);
uint8 paidCountWithoutDownPayment = plan.counterPaidPayments - (plan.downPaymentPercent > 0 ? 1 : 0);
if (
(plan.totalNumberOfPayments == 1 && plan.downPaymentPercent == 0) ||
(plan.totalNumberOfPayments == 2 && plan.downPaymentPercent > 0)
) {
// In case of single payment plan,
// (single payment pawn, or downpayment+single payment bnpl)
// User will get discount from interest fee by only paying pro-rated interest fee
uint256 completedPercent = ((block.timestamp - createdDate + 600) / 600) < (plan.term / 600)
? (((block.timestamp - createdDate + 600) / 600) * 100) / (plan.term / 600)
: 100;
singleAmounts.interestAmount = (singleAmounts.interestAmount * completedPercent) / 100;
} else if (isEarlyPayment || (plan.totalNumberOfPayments - plan.counterPaidPayments) == 1) {
// In case of early repayment,
// User will get discount from interest fee by only paying single interest fee
singleAmounts.loanAmount = totalAmounts.loanAmount - singleAmounts.loanAmount * paidCountWithoutDownPayment;
singleAmounts.serviceAmount =
totalAmounts.serviceAmount -
singleAmounts.serviceAmount *
plan.counterPaidPayments;
}
return (
singleAmounts.loanAmount,
singleAmounts.interestAmount,
singleAmounts.serviceAmount,
singleAmounts.loanAmount + singleAmounts.interestAmount + singleAmounts.serviceAmount,
createdDate + plan.term * (paidCountWithoutDownPayment + 1)
);
}
function requireCorrectPlanParams(
bool isBNPL,
Item calldata item,
Plan calldata plan,
uint256 signatureExpiryDate
) public view {
if (item.contractAddress == address(0)) revert InvalidAddress();
if (item.cyanVaultAddress == address(0)) revert InvalidAddress();
if (item.itemType < 1 || item.itemType > 3) revert InvalidItem();
if (item.itemType == 1 && item.amount != 0) revert InvalidItem();
if (item.itemType == 2 && item.amount == 0) revert InvalidItem();
if (item.itemType == 3 && item.amount != 0) revert InvalidItem();
if (signatureExpiryDate < block.timestamp) revert InvalidSignature();
if (plan.serviceFeeRate > 400) revert InvalidServiceFeeRate();
if (plan.amount == 0) revert InvalidTokenPrice();
if (plan.interestRate == 0) revert InvalidInterestRate();
if (plan.term == 0) revert InvalidTerm();
if (isBNPL) {
if (plan.downPaymentPercent == 0 || plan.downPaymentPercent >= 10000) revert InvalidDownPaymentPercent();
if (plan.totalNumberOfPayments <= 1) revert InvalidTotalNumberOfPayments();
if (plan.counterPaidPayments != 1) revert InvalidPaidCount();
} else {
if (plan.downPaymentPercent != 0) revert InvalidDownPaymentPercent();
if (plan.totalNumberOfPayments == 0) revert InvalidTotalNumberOfPayments();
if (plan.counterPaidPayments != 0) revert InvalidPaidCount();
}
}
function verifySignature(
Item calldata item,
Plan calldata plan,
uint256 planId,
uint256 signatureExpiryDate,
uint256 chainid,
address signer,
bytes memory signature
) public pure {
bytes32 itemHash = keccak256(
abi.encodePacked(item.cyanVaultAddress, item.contractAddress, item.tokenId, item.amount, item.itemType)
);
bytes32 planHash = keccak256(
abi.encodePacked(
plan.amount,
plan.downPaymentPercent,
plan.interestRate,
plan.serviceFeeRate,
plan.term,
plan.totalNumberOfPayments,
plan.counterPaidPayments,
plan.autoRepayStatus
)
);
bytes32 msgHash = keccak256(abi.encodePacked(itemHash, planHash, planId, signatureExpiryDate, chainid));
bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
if (signedHash.recover(signature) != signer) revert InvalidSignature();
}
function verifyRevivalSignature(
uint256 planId,
uint256 penaltyAmount,
uint256 signatureExpiryDate,
uint256 chainid,
uint8 counterPaidPayments,
address signer,
bytes memory signature
) external pure {
bytes32 msgHash = keccak256(
abi.encodePacked(planId, penaltyAmount, signatureExpiryDate, chainid, counterPaidPayments)
);
bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
if (signedHash.recover(signature) != signer) revert InvalidSignature();
}
