APE Price: $1.24 (+5.45%)

Contract Diff Checker

Contract Name:
PaymentPlanV2Logic

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20PermitUpgradeable {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";
import "../extensions/draft-IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20Upgradeable {
    using AddressUpgradeable for address;

    function safeTransfer(
        IERC20Upgradeable token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20Upgradeable token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20Upgradeable token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20Upgradeable token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20Upgradeable token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20PermitUpgradeable token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165Upgradeable.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721Upgradeable is IERC165Upgradeable {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../StringsUpgradeable.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSAUpgradeable {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", StringsUpgradeable.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165Upgradeable {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library MathUpgradeable {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/MathUpgradeable.sol";

/**
 * @dev String operations.
 */
library StringsUpgradeable {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = MathUpgradeable.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, MathUpgradeable.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
        }
        _balances[to] += amount;

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

enum ConduitItemType {
    NATIVE, // unused
    ERC20,
    ERC721,
    ERC1155
}

struct ConduitTransfer {
    ConduitItemType itemType;
    address collection;
    address from;
    address to;
    uint256 identifier;
    uint256 amount;
}

struct ConduitBatch1155Transfer {
    address collection;
    address from;
    address to;
    uint256[] ids;
    uint256[] amounts;
}

interface ICyanConduit {
    error ChannelClosed(address channel);
    error ChannelStatusAlreadySet(address channel, bool isOpen);
    error InvalidItemType();
    error InvalidAdmin();

    event ChannelUpdated(address indexed channel, bool open);

    function execute(ConduitTransfer[] calldata transfers) external returns (bytes4 magicValue);

    function executeBatch1155(ConduitBatch1155Transfer[] calldata batch1155Transfers)
        external
        returns (bytes4 magicValue);

    function executeWithBatch1155(
        ConduitTransfer[] calldata standardTransfers,
        ConduitBatch1155Transfer[] calldata batch1155Transfers
    ) external returns (bytes4 magicValue);

    function transferERC20(
        address from,
        address to,
        address token,
        uint256 amount
    ) external;

    function transferERC721(
        address from,
        address to,
        address collection,
        uint256 tokenId
    ) external;

    function transferERC1155(
        address from,
        address to,
        address collection,
        uint256 tokenId,
        uint256 amount
    ) external;

    function updateChannel(address channel, bool isOpen) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

interface IFactory {
    function getOrDeployWallet(address) external returns (address);

    function getWalletOwner(address) external view returns (address);

    function getOwnerWallet(address) external view returns (address);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import { Item } from "../../main/payment-plan/PaymentPlanTypes.sol";

interface IWallet {
    function executeModule(bytes memory) external returns (bytes memory);

    function transferNonLockedERC721(
        address,
        uint256,
        address
    ) external;

    function transferNonLockedERC1155(
        address,
        uint256,
        uint256,
        address
    ) external;

    function transferNonLockedCryptoPunk(uint256, address) external;

    function setLockedERC721Token(
        address,
        uint256,
        bool
    ) external;

    function increaseLockedERC1155Token(
        address,
        uint256,
        uint256
    ) external;

    function decreaseLockedERC1155Token(
        address,
        uint256,
        uint256
    ) external;

    function setLockedCryptoPunk(uint256, bool) external;

    function autoPay(
        uint256,
        uint256,
        uint8
    ) external;

    function earlyUnwindOpensea(
        uint256,
        uint256,
        Item memory,
        bytes memory
    ) external;

    function earlyUnwindCyan(uint256, address) external;

    function isLockedNFT(address, uint256) external view returns (bool);

    function repayBendDaoLoan(
        address collection,
        uint256 tokenId,
        uint256 amount,
        address currency
    ) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "./IWallet.sol";

interface IWalletApeCoin is IWallet {
    function depositBAYCAndLock(uint32 tokenId, uint224 amount) external;

    function depositMAYCAndLock(uint32 tokenId, uint224 amount) external;

    function depositBAKCAndLock(
        address mainCollection,
        uint32 mainTokenId,
        uint32 bakcTokenId,
        uint224 amount
    ) external;

    function withdrawBAYCAndUnlock(uint32 tokenId) external;

    function withdrawMAYCAndUnlock(uint32 tokenId) external;

    function withdrawBAKCAndUnlock(uint32 tokenId) external;

    function autoCompound(uint256 poolId, uint32 tokenId) external;

    function getApeLockState(address collection, uint256 tokenId) external view returns (uint8);

    function completeApeCoinPlan(uint256 planId) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

interface ICyanVaultV2 {
    function getCurrencyAddress() external view returns (address);

    function lend(address to, uint256 amount) external;

    function earn(uint256 amount, uint256 profit) external payable;

    function nftDefaulted(uint256 unpaidAmount, uint256 estimatedPriceOfNFT) external;

    function withdrawLocked(address cyanWalletAddress) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";

/// @title Cyan AddressProvider contract
/// @author Bulgantamir Gankhuyag - <[email protected]>
/// @author Naranbayar Uuganbayar - <[email protected]>
contract AddressProvider is Ownable {
    error AddressNotFound(bytes32 id);

    event AddressSet(bytes32 id, address newAddress);

    mapping(bytes32 => address) public addresses;

    constructor(address owner) {
        transferOwnership(owner);
    }

    // @dev Sets an address for an id replacing the address saved in the addresses map
    // @param id The id
    // @param newAddress The address to set
    function setAddress(bytes32 id, address newAddress) external onlyOwner {
        addresses[id] = newAddress;
        emit AddressSet(id, newAddress);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

// DataTypes
enum PawnCreateType {
    REGULAR,
    BEND_DAO,
    REFINANCE
}
enum PaymentPlanStatus {
    BNPL_CREATED,
    BNPL_FUNDED,
    BNPL_ACTIVE,
    BNPL_DEFAULTED,
    BNPL_REJECTED,
    BNPL_COMPLETED,
    BNPL_LIQUIDATED,
    PAWN_ACTIVE,
    PAWN_DEFAULTED,
    PAWN_COMPLETED,
    PAWN_LIQUIDATED
}
struct Plan {
    uint256 amount;
    uint32 downPaymentPercent;
    uint32 interestRate;
    uint32 serviceFeeRate;
    uint32 term;
    uint8 totalNumberOfPayments;
    uint8 counterPaidPayments;
    uint8 autoRepayStatus;
}
struct PaymentPlan {
    Plan plan;
    uint256 createdDate;
    address cyanWalletAddress;
    PaymentPlanStatus status;
}

struct Item {
    uint256 amount;
    uint256 tokenId;
    address contractAddress;
    address cyanVaultAddress;
    // 1 -> ERC721
    // 2 -> ERC1155
    // 3 -> CryptoPunks
    uint8 itemType;
}

struct PaymentAmountInfo {
    uint256 loanAmount;
    uint256 interestAmount;
    uint256 serviceAmount;
}

// Errors
error InvalidSender();
error InvalidBlockNumber();
error InvalidSignature();
error InvalidServiceFeeRate();
error InvalidTokenPrice();
error InvalidInterestRate();
error InvalidDownPaymentPercent();
error InvalidDownPayment();
error InvalidAmount();
error InvalidTerm();
error InvalidPaidCount();
error InvalidStage();
error InvalidAddress();
error InvalidAutoRepaymentDate();
error InvalidAutoRepaymentStatus();
error InvalidTotalNumberOfPayments();
error InvalidReviveDate();
error InvalidItem();
error InvalidBaseDiscountRate();
error InvalidApeCoinPlan();
error InvalidBendDaoPlan();
error InvalidCurrency();
error InvalidCyanBuyer();
error InvalidSelector();

error EthTransferFailed();

error PaymentPlanAlreadyExists();
error PaymentPlanNotFound();

