Contract Name:
ArchetypeErc721a
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC2981.sol)
pragma solidity ^0.8.0;
import "../utils/introspection/IERC165Upgradeable.sol";
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*
* _Available since v4.5._
*/
interface IERC2981Upgradeable is IERC165Upgradeable {
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*/
function royaltyInfo(
uint256 tokenId,
uint256 salePrice
) external view returns (address receiver, uint256 royaltyAmount);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/common/ERC2981.sol)
pragma solidity ^0.8.0;
import "../../interfaces/IERC2981Upgradeable.sol";
import "../../utils/introspection/ERC165Upgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
*
* Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
* specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
*
* Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
* fee is specified in basis points by default.
*
* IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
* https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
* voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
*
* _Available since v4.5._
*/
abstract contract ERC2981Upgradeable is Initializable, IERC2981Upgradeable, ERC165Upgradeable {
struct RoyaltyInfo {
address receiver;
uint96 royaltyFraction;
}
RoyaltyInfo private _defaultRoyaltyInfo;
mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo;
function __ERC2981_init() internal onlyInitializing {
}
function __ERC2981_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165Upgradeable, ERC165Upgradeable) returns (bool) {
return interfaceId == type(IERC2981Upgradeable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @inheritdoc IERC2981Upgradeable
*/
function royaltyInfo(uint256 tokenId, uint256 salePrice) public view virtual override returns (address, uint256) {
RoyaltyInfo memory royalty = _tokenRoyaltyInfo[tokenId];
if (royalty.receiver == address(0)) {
royalty = _defaultRoyaltyInfo;
}
uint256 royaltyAmount = (salePrice * royalty.royaltyFraction) / _feeDenominator();
return (royalty.receiver, royaltyAmount);
}
/**
* @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
* fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
* override.
*/
function _feeDenominator() internal pure virtual returns (uint96) {
return 10000;
}
/**
* @dev Sets the royalty information that all ids in this contract will default to.
*
* Requirements:
*
* - `receiver` cannot be the zero address.
* - `feeNumerator` cannot be greater than the fee denominator.
*/
function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
require(receiver != address(0), "ERC2981: invalid receiver");
_defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
}
/**
* @dev Removes default royalty information.
*/
function _deleteDefaultRoyalty() internal virtual {
delete _defaultRoyaltyInfo;
}
/**
* @dev Sets the royalty information for a specific token id, overriding the global default.
*
* Requirements:
*
* - `receiver` cannot be the zero address.
* - `feeNumerator` cannot be greater than the fee denominator.
*/
function _setTokenRoyalty(uint256 tokenId, address receiver, uint96 feeNumerator) internal virtual {
require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
require(receiver != address(0), "ERC2981: Invalid parameters");
_tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
}
/**
* @dev Resets royalty information for the token id back to the global default.
*/
function _resetTokenRoyalty(uint256 tokenId) internal virtual {
delete _tokenRoyaltyInfo[tokenId];
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[48] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165Upgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
function __ERC165_init() internal onlyInitializing {
}
function __ERC165_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165Upgradeable).interfaceId;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165Upgradeable {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// ArchetypePayouts v0.7.0
//
// d8888 888 888
// d88888 888 888
// d88P888 888 888
// d88P 888 888d888 .d8888b 88888b. .d88b. 888888 888 888 88888b. .d88b.
// d88P 888 888P" d88P" 888 "88b d8P Y8b 888 888 888 888 "88b d8P Y8b
// d88P 888 888 888 888 888 88888888 888 888 888 888 888 88888888
// d8888888888 888 Y88b. 888 888 Y8b. Y88b. Y88b 888 888 d88P Y8b.