function verifyEarlyUnwindByOpeanseaSignature(
uint256 planId,
uint256 sellPrice,
bytes memory offer,
uint256 signatureExpiryDate,
uint256 chainid,
address signer,
bytes memory signature
) external pure {
bytes32 offerHash = keccak256(abi.encodePacked(offer));
bytes32 msgHash = keccak256(abi.encodePacked(planId, sellPrice, offerHash, signatureExpiryDate, chainid));
bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
if (signedHash.recover(signature) != signer) revert InvalidSignature();
}
function verifyEarlyUnwindByCyanSignature(
uint256 planId,
uint256 sellPrice,
uint256 signatureExpiryDate,
uint256 chainid,
address cyanBuyerAddress,
bytes memory signature
) external pure {
bytes32 msgHash = keccak256(abi.encodePacked(planId, sellPrice, signatureExpiryDate, chainid));
bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
if (signedHash.recover(signature) != cyanBuyerAddress) revert InvalidSignature();
}
function receiveCurrencyFromCyanWallet(
address currencyAddress,
address from,
uint256 amount
) external {
if (currencyAddress == address(0)) {
IWETH weth = IWETH(addressProvider.addresses("WETH"));
weth.transferFrom(from, address(this), amount);
weth.withdraw(amount);
} else {
IERC20Upgradeable(currencyAddress).safeTransferFrom(from, address(this), amount);
}
}
/**
* @notice Getting currency address by vault address
* @param vaultAddress Cyan Vault address
*/
function getCurrencyAddressByVaultAddress(address vaultAddress) internal view returns (address) {
return ICyanVaultV2(payable(vaultAddress)).getCurrencyAddress();
}
function createPawn(
Item calldata item,
Plan calldata plan,
uint256 planId,
PawnCreateType createType,
uint256 signatureExpiryDate,
address mainWalletAddress,
address cyanWalletAddress,
address cyanSigner,
bytes memory signature
) external returns (bool) {
requireCorrectPlanParams(false, item, plan, signatureExpiryDate);
verifySignature(item, plan, planId, signatureExpiryDate, block.chainid, cyanSigner, signature);
if (createType == PawnCreateType.BEND_DAO) {
ICyanVaultV2(payable(item.cyanVaultAddress)).lend(cyanWalletAddress, plan.amount);
address currencyAddress = getCurrencyAddressByVaultAddress(item.cyanVaultAddress);
migrateBendDaoPlan(item, plan, cyanWalletAddress, currencyAddress);
if (IERC721Upgradeable(item.contractAddress).ownerOf(item.tokenId) != cyanWalletAddress) {
revert InvalidBendDaoPlan();
}
} else if (createType == PawnCreateType.REFINANCE) {
ICyanVaultV2(payable(item.cyanVaultAddress)).lend(address(this), plan.amount);
} else {
bool isTransferRequired = false;
if (item.itemType == 1) {
// ERC721, check if item is already in Cyan wallet
if (IERC721Upgradeable(item.contractAddress).ownerOf(item.tokenId) != cyanWalletAddress) {
isTransferRequired = true;
}
} else if (item.itemType == 2) {
// ERC1155, check if message sender is Cyan wallet
if (msg.sender != cyanWalletAddress) {
isTransferRequired = true;
}
} else if (item.itemType == 3) {
// CryptoPunk, check if item is already in Cyan wallet
if (ICryptoPunk(item.contractAddress).punkIndexToAddress(item.tokenId) != cyanWalletAddress) {
isTransferRequired = true;
}
}
ICyanVaultV2(payable(item.cyanVaultAddress)).lend(mainWalletAddress, plan.amount);
return isTransferRequired;
}
return false;
}
function migrateBendDaoPlan(
Item calldata item,
Plan calldata plan,
address cyanWallet,
address currency
) private {
IBDaoLendPoolLoan bendDaoLendPoolLoan = IBDaoLendPoolLoan(addressProvider.addresses("BENDDAO_LEND_POOL_LOAN"));
uint256 loanId = bendDaoLendPoolLoan.getCollateralLoanId(item.contractAddress, item.tokenId);
(, uint256 loanAmount) = bendDaoLendPoolLoan.getLoanReserveBorrowAmount(loanId);
BDaoDataTypes.LoanData memory loanData = bendDaoLendPoolLoan.getLoan(loanId);
if (loanData.state != BDaoDataTypes.LoanState.Active) revert InvalidBendDaoPlan();
if (loanData.borrower != msg.sender) revert InvalidSender();
if (plan.amount < loanAmount) revert InvalidAmount();