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "@openzeppelin/contracts-upgradeable/utils/cryptography/ECDSAUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC721/IERC721Upgradeable.sol";

import "./PaymentPlanTypes.sol";
import "../../thirdparty/ICryptoPunk.sol";
import "../../thirdparty/IWETH.sol";
import "../../interfaces/core/IWalletApeCoin.sol";
import "../../interfaces/main/ICyanVaultV2.sol";
import "../../interfaces/core/IFactory.sol";
import { ICyanConduit } from "../../interfaces/conduit/ICyanConduit.sol";
import { ILendPoolLoan as IBDaoLendPoolLoan } from "../../thirdparty/benddao/ILendPoolLoan.sol";
import { DataTypes as BDaoDataTypes } from "../../thirdparty/benddao/DataTypes.sol";
import { AddressProvider } from "../../main/AddressProvider.sol";

/// @title Cyan Core Payment Plan V2 Logic
/// @author Bulgantamir Gankhuyag - <[email protected]>
/// @author Naranbayar Uuganbayar - <[email protected]>
library PaymentPlanV2Logic {
    AddressProvider private constant addressProvider = AddressProvider(0xCF9A19D879769aDaE5e4f31503AAECDa82568E55);

    using ECDSAUpgradeable for bytes32;
    using SafeERC20Upgradeable for IERC20Upgradeable;

    function checkAndCompleteApePlans(
        address cyanWalletAddress,
        address collection,
        uint256 tokenId,
        uint256[2] calldata apePlanIds
    ) external {
        IWalletApeCoin cyanWallet = IWalletApeCoin(cyanWalletAddress);

        _checkAndCompleteApePlan(cyanWallet, apePlanIds[0], collection, tokenId);
        _checkAndCompleteApePlan(cyanWallet, apePlanIds[1], collection, tokenId);
    }

    function _checkAndCompleteApePlan(
        IWalletApeCoin cyanWallet,
        uint256 apePlanId,
        address collection,
        uint256 tokenId
    ) private {
        if (apePlanId == 0) return;

        uint8 apeLockStateBefore = cyanWallet.getApeLockState(collection, tokenId);
        cyanWallet.executeModule(abi.encodeWithSelector(IWalletApeCoin.completeApeCoinPlan.selector, apePlanId));
        uint8 apeLockStateAfter = cyanWallet.getApeLockState(collection, tokenId);

        if (apeLockStateAfter >= apeLockStateBefore) revert InvalidApeCoinPlan();
    }

    /**
     * @notice Return expected payment plan for given price and interest rate
     * @param plan Plan details
     * @return Expected down payment amount
     * @return Expected total interest fee
     * @return Expected total service fee
     * @return Estimated subsequent payments after down payment
     * @return Expected total financing amount
     */
    function getExpectedPlan(Plan calldata plan)
        external
        pure
        returns (
            uint256,
            uint256,
            uint256,
            uint256,
            uint256
        )
    {
        if (plan.totalNumberOfPayments == 0) revert InvalidTotalNumberOfPayments();
        (
            PaymentAmountInfo memory singleAmounts,
            PaymentAmountInfo memory totalAmounts,
            uint256 downPaymentAmount,

        ) = calculatePaymentInfo(plan);
        uint256 totalFinancingAmount = plan.amount + totalAmounts.interestAmount + totalAmounts.serviceAmount;

        return (
            plan.downPaymentPercent > 0 ? downPaymentAmount + singleAmounts.serviceAmount : 0,
            totalAmounts.interestAmount,
            totalAmounts.serviceAmount,
            singleAmounts.loanAmount + singleAmounts.interestAmount + singleAmounts.serviceAmount,
            totalFinancingAmount
        );
    }

    function calculatePaymentInfo(Plan memory plan)
        internal
        pure
        returns (
            PaymentAmountInfo memory singleAmounts,
            PaymentAmountInfo memory totalAmounts,
            uint256 downPaymentAmount,
            uint8 payCountWithoutDownPayment
        )
    {
        payCountWithoutDownPayment = plan.totalNumberOfPayments - (plan.downPaymentPercent > 0 ? 1 : 0);
        downPaymentAmount = (plan.amount * plan.downPaymentPercent) / 10000;

        totalAmounts.loanAmount = plan.amount - downPaymentAmount;
        totalAmounts.interestAmount = (totalAmounts.loanAmount * plan.interestRate) / 10000;
        totalAmounts.serviceAmount = (plan.amount * plan.serviceFeeRate) / 10000;

        singleAmounts.loanAmount = totalAmounts.loanAmount / payCountWithoutDownPayment;
        singleAmounts.interestAmount = totalAmounts.interestAmount / payCountWithoutDownPayment;
        singleAmounts.serviceAmount = totalAmounts.serviceAmount / plan.totalNumberOfPayments;
    }

    /**
     * @notice Return payment info
     * @param plan Plan details
     * @param isEarlyPayment Is paying early
     * @return Remaining payment amount for collateral
     * @return Remaining payment amount for interest fee
     * @return Remaining payment amount for service fee
     * @return Remaining total payment amount
     */
    function getPaymentInfo(
        Plan memory plan,
        bool isEarlyPayment,
        uint256 createdDate
    )
        external
        view
        returns (
            uint256,
            uint256,
            uint256,
            uint256,
            uint256
        )
    {
        (PaymentAmountInfo memory singleAmounts, PaymentAmountInfo memory totalAmounts, , ) = calculatePaymentInfo(
            plan
        );

        uint8 paidCountWithoutDownPayment = plan.counterPaidPayments - (plan.downPaymentPercent > 0 ? 1 : 0);
        if (
            (plan.totalNumberOfPayments == 1 && plan.downPaymentPercent == 0) ||
            (plan.totalNumberOfPayments == 2 && plan.downPaymentPercent > 0)
        ) {
            // In case of single payment plan,
            // (single payment pawn, or downpayment+single payment bnpl)
            //  User will get discount from interest fee by only paying pro-rated interest fee
            uint256 completedPercent = ((block.timestamp - createdDate + 600) / 600) < (plan.term / 600)
                ? (((block.timestamp - createdDate + 600) / 600) * 100) / (plan.term / 600)
                : 100;
            singleAmounts.interestAmount = (singleAmounts.interestAmount * completedPercent) / 100;
        } else if (isEarlyPayment || (plan.totalNumberOfPayments - plan.counterPaidPayments) == 1) {
            // In case of early repayment,
            //  User will get discount from interest fee by only paying single interest fee
            singleAmounts.loanAmount = totalAmounts.loanAmount - singleAmounts.loanAmount * paidCountWithoutDownPayment;
            singleAmounts.serviceAmount =
                totalAmounts.serviceAmount -
                singleAmounts.serviceAmount *
                plan.counterPaidPayments;
        }

        return (
            singleAmounts.loanAmount,
            singleAmounts.interestAmount,
            singleAmounts.serviceAmount,
            singleAmounts.loanAmount + singleAmounts.interestAmount + singleAmounts.serviceAmount,
            createdDate + plan.term * (paidCountWithoutDownPayment + 1)
        );
    }

    function requireCorrectPlanParams(
        bool isBNPL,
        Item calldata item,
        Plan calldata plan,
        uint256 signedBlockNum
    ) public view {
        if (item.contractAddress == address(0)) revert InvalidAddress();
        if (item.cyanVaultAddress == address(0)) revert InvalidAddress();
        if (item.itemType < 1 || item.itemType > 3) revert InvalidItem();
        if (item.itemType == 1 && item.amount != 0) revert InvalidItem();
        if (item.itemType == 2 && item.amount == 0) revert InvalidItem();
        if (item.itemType == 3 && item.amount != 0) revert InvalidItem();