// d88P 888 888 "Y8888P 888 888 "Y8888 "Y888 "Y88888 88888P" "Y8888
// 888 888
// Y8b d88P 888
//
pragma solidity ^0.8.4;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
error InvalidLength();
error InvalidSplitShares();
error TransferFailed();
error BalanceEmpty();
error NotApprovedToWithdraw();
contract ArchetypePayouts {
event Withdrawal(address indexed src, address token, uint256 wad);
event FundsAdded(address indexed recipient, address token, uint256 amount);
mapping(address => mapping(address => uint256)) private _balance;
mapping(address => mapping(address => bool)) private _approvals;
function updateBalances(
uint256 totalAmount,
address token,
address[] calldata recipients,
uint16[] calldata splits
) public payable {
if (recipients.length != splits.length) {
revert InvalidLength();
}
uint256 totalShares = 0;
for (uint256 i = 0; i < splits.length; i++) {
totalShares += splits[i];
}
if (totalShares != 10000) {
revert InvalidSplitShares();
}
if (token == address(0)) {
// ETH payments
uint256 totalReceived = msg.value;
for (uint256 i = 0; i < recipients.length; i++) {
if (splits[i] > 0) {
uint256 amountToAdd = (totalReceived * splits[i]) / 10000;
_balance[recipients[i]][token] += amountToAdd;
emit FundsAdded(recipients[i], token, amountToAdd);
}
}
} else {
// ERC20 payments
IERC20 paymentToken = IERC20(token);
bool success = paymentToken.transferFrom(msg.sender, address(this), totalAmount);
if (!success) {
revert TransferFailed();
}
for (uint256 i = 0; i < recipients.length; i++) {
if (splits[i] > 0) {
uint256 amountToAdd = (totalAmount * splits[i]) / 10000;
_balance[recipients[i]][token] += amountToAdd;
emit FundsAdded(recipients[i], token, amountToAdd);
}
}
}
}
function withdraw() external {
address msgSender = msg.sender;
_withdraw(msgSender, msgSender, address(0));
}
function withdrawTokens(address[] memory tokens) external {
address msgSender = msg.sender;
for (uint256 i = 0; i < tokens.length; i++) {
_withdraw(msgSender, msgSender, tokens[i]);
}
}
function withdrawFrom(address from, address to) public {
if (from != msg.sender && !_approvals[from][to]) {
revert NotApprovedToWithdraw();
}
_withdraw(from, to, address(0));
}
function withdrawTokensFrom(
address from,
address to,
address[] memory tokens
) public {
if (from != msg.sender && !_approvals[from][to]) {
revert NotApprovedToWithdraw();
}
for (uint256 i = 0; i < tokens.length; i++) {
_withdraw(from, to, tokens[i]);
}
}
function _withdraw(
address from,
address to,
address token
) internal {
uint256 wad;
wad = _balance[from][token];
_balance[from][token] = 0;
if (wad == 0) {
revert BalanceEmpty();
}
if (token == address(0)) {
bool success = false;
(success, ) = to.call{ value: wad }("");
if (!success) {
revert TransferFailed();
}
} else {
IERC20 erc20Token = IERC20(token);
bool success = erc20Token.transfer(to, wad);
if (!success) {
revert TransferFailed();
}
}
emit Withdrawal(from, token, wad);
}
function approveWithdrawal(address delegate, bool approved) external {
_approvals[msg.sender][delegate] = approved;
}
function isApproved(address from, address delegate) external view returns (bool) {
return _approvals[from][delegate];
}
function balance(address recipient) external view returns (uint256) {
return _balance[recipient][address(0)];
}
function balanceToken(address recipient, address token) external view returns (uint256) {
return _balance[recipient][token];
}
}
// SPDX-License-Identifier: MIT
// Archetype v0.8.0
//
// d8888 888 888
// d88888 888 888
// d88P888 888 888
// d88P 888 888d888 .d8888b 88888b. .d88b. 888888 888 888 88888b. .d88b.
// d88P 888 888P" d88P" 888 "88b d8P Y8b 888 888 888 888 "88b d8P Y8b
// d88P 888 888 888 888 888 88888888 888 888 888 888 888 88888888
// d8888888888 888 Y88b. 888 888 Y8b. Y88b. Y88b 888 888 d88P Y8b.