if (loanData.reserveAsset != (currency == address(0) ? addressProvider.addresses("WETH") : currency))
revert InvalidCurrency();
IWallet(cyanWallet).executeModule(
abi.encodeWithSelector(
IWallet.repayBendDaoLoan.selector,
item.contractAddress,
item.tokenId,
loanAmount,
currency
)
);
ICyanConduit(addressProvider.addresses("CYAN_CONDUIT")).transferERC721(
loanData.borrower,
cyanWallet,
item.contractAddress,
item.tokenId
);
}
function activate(PaymentPlan storage _paymentPlan, Item calldata item) external returns (uint256) {
if (_paymentPlan.plan.counterPaidPayments != 1) revert InvalidPaidCount();
if (
_paymentPlan.status != PaymentPlanStatus.BNPL_CREATED &&
_paymentPlan.status != PaymentPlanStatus.BNPL_FUNDED
) revert InvalidStage();
(PaymentAmountInfo memory singleAmounts, , uint256 downPaymentAmount, ) = PaymentPlanV2Logic
.calculatePaymentInfo(_paymentPlan.plan);
address cyanVaultAddress = item.cyanVaultAddress;
if (_paymentPlan.status == PaymentPlanStatus.BNPL_CREATED) {
// Admin already funded the plan, so Vault is transfering equal amount of currency back to admin.
ICyanVaultV2(payable(cyanVaultAddress)).lend(msg.sender, _paymentPlan.plan.amount);
}
transferEarnedAmountToCyanVault(cyanVaultAddress, downPaymentAmount, 0);
_paymentPlan.status = PaymentPlanStatus.BNPL_ACTIVE;
return singleAmounts.serviceAmount;
}
/**
* @notice Transfer earned amount to Cyan Vault
* @param cyanVaultAddress Original price of the token
* @param paidTokenPayment Paid token payment
* @param paidInterestFee Paid interest fee
*/
function transferEarnedAmountToCyanVault(
address cyanVaultAddress,
uint256 paidTokenPayment,
uint256 paidInterestFee
) internal {
ICyanVaultV2 cyanVault = ICyanVaultV2(payable(cyanVaultAddress));
address currencyAddress = cyanVault.getCurrencyAddress();
if (currencyAddress == address(0)) {
cyanVault.earn{ value: paidTokenPayment + paidInterestFee }(paidTokenPayment, paidInterestFee);
} else {
IERC20Upgradeable erc20Contract = IERC20Upgradeable(currencyAddress);
erc20Contract.approve(cyanVaultAddress, paidTokenPayment + paidInterestFee);
cyanVault.earn(paidTokenPayment, paidInterestFee);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
library DataTypes {
struct ReserveData {
//stores the reserve configuration
ReserveConfigurationMap configuration;
//the liquidity index. Expressed in ray
uint128 liquidityIndex;
//variable borrow index. Expressed in ray
uint128 variableBorrowIndex;
//the current supply rate. Expressed in ray
uint128 currentLiquidityRate;
//the current variable borrow rate. Expressed in ray
uint128 currentVariableBorrowRate;
uint40 lastUpdateTimestamp;
//tokens addresses
address bTokenAddress;
address debtTokenAddress;
//address of the interest rate strategy
address interestRateAddress;
//the id of the reserve. Represents the position in the list of the active reserves
uint8 id;
}
struct NftData {
//stores the nft configuration
NftConfigurationMap configuration;
//address of the bNFT contract
address bNftAddress;
//the id of the nft. Represents the position in the list of the active nfts
uint8 id;
uint256 maxSupply;
uint256 maxTokenId;
}
struct ReserveConfigurationMap {
//bit 0-15: LTV
//bit 16-31: Liq. threshold
//bit 32-47: Liq. bonus
//bit 48-55: Decimals
//bit 56: Reserve is active
//bit 57: reserve is frozen
//bit 58: borrowing is enabled
//bit 59: stable rate borrowing enabled
//bit 60-63: reserved
//bit 64-79: reserve factor
uint256 data;
}
struct NftConfigurationMap {
//bit 0-15: LTV
//bit 16-31: Liq. threshold
//bit 32-47: Liq. bonus
//bit 56: NFT is active
//bit 57: NFT is frozen
uint256 data;
}
/**
* @dev Enum describing the current state of a loan
* State change flow:
* Created -> Active -> Repaid
* -> Auction -> Defaulted
*/
enum LoanState {
// We need a default that is not 'Created' - this is the zero value
None,
// The loan data is stored, but not initiated yet.