        if (signedBlockNum + 50 < block.number) revert InvalidSignature();
        if (plan.serviceFeeRate > 400) revert InvalidServiceFeeRate();
        if (plan.amount == 0) revert InvalidTokenPrice();
        if (plan.interestRate == 0) revert InvalidInterestRate();
        if (plan.term == 0) revert InvalidTerm();

        if (isBNPL) {
            if (plan.downPaymentPercent == 0 || plan.downPaymentPercent >= 10000) revert InvalidDownPaymentPercent();
            if (plan.totalNumberOfPayments <= 1) revert InvalidTotalNumberOfPayments();
            if (plan.counterPaidPayments != 1) revert InvalidPaidCount();
        } else {
            if (plan.downPaymentPercent != 0) revert InvalidDownPaymentPercent();
            if (plan.totalNumberOfPayments == 0) revert InvalidTotalNumberOfPayments();
            if (plan.counterPaidPayments != 0) revert InvalidPaidCount();
        }
    }

    function verifySignature(
        Item calldata item,
        Plan calldata plan,
        uint256 planId,
        uint256 signedBlockNum,
        uint256 chainid,
        address signer,
        bytes memory signature
    ) public pure {
        bytes32 itemHash = keccak256(
            abi.encodePacked(item.cyanVaultAddress, item.contractAddress, item.tokenId, item.amount, item.itemType)
        );
        bytes32 planHash = keccak256(
            abi.encodePacked(
                plan.amount,
                plan.downPaymentPercent,
                plan.interestRate,
                plan.serviceFeeRate,
                plan.term,
                plan.totalNumberOfPayments,
                plan.counterPaidPayments,
                plan.autoRepayStatus
            )
        );
        bytes32 msgHash = keccak256(abi.encodePacked(itemHash, planHash, planId, signedBlockNum, chainid));
        bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
        if (signedHash.recover(signature) != signer) revert InvalidSignature();
    }

    function verifyRevivalSignature(
        uint256 planId,
        uint256 penaltyAmount,
        uint256 signatureExpiryDate,
        uint256 chainid,
        uint8 counterPaidPayments,
        address signer,
        bytes memory signature
    ) external pure {
        bytes32 msgHash = keccak256(
            abi.encodePacked(planId, penaltyAmount, signatureExpiryDate, chainid, counterPaidPayments)
        );
        bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
        if (signedHash.recover(signature) != signer) revert InvalidSignature();
    }

    function verifyEarlyUnwindByOpeanseaSignature(
        uint256 planId,
        uint256 sellPrice,
        bytes memory offer,
        uint256 signatureExpiryDate,
        uint256 chainid,
        address signer,
        bytes memory signature
    ) external pure {
        bytes32 offerHash = keccak256(abi.encodePacked(offer));
        bytes32 msgHash = keccak256(abi.encodePacked(planId, sellPrice, offerHash, signatureExpiryDate, chainid));
        bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
        if (signedHash.recover(signature) != signer) revert InvalidSignature();
    }

    function verifyEarlyUnwindByCyanSignature(
        uint256 planId,
        uint256 sellPrice,
        uint256 signatureExpiryDate,
        uint256 chainid,
        address cyanBuyerAddress,
        bytes memory signature
    ) external pure {
        bytes32 msgHash = keccak256(abi.encodePacked(planId, sellPrice, signatureExpiryDate, chainid));
        bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
        if (signedHash.recover(signature) != cyanBuyerAddress) revert InvalidSignature();
    }

    function receiveCurrencyFromCyanWallet(
        address currencyAddress,
        address from,
        uint256 amount
    ) external {
        if (currencyAddress == address(0)) {
            IWETH weth = IWETH(addressProvider.addresses("WETH"));
            weth.transferFrom(from, address(this), amount);
            weth.withdraw(amount);
        } else {
            IERC20Upgradeable(currencyAddress).safeTransferFrom(from, address(this), amount);
        }
    }

    /**
     * @notice Getting currency address by vault address
     * @param vaultAddress Cyan Vault address
     */
    function getCurrencyAddressByVaultAddress(address vaultAddress) internal view returns (address) {
        return ICyanVaultV2(payable(vaultAddress)).getCurrencyAddress();
    }

    function createPawn(
        Item calldata item,
        Plan calldata plan,
        uint256 planId,
        PawnCreateType createType,
        uint256 signedBlockNum,
        address mainWalletAddress,
        address cyanWalletAddress,
        address cyanSigner,
        bytes memory signature
    ) external returns (bool) {
        requireCorrectPlanParams(false, item, plan, signedBlockNum);
        verifySignature(item, plan, planId, signedBlockNum, block.chainid, cyanSigner, signature);

        if (createType == PawnCreateType.BEND_DAO) {
            ICyanVaultV2(payable(item.cyanVaultAddress)).lend(cyanWalletAddress, plan.amount);

            address currencyAddress = getCurrencyAddressByVaultAddress(item.cyanVaultAddress);
            migrateBendDaoPlan(item, plan, cyanWalletAddress, currencyAddress);

            if (IERC721Upgradeable(item.contractAddress).ownerOf(item.tokenId) != cyanWalletAddress) {
                revert InvalidBendDaoPlan();
            }
        } else if (createType == PawnCreateType.REFINANCE) {
            ICyanVaultV2(payable(item.cyanVaultAddress)).lend(address(this), plan.amount);
        } else {
            bool isTransferRequired = false;
            if (item.itemType == 1) {
                // ERC721, check if item is already in Cyan wallet
                if (IERC721Upgradeable(item.contractAddress).ownerOf(item.tokenId) != cyanWalletAddress) {
                    isTransferRequired = true;
                }
            } else if (item.itemType == 2) {
                // ERC1155, check if message sender is Cyan wallet
                if (msg.sender != cyanWalletAddress) {
                    isTransferRequired = true;
                }
            } else if (item.itemType == 3) {
                // CryptoPunk, check if item is already in Cyan wallet
                if (ICryptoPunk(item.contractAddress).punkIndexToAddress(item.tokenId) != cyanWalletAddress) {
                    isTransferRequired = true;
                }
            }
            ICyanVaultV2(payable(item.cyanVaultAddress)).lend(mainWalletAddress, plan.amount);
            return isTransferRequired;
        }
        return false;
    }

    function migrateBendDaoPlan(
        Item calldata item,
        Plan calldata plan,
        address cyanWallet,
        address currency
    ) private {
        IBDaoLendPoolLoan bendDaoLendPoolLoan = IBDaoLendPoolLoan(addressProvider.addresses("BENDDAO_LEND_POOL_LOAN"));
        uint256 loanId = bendDaoLendPoolLoan.getCollateralLoanId(item.contractAddress, item.tokenId);
        (, uint256 loanAmount) = bendDaoLendPoolLoan.getLoanReserveBorrowAmount(loanId);

        BDaoDataTypes.LoanData memory loanData = bendDaoLendPoolLoan.getLoan(loanId);
        if (loanData.state != BDaoDataTypes.LoanState.Active) revert InvalidBendDaoPlan();
        if (loanData.borrower != msg.sender) revert InvalidSender();
        if (plan.amount < loanAmount) revert InvalidAmount();
        if (loanData.reserveAsset != (currency == address(0) ? addressProvider.addresses("WETH") : currency))
            revert InvalidCurrency();

        IWallet(cyanWallet).executeModule(
            abi.encodeWithSelector(
                IWallet.repayBendDaoLoan.selector,
                item.contractAddress,
                item.tokenId,
                loanAmount,
                currency
            )
        );
        ICyanConduit(addressProvider.addresses("CYAN_CONDUIT")).transferERC721(
            loanData.borrower,
            cyanWallet,
            item.contractAddress,
            item.tokenId
        );
    }

    function activate(PaymentPlan storage _paymentPlan, Item calldata item) external returns (uint256) {
        if (_paymentPlan.plan.counterPaidPayments != 1) revert InvalidPaidCount();
        if (
            _paymentPlan.status != PaymentPlanStatus.BNPL_CREATED &&
            _paymentPlan.status != PaymentPlanStatus.BNPL_FUNDED
        ) revert InvalidStage();

        (PaymentAmountInfo memory singleAmounts, , uint256 downPaymentAmount, ) = PaymentPlanV2Logic
            .calculatePaymentInfo(_paymentPlan.plan);

        address cyanVaultAddress = item.cyanVaultAddress;

        if (_paymentPlan.status == PaymentPlanStatus.BNPL_CREATED) {
            // Admin already funded the plan, so Vault is transfering equal amount of currency back to admin.
            ICyanVaultV2(payable(cyanVaultAddress)).lend(msg.sender, _paymentPlan.plan.amount);
        }
        transferEarnedAmountToCyanVault(cyanVaultAddress, downPaymentAmount, 0);

        _paymentPlan.status = PaymentPlanStatus.BNPL_ACTIVE;
        return singleAmounts.serviceAmount;
    }

    /**
     * @notice Transfer earned amount to Cyan Vault
     * @param cyanVaultAddress Original price of the token
     * @param paidTokenPayment Paid token payment
     * @param paidInterestFee Paid interest fee
     */
    function transferEarnedAmountToCyanVault(
        address cyanVaultAddress,
        uint256 paidTokenPayment,
        uint256 paidInterestFee
    ) internal {
        ICyanVaultV2 cyanVault = ICyanVaultV2(payable(cyanVaultAddress));
        address currencyAddress = cyanVault.getCurrencyAddress();
        if (currencyAddress == address(0)) {
            cyanVault.earn{ value: paidTokenPayment + paidInterestFee }(paidTokenPayment, paidInterestFee);
        } else {
            IERC20Upgradeable erc20Contract = IERC20Upgradeable(currencyAddress);
            erc20Contract.approve(cyanVaultAddress, paidTokenPayment + paidInterestFee);
            cyanVault.earn(paidTokenPayment, paidInterestFee);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

library DataTypes {
    struct ReserveData {
        //stores the reserve configuration
        ReserveConfigurationMap configuration;
        //the liquidity index. Expressed in ray
        uint128 liquidityIndex;
        //variable borrow index. Expressed in ray
        uint128 variableBorrowIndex;
        //the current supply rate. Expressed in ray
        uint128 currentLiquidityRate;
        //the current variable borrow rate. Expressed in ray
        uint128 currentVariableBorrowRate;
        uint40 lastUpdateTimestamp;
        //tokens addresses
        address bTokenAddress;
        address debtTokenAddress;
        //address of the interest rate strategy
        address interestRateAddress;
        //the id of the reserve. Represents the position in the list of the active reserves
        uint8 id;
    }

    struct NftData {
        //stores the nft configuration
        NftConfigurationMap configuration;
        //address of the bNFT contract
        address bNftAddress;
        //the id of the nft. Represents the position in the list of the active nfts
        uint8 id;
        uint256 maxSupply;
        uint256 maxTokenId;
    }

    struct ReserveConfigurationMap {
        //bit 0-15: LTV
        //bit 16-31: Liq. threshold
        //bit 32-47: Liq. bonus
        //bit 48-55: Decimals
        //bit 56: Reserve is active
        //bit 57: reserve is frozen
        //bit 58: borrowing is enabled
        //bit 59: stable rate borrowing enabled
        //bit 60-63: reserved
        //bit 64-79: reserve factor
        uint256 data;
    }

    struct NftConfigurationMap {
        //bit 0-15: LTV
        //bit 16-31: Liq. threshold
        //bit 32-47: Liq. bonus
        //bit 56: NFT is active
        //bit 57: NFT is frozen
        uint256 data;
    }

    /**
     * @dev Enum describing the current state of a loan
     * State change flow:
     *  Created -> Active -> Repaid
     *                    -> Auction -> Defaulted
     */
    enum LoanState {
        // We need a default that is not 'Created' - this is the zero value
        None,
        // The loan data is stored, but not initiated yet.
        Created,
        // The loan has been initialized, funds have been delivered to the borrower and the collateral is held.
        Active,
        // The loan is in auction, higest price liquidator will got chance to claim it.
        Auction,
        // The loan has been repaid, and the collateral has been returned to the borrower. This is a terminal state.
        Repaid,
        // The loan was delinquent and collateral claimed by the liquidator. This is a terminal state.
        Defaulted
    }

    struct LoanData {
        //the id of the nft loan
        uint256 loanId;
        //the current state of the loan
        LoanState state;
        //address of borrower
        address borrower;
        //address of nft asset token
        address nftAsset;
        //the id of nft token
        uint256 nftTokenId;
        //address of reserve asset token
        address reserveAsset;
        //scaled borrow amount. Expressed in ray
        uint256 scaledAmount;
        //start time of first bid time
        uint256 bidStartTimestamp;
        //bidder address of higest bid
        address bidderAddress;
        //price of higest bid
        uint256 bidPrice;
        //borrow amount of loan
        uint256 bidBorrowAmount;
        //bidder address of first bid
        address firstBidderAddress;
    }

    struct ExecuteDepositParams {
        address initiator;
        address asset;
        uint256 amount;
        address onBehalfOf;
        uint16 referralCode;
    }

    struct ExecuteWithdrawParams {
        address initiator;
        address asset;
        uint256 amount;
        address to;
    }

    struct ExecuteBorrowParams {
        address initiator;
        address asset;
        uint256 amount;
        address nftAsset;
        uint256 nftTokenId;
        address onBehalfOf;
        uint16 referralCode;
    }

    struct ExecuteBatchBorrowParams {
        address initiator;
        address[] assets;
        uint256[] amounts;
        address[] nftAssets;
        uint256[] nftTokenIds;
        address onBehalfOf;
        uint16 referralCode;
    }

    struct ExecuteRepayParams {
        address initiator;
        address nftAsset;
        uint256 nftTokenId;
        uint256 amount;
    }

    struct ExecuteBatchRepayParams {
        address initiator;
        address[] nftAssets;
        uint256[] nftTokenIds;
        uint256[] amounts;
    }

    struct ExecuteAuctionParams {
        address initiator;
        address nftAsset;
        uint256 nftTokenId;
        uint256 bidPrice;
        address onBehalfOf;
    }

    struct ExecuteRedeemParams {
        address initiator;
        address nftAsset;
        uint256 nftTokenId;
        uint256 amount;
        uint256 bidFine;
    }

    struct ExecuteLiquidateParams {
        address initiator;
        address nftAsset;
        uint256 nftTokenId;
        uint256 amount;
    }

    struct ExecuteLendPoolStates {
        uint256 pauseStartTime;
        uint256 pauseDurationTime;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "./DataTypes.sol";

interface ILendPoolLoan {
    function getCollateralLoanId(address nftAsset, uint256 nftTokenId) external view returns (uint256);

    function getLoan(uint256 loanId) external view returns (DataTypes.LoanData memory loanData);

    function getLoanReserveBorrowAmount(uint256 loanId) external view returns (address, uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

interface ICryptoPunk {
    function punkIndexToAddress(uint256) external view returns (address);

    function buyPunk(uint256) external payable;

    function transferPunk(address, uint256) external;

    function offerPunkForSale(uint256, uint256) external;

    function offerPunkForSaleToAddress(
        uint256,
        uint256,
        address
    ) external;

    function acceptBidForPunk(uint256, uint256) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