Created,
// The loan has been initialized, funds have been delivered to the borrower and the collateral is held.
Active,
// The loan is in auction, higest price liquidator will got chance to claim it.
Auction,
// The loan has been repaid, and the collateral has been returned to the borrower. This is a terminal state.
Repaid,
// The loan was delinquent and collateral claimed by the liquidator. This is a terminal state.
Defaulted
}
struct LoanData {
//the id of the nft loan
uint256 loanId;
//the current state of the loan
LoanState state;
//address of borrower
address borrower;
//address of nft asset token
address nftAsset;
//the id of nft token
uint256 nftTokenId;
//address of reserve asset token
address reserveAsset;
//scaled borrow amount. Expressed in ray
uint256 scaledAmount;
//start time of first bid time
uint256 bidStartTimestamp;
//bidder address of higest bid
address bidderAddress;
//price of higest bid
uint256 bidPrice;
//borrow amount of loan
uint256 bidBorrowAmount;
//bidder address of first bid
address firstBidderAddress;
}
struct ExecuteDepositParams {
address initiator;
address asset;
uint256 amount;
address onBehalfOf;
uint16 referralCode;
}
struct ExecuteWithdrawParams {
address initiator;
address asset;
uint256 amount;
address to;
}
struct ExecuteBorrowParams {
address initiator;
address asset;
uint256 amount;
address nftAsset;
uint256 nftTokenId;
address onBehalfOf;
uint16 referralCode;
}
struct ExecuteBatchBorrowParams {
address initiator;
address[] assets;
uint256[] amounts;
address[] nftAssets;
uint256[] nftTokenIds;
address onBehalfOf;
uint16 referralCode;
}
struct ExecuteRepayParams {
address initiator;
address nftAsset;
uint256 nftTokenId;
uint256 amount;
}
struct ExecuteBatchRepayParams {
address initiator;
address[] nftAssets;
uint256[] nftTokenIds;
uint256[] amounts;
}
struct ExecuteAuctionParams {
address initiator;
address nftAsset;
uint256 nftTokenId;
uint256 bidPrice;
address onBehalfOf;
}
struct ExecuteRedeemParams {
address initiator;
address nftAsset;
uint256 nftTokenId;
uint256 amount;
uint256 bidFine;
}
struct ExecuteLiquidateParams {
address initiator;
address nftAsset;
uint256 nftTokenId;
uint256 amount;
}
struct ExecuteLendPoolStates {
uint256 pauseStartTime;
uint256 pauseDurationTime;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import "./DataTypes.sol";
interface ILendPoolLoan {
function getCollateralLoanId(address nftAsset, uint256 nftTokenId) external view returns (uint256);
function getLoan(uint256 loanId) external view returns (DataTypes.LoanData memory loanData);
function getLoanReserveBorrowAmount(uint256 loanId) external view returns (address, uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface ICryptoPunk {
function punkIndexToAddress(uint256) external view returns (address);
function buyPunk(uint256) external payable;
function transferPunk(address, uint256) external;
function offerPunkForSale(uint256, uint256) external;
function offerPunkForSaleToAddress(
uint256,
uint256,
address
) external;
function acceptBidForPunk(uint256, uint256) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
/// @title Wrapped Etheruem Contract interface
interface IWETH is IERC20 {
function withdraw(uint256 wad) external;
function deposit() external payable;
}