/// @title Wrapped Etheruem Contract interface
interface IWETH is IERC20 {
    function withdraw(uint256 wad) external;

    function deposit() external payable;
}

Contract Name:
PaymentPlanV2Logic

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20PermitUpgradeable {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";
import "../extensions/draft-IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20Upgradeable {
    using AddressUpgradeable for address;

    function safeTransfer(
        IERC20Upgradeable token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20Upgradeable token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20Upgradeable token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20Upgradeable token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20Upgradeable token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20PermitUpgradeable token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165Upgradeable.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721Upgradeable is IERC165Upgradeable {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../StringsUpgradeable.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSAUpgradeable {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", StringsUpgradeable.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165Upgradeable {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library MathUpgradeable {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/MathUpgradeable.sol";

/**
 * @dev String operations.
 */
library StringsUpgradeable {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = MathUpgradeable.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, MathUpgradeable.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
        }
        _balances[to] += amount;

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

enum ConduitItemType {
    NATIVE, // unused
    ERC20,
    ERC721,
    ERC1155
}

struct ConduitTransfer {
    ConduitItemType itemType;
    address collection;
    address from;
    address to;
    uint256 identifier;
    uint256 amount;
}

struct ConduitBatch1155Transfer {
    address collection;
    address from;
    address to;
    uint256[] ids;
    uint256[] amounts;
}

interface ICyanConduit {
    error ChannelClosed(address channel);
    error ChannelStatusAlreadySet(address channel, bool isOpen);
    error InvalidItemType();
    error InvalidAdmin();

    event ChannelUpdated(address indexed channel, bool open);

    function execute(ConduitTransfer[] calldata transfers) external returns (bytes4 magicValue);

    function executeBatch1155(ConduitBatch1155Transfer[] calldata batch1155Transfers)
        external
        returns (bytes4 magicValue);

    function executeWithBatch1155(
        ConduitTransfer[] calldata standardTransfers,
        ConduitBatch1155Transfer[] calldata batch1155Transfers
    ) external returns (bytes4 magicValue);

    function transferERC20(
        address from,
        address to,
        address token,
        uint256 amount
    ) external;

    function transferERC721(
        address from,
        address to,
        address collection,
        uint256 tokenId
    ) external;

    function transferERC1155(
        address from,
        address to,
        address collection,
        uint256 tokenId,
        uint256 amount
    ) external;

    function updateChannel(address channel, bool isOpen) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

interface IFactory {
    function getOrDeployWallet(address) external returns (address);

    function getWalletOwner(address) external view returns (address);

    function getOwnerWallet(address) external view returns (address);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import { Item } from "../../main/payment-plan/PaymentPlanTypes.sol";

interface IWallet {
    function executeModule(bytes memory) external returns (bytes memory);

    function transferNonLockedERC721(
        address,
        uint256,
        address
    ) external;

    function transferNonLockedERC1155(
        address,
        uint256,
        uint256,
        address
    ) external;

    function transferNonLockedCryptoPunk(uint256, address) external;

    function setLockedERC721Token(
        address,
        uint256,
        bool
    ) external;

    function increaseLockedERC1155Token(
        address,
        uint256,
        uint256
    ) external;

    function decreaseLockedERC1155Token(
        address,
        uint256,
        uint256
    ) external;

    function setLockedCryptoPunk(uint256, bool) external;

    function autoPay(
        uint256,
        uint256,
        uint8
    ) external;

    function earlyUnwindOpensea(
        uint256,
        uint256,
        Item memory,
        bytes memory
    ) external;

    function earlyUnwindCyan(uint256, address) external;

    function isLockedNFT(address, uint256) external view returns (bool);

    function repayBendDaoLoan(
        address collection,
        uint256 tokenId,
        uint256 amount,
        address currency
    ) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "./IWallet.sol";

interface IWalletApeCoin is IWallet {
    function depositBAYCAndLock(uint32 tokenId, uint224 amount) external;

    function depositMAYCAndLock(uint32 tokenId, uint224 amount) external;

    function depositBAKCAndLock(
        address mainCollection,
        uint32 mainTokenId,
        uint32 bakcTokenId,
        uint224 amount
    ) external;

    function withdrawBAYCAndUnlock(uint32 tokenId) external;

    function withdrawMAYCAndUnlock(uint32 tokenId) external;

    function withdrawBAKCAndUnlock(uint32 tokenId) external;

    function autoCompound(uint256 poolId, uint32 tokenId) external;

    function getApeLockState(address collection, uint256 tokenId) external view returns (uint8);

    function completeApeCoinPlan(uint256 planId) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

interface ICyanVaultV2 {
    function getCurrencyAddress() external view returns (address);

    function lend(address to, uint256 amount) external;

    function earn(uint256 amount, uint256 profit) external payable;

    function nftDefaulted(uint256 unpaidAmount, uint256 estimatedPriceOfNFT) external;

    function withdrawLocked(address cyanWalletAddress) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";

/// @title Cyan AddressProvider contract
/// @author Bulgantamir Gankhuyag - <[email protected]>
/// @author Naranbayar Uuganbayar - <[email protected]>
contract AddressProvider is Ownable {
    error AddressNotFound(bytes32 id);

    event AddressSet(bytes32 id, address newAddress);

    mapping(bytes32 => address) public addresses;

    constructor(address owner) {
        transferOwnership(owner);
    }

    // @dev Sets an address for an id replacing the address saved in the addresses map
    // @param id The id
    // @param newAddress The address to set
    function setAddress(bytes32 id, address newAddress) external onlyOwner {
        addresses[id] = newAddress;
        emit AddressSet(id, newAddress);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

// DataTypes
enum PawnCreateType {
    REGULAR,
    BEND_DAO,
    REFINANCE
}
enum PaymentPlanStatus {
    BNPL_CREATED,
    BNPL_FUNDED,
    BNPL_ACTIVE,
    BNPL_DEFAULTED,
    BNPL_REJECTED,
    BNPL_COMPLETED,
    BNPL_LIQUIDATED,
    PAWN_ACTIVE,
    PAWN_DEFAULTED,
    PAWN_COMPLETED,
    PAWN_LIQUIDATED
}
struct Plan {
    uint256 amount;
    uint32 downPaymentPercent;
    uint32 interestRate;
    uint32 serviceFeeRate;
    uint32 term;
    uint8 totalNumberOfPayments;
    uint8 counterPaidPayments;
    uint8 autoRepayStatus;
}
struct PaymentPlan {
    Plan plan;
    uint256 createdDate;
    address cyanWalletAddress;
    PaymentPlanStatus status;
}

struct Item {
    uint256 amount;
    uint256 tokenId;
    address contractAddress;
    address cyanVaultAddress;
    // 1 -> ERC721
    // 2 -> ERC1155
    // 3 -> CryptoPunks
    uint8 itemType;
}

struct PaymentAmountInfo {
    uint256 loanAmount;
    uint256 interestAmount;
    uint256 serviceAmount;
}

// Errors
error InvalidSender();
error InvalidBlockNumber();
error InvalidSignature();
error InvalidServiceFeeRate();
error InvalidTokenPrice();
error InvalidInterestRate();
error InvalidDownPaymentPercent();
error InvalidDownPayment();
error InvalidAmount();
error InvalidTerm();
error InvalidPaidCount();
error InvalidStage();
error InvalidAddress();
error InvalidAutoRepaymentDate();
error InvalidAutoRepaymentStatus();
error InvalidTotalNumberOfPayments();
error InvalidReviveDate();
error InvalidItem();
error InvalidBaseDiscountRate();
error InvalidApeCoinPlan();
error InvalidBendDaoPlan();
error InvalidCurrency();
error InvalidCyanBuyer();
error InvalidSelector();

error EthTransferFailed();

error PaymentPlanAlreadyExists();
error PaymentPlanNotFound();

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "@openzeppelin/contracts-upgradeable/utils/cryptography/ECDSAUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import "@openzeppelin/contracts-upgradeable/token/ERC721/IERC721Upgradeable.sol";

import "./PaymentPlanTypes.sol";
import "../../thirdparty/ICryptoPunk.sol";
import "../../thirdparty/IWETH.sol";
import "../../interfaces/core/IWalletApeCoin.sol";
import "../../interfaces/main/ICyanVaultV2.sol";
import "../../interfaces/core/IFactory.sol";
import { ICyanConduit } from "../../interfaces/conduit/ICyanConduit.sol";
import { ILendPoolLoan as IBDaoLendPoolLoan } from "../../thirdparty/benddao/ILendPoolLoan.sol";
import { DataTypes as BDaoDataTypes } from "../../thirdparty/benddao/DataTypes.sol";
import { AddressProvider } from "../../main/AddressProvider.sol";

/// @title Cyan Core Payment Plan V2 Logic
/// @author Bulgantamir Gankhuyag - <[email protected]>
/// @author Naranbayar Uuganbayar - <[email protected]>
library PaymentPlanV2Logic {
    AddressProvider private constant addressProvider = AddressProvider(0xCF9A19D879769aDaE5e4f31503AAECDa82568E55);

    using ECDSAUpgradeable for bytes32;
    using SafeERC20Upgradeable for IERC20Upgradeable;

    function checkAndCompleteApePlans(
        address cyanWalletAddress,
        address collection,
        uint256 tokenId,
        uint256[2] calldata apePlanIds
    ) external {
        IWalletApeCoin cyanWallet = IWalletApeCoin(cyanWalletAddress);

        _checkAndCompleteApePlan(cyanWallet, apePlanIds[0], collection, tokenId);
        _checkAndCompleteApePlan(cyanWallet, apePlanIds[1], collection, tokenId);
    }

    function _checkAndCompleteApePlan(
        IWalletApeCoin cyanWallet,
        uint256 apePlanId,
        address collection,
        uint256 tokenId
    ) private {
        if (apePlanId == 0) return;

        uint8 apeLockStateBefore = cyanWallet.getApeLockState(collection, tokenId);
        cyanWallet.executeModule(abi.encodeWithSelector(IWalletApeCoin.completeApeCoinPlan.selector, apePlanId));
        uint8 apeLockStateAfter = cyanWallet.getApeLockState(collection, tokenId);

        if (apeLockStateAfter >= apeLockStateBefore) revert InvalidApeCoinPlan();
    }

    /**
     * @notice Return expected payment plan for given price and interest rate
     * @param plan Plan details
     * @return Expected down payment amount
     * @return Expected total interest fee
     * @return Expected total service fee
     * @return Estimated subsequent payments after down payment
     * @return Expected total financing amount
     */
    function getExpectedPlan(Plan calldata plan)
        external
        pure
        returns (
            uint256,
            uint256,
            uint256,
            uint256,
            uint256
        )
    {
        if (plan.totalNumberOfPayments == 0) revert InvalidTotalNumberOfPayments();
        (
            PaymentAmountInfo memory singleAmounts,
            PaymentAmountInfo memory totalAmounts,
            uint256 downPaymentAmount,

        ) = calculatePaymentInfo(plan);
        uint256 totalFinancingAmount = plan.amount + totalAmounts.interestAmount + totalAmounts.serviceAmount;

        return (
            plan.downPaymentPercent > 0 ? downPaymentAmount + singleAmounts.serviceAmount : 0,
            totalAmounts.interestAmount,
            totalAmounts.serviceAmount,
            singleAmounts.loanAmount + singleAmounts.interestAmount + singleAmounts.serviceAmount,
            totalFinancingAmount
        );
    }

    function calculatePaymentInfo(Plan memory plan)
        internal
        pure
        returns (
            PaymentAmountInfo memory singleAmounts,
            PaymentAmountInfo memory totalAmounts,
            uint256 downPaymentAmount,
            uint8 payCountWithoutDownPayment
        )
    {
        payCountWithoutDownPayment = plan.totalNumberOfPayments - (plan.downPaymentPercent > 0 ? 1 : 0);
        downPaymentAmount = (plan.amount * plan.downPaymentPercent) / 10000;

        totalAmounts.loanAmount = plan.amount - downPaymentAmount;
        totalAmounts.interestAmount = (totalAmounts.loanAmount * plan.interestRate) / 10000;
        totalAmounts.serviceAmount = (plan.amount * plan.serviceFeeRate) / 10000;

        singleAmounts.loanAmount = totalAmounts.loanAmount / payCountWithoutDownPayment;
        singleAmounts.interestAmount = totalAmounts.interestAmount / payCountWithoutDownPayment;
        singleAmounts.serviceAmount = totalAmounts.serviceAmount / plan.totalNumberOfPayments;
    }

    /**
     * @notice Return payment info
     * @param plan Plan details
     * @param isEarlyPayment Is paying early
     * @return Remaining payment amount for collateral
     * @return Remaining payment amount for interest fee
     * @return Remaining payment amount for service fee
     * @return Remaining total payment amount
     */
    function getPaymentInfo(
        Plan memory plan,
        bool isEarlyPayment,
        uint256 createdDate
    )
        external
        view
        returns (
            uint256,
            uint256,
            uint256,
            uint256,
            uint256
        )
    {
        (PaymentAmountInfo memory singleAmounts, PaymentAmountInfo memory totalAmounts, , ) = calculatePaymentInfo(
            plan
        );

        uint8 paidCountWithoutDownPayment = plan.counterPaidPayments - (plan.downPaymentPercent > 0 ? 1 : 0);
        if (
            (plan.totalNumberOfPayments == 1 && plan.downPaymentPercent == 0) ||
            (plan.totalNumberOfPayments == 2 && plan.downPaymentPercent > 0)
        ) {
            // In case of single payment plan,
            // (single payment pawn, or downpayment+single payment bnpl)
            //  User will get discount from interest fee by only paying pro-rated interest fee
            uint256 completedPercent = ((block.timestamp - createdDate + 600) / 600) < (plan.term / 600)
                ? (((block.timestamp - createdDate + 600) / 600) * 100) / (plan.term / 600)
                : 100;
            singleAmounts.interestAmount = (singleAmounts.interestAmount * completedPercent) / 100;
        } else if (isEarlyPayment || (plan.totalNumberOfPayments - plan.counterPaidPayments) == 1) {
            // In case of early repayment,
            //  User will get discount from interest fee by only paying single interest fee
            singleAmounts.loanAmount = totalAmounts.loanAmount - singleAmounts.loanAmount * paidCountWithoutDownPayment;
            singleAmounts.serviceAmount =
                totalAmounts.serviceAmount -
                singleAmounts.serviceAmount *
                plan.counterPaidPayments;
        }

        return (
            singleAmounts.loanAmount,
            singleAmounts.interestAmount,
            singleAmounts.serviceAmount,
            singleAmounts.loanAmount + singleAmounts.interestAmount + singleAmounts.serviceAmount,
            createdDate + plan.term * (paidCountWithoutDownPayment + 1)
        );
    }

    function requireCorrectPlanParams(
        bool isBNPL,
        Item calldata item,
        Plan calldata plan,
        uint256 signatureExpiryDate
    ) public view {
        if (item.contractAddress == address(0)) revert InvalidAddress();
        if (item.cyanVaultAddress == address(0)) revert InvalidAddress();
        if (item.itemType < 1 || item.itemType > 3) revert InvalidItem();
        if (item.itemType == 1 && item.amount != 0) revert InvalidItem();
        if (item.itemType == 2 && item.amount == 0) revert InvalidItem();
        if (item.itemType == 3 && item.amount != 0) revert InvalidItem();

        if (signatureExpiryDate < block.timestamp) revert InvalidSignature();
        if (plan.serviceFeeRate > 400) revert InvalidServiceFeeRate();
        if (plan.amount == 0) revert InvalidTokenPrice();
        if (plan.interestRate == 0) revert InvalidInterestRate();
        if (plan.term == 0) revert InvalidTerm();

        if (isBNPL) {
            if (plan.downPaymentPercent == 0 || plan.downPaymentPercent >= 10000) revert InvalidDownPaymentPercent();
            if (plan.totalNumberOfPayments <= 1) revert InvalidTotalNumberOfPayments();
            if (plan.counterPaidPayments != 1) revert InvalidPaidCount();
        } else {
            if (plan.downPaymentPercent != 0) revert InvalidDownPaymentPercent();
            if (plan.totalNumberOfPayments == 0) revert InvalidTotalNumberOfPayments();
            if (plan.counterPaidPayments != 0) revert InvalidPaidCount();
        }
    }

    function verifySignature(
        Item calldata item,
        Plan calldata plan,
        uint256 planId,
        uint256 signatureExpiryDate,
        uint256 chainid,
        address signer,
        bytes memory signature
    ) public pure {
        bytes32 itemHash = keccak256(
            abi.encodePacked(item.cyanVaultAddress, item.contractAddress, item.tokenId, item.amount, item.itemType)
        );
        bytes32 planHash = keccak256(
            abi.encodePacked(
                plan.amount,
                plan.downPaymentPercent,
                plan.interestRate,
                plan.serviceFeeRate,
                plan.term,
                plan.totalNumberOfPayments,
                plan.counterPaidPayments,
                plan.autoRepayStatus
            )
        );
        bytes32 msgHash = keccak256(abi.encodePacked(itemHash, planHash, planId, signatureExpiryDate, chainid));
        bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
        if (signedHash.recover(signature) != signer) revert InvalidSignature();
    }

    function verifyRevivalSignature(
        uint256 planId,
        uint256 penaltyAmount,
        uint256 signatureExpiryDate,
        uint256 chainid,
        uint8 counterPaidPayments,
        address signer,
        bytes memory signature
    ) external pure {
        bytes32 msgHash = keccak256(
            abi.encodePacked(planId, penaltyAmount, signatureExpiryDate, chainid, counterPaidPayments)
        );
        bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
        if (signedHash.recover(signature) != signer) revert InvalidSignature();
    }

    function verifyEarlyUnwindByOpeanseaSignature(
        uint256 planId,
        uint256 sellPrice,
        bytes memory offer,
        uint256 signatureExpiryDate,
        uint256 chainid,
        address signer,
        bytes memory signature
    ) external pure {
        bytes32 offerHash = keccak256(abi.encodePacked(offer));
        bytes32 msgHash = keccak256(abi.encodePacked(planId, sellPrice, offerHash, signatureExpiryDate, chainid));
        bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
        if (signedHash.recover(signature) != signer) revert InvalidSignature();
    }

    function verifyEarlyUnwindByCyanSignature(
        uint256 planId,
        uint256 sellPrice,
        uint256 signatureExpiryDate,
        uint256 chainid,
        address cyanBuyerAddress,
        bytes memory signature
    ) external pure {
        bytes32 msgHash = keccak256(abi.encodePacked(planId, sellPrice, signatureExpiryDate, chainid));
        bytes32 signedHash = keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", msgHash));
        if (signedHash.recover(signature) != cyanBuyerAddress) revert InvalidSignature();
    }

    function receiveCurrencyFromCyanWallet(
        address currencyAddress,
        address from,
        uint256 amount
    ) external {
        if (currencyAddress == address(0)) {
            IWETH weth = IWETH(addressProvider.addresses("WETH"));
            weth.transferFrom(from, address(this), amount);
            weth.withdraw(amount);
        } else {
            IERC20Upgradeable(currencyAddress).safeTransferFrom(from, address(this), amount);
        }
    }

    /**
     * @notice Getting currency address by vault address
     * @param vaultAddress Cyan Vault address
     */
    function getCurrencyAddressByVaultAddress(address vaultAddress) internal view returns (address) {
        return ICyanVaultV2(payable(vaultAddress)).getCurrencyAddress();
    }

    function createPawn(
        Item calldata item,
        Plan calldata plan,
        uint256 planId,
        PawnCreateType createType,
        uint256 signatureExpiryDate,
        address mainWalletAddress,
        address cyanWalletAddress,
        address cyanSigner,
        bytes memory signature
    ) external returns (bool) {
        requireCorrectPlanParams(false, item, plan, signatureExpiryDate);
        verifySignature(item, plan, planId, signatureExpiryDate, block.chainid, cyanSigner, signature);

        if (createType == PawnCreateType.BEND_DAO) {
            ICyanVaultV2(payable(item.cyanVaultAddress)).lend(cyanWalletAddress, plan.amount);

            address currencyAddress = getCurrencyAddressByVaultAddress(item.cyanVaultAddress);
            migrateBendDaoPlan(item, plan, cyanWalletAddress, currencyAddress);

            if (IERC721Upgradeable(item.contractAddress).ownerOf(item.tokenId) != cyanWalletAddress) {
                revert InvalidBendDaoPlan();
            }
        } else if (createType == PawnCreateType.REFINANCE) {
            ICyanVaultV2(payable(item.cyanVaultAddress)).lend(address(this), plan.amount);
        } else {
            bool isTransferRequired = false;
            if (item.itemType == 1) {
                // ERC721, check if item is already in Cyan wallet
                if (IERC721Upgradeable(item.contractAddress).ownerOf(item.tokenId) != cyanWalletAddress) {
                    isTransferRequired = true;
                }
            } else if (item.itemType == 2) {
                // ERC1155, check if message sender is Cyan wallet
                if (msg.sender != cyanWalletAddress) {
                    isTransferRequired = true;
                }
            } else if (item.itemType == 3) {
                // CryptoPunk, check if item is already in Cyan wallet
                if (ICryptoPunk(item.contractAddress).punkIndexToAddress(item.tokenId) != cyanWalletAddress) {
                    isTransferRequired = true;
                }
            }
            ICyanVaultV2(payable(item.cyanVaultAddress)).lend(mainWalletAddress, plan.amount);
            return isTransferRequired;
        }
        return false;
    }

    function migrateBendDaoPlan(
        Item calldata item,
        Plan calldata plan,
        address cyanWallet,
        address currency
    ) private {
        IBDaoLendPoolLoan bendDaoLendPoolLoan = IBDaoLendPoolLoan(addressProvider.addresses("BENDDAO_LEND_POOL_LOAN"));
        uint256 loanId = bendDaoLendPoolLoan.getCollateralLoanId(item.contractAddress, item.tokenId);
        (, uint256 loanAmount) = bendDaoLendPoolLoan.getLoanReserveBorrowAmount(loanId);

        BDaoDataTypes.LoanData memory loanData = bendDaoLendPoolLoan.getLoan(loanId);
        if (loanData.state != BDaoDataTypes.LoanState.Active) revert InvalidBendDaoPlan();
        if (loanData.borrower != msg.sender) revert InvalidSender();
        if (plan.amount < loanAmount) revert InvalidAmount();
        if (loanData.reserveAsset != (currency == address(0) ? addressProvider.addresses("WETH") : currency))
            revert InvalidCurrency();

        IWallet(cyanWallet).executeModule(
            abi.encodeWithSelector(
                IWallet.repayBendDaoLoan.selector,
                item.contractAddress,
                item.tokenId,
                loanAmount,
                currency
            )
        );
        ICyanConduit(addressProvider.addresses("CYAN_CONDUIT")).transferERC721(
            loanData.borrower,
            cyanWallet,
            item.contractAddress,
            item.tokenId
        );
    }

    function activate(PaymentPlan storage _paymentPlan, Item calldata item) external returns (uint256) {
        if (_paymentPlan.plan.counterPaidPayments != 1) revert InvalidPaidCount();
        if (
            _paymentPlan.status != PaymentPlanStatus.BNPL_CREATED &&
            _paymentPlan.status != PaymentPlanStatus.BNPL_FUNDED
        ) revert InvalidStage();

        (PaymentAmountInfo memory singleAmounts, , uint256 downPaymentAmount, ) = PaymentPlanV2Logic
            .calculatePaymentInfo(_paymentPlan.plan);

        address cyanVaultAddress = item.cyanVaultAddress;

        if (_paymentPlan.status == PaymentPlanStatus.BNPL_CREATED) {
            // Admin already funded the plan, so Vault is transfering equal amount of currency back to admin.
            ICyanVaultV2(payable(cyanVaultAddress)).lend(msg.sender, _paymentPlan.plan.amount);
        }
        transferEarnedAmountToCyanVault(cyanVaultAddress, downPaymentAmount, 0);

        _paymentPlan.status = PaymentPlanStatus.BNPL_ACTIVE;
        return singleAmounts.serviceAmount;
    }

    /**
     * @notice Transfer earned amount to Cyan Vault
     * @param cyanVaultAddress Original price of the token
     * @param paidTokenPayment Paid token payment
     * @param paidInterestFee Paid interest fee
     */
    function transferEarnedAmountToCyanVault(
        address cyanVaultAddress,
        uint256 paidTokenPayment,
        uint256 paidInterestFee
    ) internal {
        ICyanVaultV2 cyanVault = ICyanVaultV2(payable(cyanVaultAddress));
        address currencyAddress = cyanVault.getCurrencyAddress();
        if (currencyAddress == address(0)) {
            cyanVault.earn{ value: paidTokenPayment + paidInterestFee }(paidTokenPayment, paidInterestFee);
        } else {
            IERC20Upgradeable erc20Contract = IERC20Upgradeable(currencyAddress);
            erc20Contract.approve(cyanVaultAddress, paidTokenPayment + paidInterestFee);
            cyanVault.earn(paidTokenPayment, paidInterestFee);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

library DataTypes {
    struct ReserveData {
        //stores the reserve configuration
        ReserveConfigurationMap configuration;
        //the liquidity index. Expressed in ray
        uint128 liquidityIndex;
        //variable borrow index. Expressed in ray
        uint128 variableBorrowIndex;
        //the current supply rate. Expressed in ray
        uint128 currentLiquidityRate;
        //the current variable borrow rate. Expressed in ray
        uint128 currentVariableBorrowRate;
        uint40 lastUpdateTimestamp;
        //tokens addresses
        address bTokenAddress;
        address debtTokenAddress;
        //address of the interest rate strategy
        address interestRateAddress;
        //the id of the reserve. Represents the position in the list of the active reserves
        uint8 id;
    }

    struct NftData {
        //stores the nft configuration
        NftConfigurationMap configuration;
        //address of the bNFT contract
        address bNftAddress;
        //the id of the nft. Represents the position in the list of the active nfts
        uint8 id;
        uint256 maxSupply;
        uint256 maxTokenId;
    }

    struct ReserveConfigurationMap {
        //bit 0-15: LTV
        //bit 16-31: Liq. threshold
        //bit 32-47: Liq. bonus
        //bit 48-55: Decimals
        //bit 56: Reserve is active
        //bit 57: reserve is frozen
        //bit 58: borrowing is enabled
        //bit 59: stable rate borrowing enabled
        //bit 60-63: reserved
        //bit 64-79: reserve factor
        uint256 data;
    }

    struct NftConfigurationMap {
        //bit 0-15: LTV
        //bit 16-31: Liq. threshold
        //bit 32-47: Liq. bonus
        //bit 56: NFT is active
        //bit 57: NFT is frozen
        uint256 data;
    }

    /**
     * @dev Enum describing the current state of a loan
     * State change flow:
     *  Created -> Active -> Repaid
     *                    -> Auction -> Defaulted
     */
    enum LoanState {
        // We need a default that is not 'Created' - this is the zero value
        None,
        // The loan data is stored, but not initiated yet.
        Created,
        // The loan has been initialized, funds have been delivered to the borrower and the collateral is held.
        Active,
        // The loan is in auction, higest price liquidator will got chance to claim it.
        Auction,
        // The loan has been repaid, and the collateral has been returned to the borrower. This is a terminal state.
        Repaid,
        // The loan was delinquent and collateral claimed by the liquidator. This is a terminal state.
        Defaulted
    }

    struct LoanData {
        //the id of the nft loan
        uint256 loanId;
        //the current state of the loan
        LoanState state;
        //address of borrower
        address borrower;
        //address of nft asset token
        address nftAsset;
        //the id of nft token
        uint256 nftTokenId;
        //address of reserve asset token
        address reserveAsset;
        //scaled borrow amount. Expressed in ray
        uint256 scaledAmount;
        //start time of first bid time
        uint256 bidStartTimestamp;
        //bidder address of higest bid
        address bidderAddress;
        //price of higest bid
        uint256 bidPrice;
        //borrow amount of loan
        uint256 bidBorrowAmount;
        //bidder address of first bid
        address firstBidderAddress;
    }

    struct ExecuteDepositParams {
        address initiator;
        address asset;
        uint256 amount;
        address onBehalfOf;
        uint16 referralCode;
    }

    struct ExecuteWithdrawParams {
        address initiator;
        address asset;
        uint256 amount;
        address to;
    }

    struct ExecuteBorrowParams {
        address initiator;
        address asset;
        uint256 amount;
        address nftAsset;
        uint256 nftTokenId;
        address onBehalfOf;
        uint16 referralCode;
    }

    struct ExecuteBatchBorrowParams {
        address initiator;
        address[] assets;
        uint256[] amounts;
        address[] nftAssets;
        uint256[] nftTokenIds;
        address onBehalfOf;
        uint16 referralCode;
    }

    struct ExecuteRepayParams {
        address initiator;
        address nftAsset;
        uint256 nftTokenId;
        uint256 amount;
    }

    struct ExecuteBatchRepayParams {
        address initiator;
        address[] nftAssets;
        uint256[] nftTokenIds;
        uint256[] amounts;
    }

    struct ExecuteAuctionParams {
        address initiator;
        address nftAsset;
        uint256 nftTokenId;
        uint256 bidPrice;
        address onBehalfOf;
    }

    struct ExecuteRedeemParams {
        address initiator;
        address nftAsset;
        uint256 nftTokenId;
        uint256 amount;
        uint256 bidFine;
    }

    struct ExecuteLiquidateParams {
        address initiator;
        address nftAsset;
        uint256 nftTokenId;
        uint256 amount;
    }

    struct ExecuteLendPoolStates {
        uint256 pauseStartTime;
        uint256 pauseDurationTime;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "./DataTypes.sol";

interface ILendPoolLoan {
    function getCollateralLoanId(address nftAsset, uint256 nftTokenId) external view returns (uint256);

    function getLoan(uint256 loanId) external view returns (DataTypes.LoanData memory loanData);

    function getLoanReserveBorrowAmount(uint256 loanId) external view returns (address, uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

interface ICryptoPunk {
    function punkIndexToAddress(uint256) external view returns (address);

    function buyPunk(uint256) external payable;

    function transferPunk(address, uint256) external;

    function offerPunkForSale(uint256, uint256) external;

    function offerPunkForSaleToAddress(
        uint256,
        uint256,
        address
    ) external;

    function acceptBidForPunk(uint256, uint256) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

/// @title Wrapped Etheruem Contract interface
interface IWETH is IERC20 {
    function withdraw(uint256 wad) external;

    function deposit() external payable;
}

Context size (optional):