// d88P 888 888 "Y8888P 888 888 "Y8888 "Y888 "Y88888 88888P" "Y8888
// 888 888
// Y8b d88P 888
// "Y88P" 888
pragma solidity ^0.8.20;
import "./ArchetypeLogicErc721a.sol";
import "erc721a-upgradeable/contracts/ERC721AUpgradeable.sol";
import "erc721a-upgradeable/contracts/ERC721A__Initializable.sol";
import "erc721a-upgradeable/contracts/extensions/ERC721AQueryableUpgradeable.sol";
import "./ERC721A__OwnableUpgradeable.sol";
import "solady/src/utils/LibString.sol";
import "@openzeppelin/contracts-upgradeable/token/common/ERC2981Upgradeable.sol";
contract ArchetypeErc721a is
ERC721A__Initializable,
ERC721AUpgradeable,
ERC721A__OwnableUpgradeable,
ERC2981Upgradeable,
ERC721AQueryableUpgradeable
{
//
// EVENTS
//
event Invited(bytes32 indexed key, bytes32 indexed cid);
event BurnInvited(bytes32 indexed key, bytes32 indexed cid);
event Referral(address indexed affiliate, address token, uint128 wad, uint256 numMints);
event Withdrawal(address indexed src, address token, uint128 wad);
//
// VARIABLES
//
mapping(bytes32 => AdvancedInvite) public invites;
mapping(bytes32 => uint256) public packedBonusDiscounts;
mapping(bytes32 => BurnInvite) public burnInvites;
mapping(address => mapping(bytes32 => uint256)) private _minted;
mapping(bytes32 => uint256) private _listSupply;
mapping(address => uint128) private _ownerBalance;
mapping(address => mapping(address => uint128)) private _affiliateBalance;
Config public config;
PayoutConfig public payoutConfig;
Options public options;
//
// METHODS
//
function initialize(
string memory name,
string memory symbol,
Config calldata config_,
PayoutConfig calldata payoutConfig_,
address _receiver
) external initializerERC721A {
__ERC721A_init(name, symbol);
// check max bps not reached and min platform fee.
if (
config_.affiliateFee > MAXBPS ||
config_.affiliateDiscount > MAXBPS ||
config_.affiliateSigner == address(0) ||
config_.maxBatchSize == 0
) {
revert InvalidConfig();
}
config = config_;
__Ownable_init();
uint256 totalShares = payoutConfig_.ownerBps +
payoutConfig_.platformBps +
payoutConfig_.partnerBps +
payoutConfig_.superAffiliateBps;
if (payoutConfig_.platformBps < 250 || totalShares != 10000) {
revert InvalidSplitShares();
}
payoutConfig = payoutConfig_;
setDefaultRoyalty(_receiver, config.defaultRoyalty);
}
//
// PUBLIC
//
function mint(
Auth calldata auth,
uint256 quantity,
address affiliate,
bytes calldata signature
) external payable {
mintTo(auth, quantity, _msgSender(), affiliate, signature);
}
function batchMintTo(
Auth calldata auth,
address[] calldata toList,
uint256[] calldata quantityList,
address affiliate,
bytes calldata signature
) external payable {
if (quantityList.length != toList.length) {
revert InvalidConfig();
}
AdvancedInvite storage invite = invites[auth.key];
uint256 packedDiscount = packedBonusDiscounts[auth.key];
uint256 curSupply = _totalMinted();
uint256 totalQuantity;
uint256 totalBonusMints;
for (uint256 i; i < toList.length; ) {
uint256 quantityToAdd;
if (invite.unitSize > 1) {
quantityToAdd = quantityList[i] * invite.unitSize;
} else {
quantityToAdd = quantityList[i];
}
uint256 numBonusMints = ArchetypeLogicErc721a.bonusMintsAwarded(quantityToAdd, packedDiscount);
_mint(toList[i], quantityToAdd + numBonusMints);
totalQuantity += quantityToAdd;
totalBonusMints += numBonusMints;
unchecked {
++i;
}
}
validateAndCreditMint(invite, auth, totalQuantity, totalBonusMints, curSupply, affiliate, signature);
}
function mintTo(
Auth calldata auth,
uint256 quantity,
address to,
address affiliate,
bytes calldata signature
) public payable {
AdvancedInvite storage invite = invites[auth.key];
uint256 packedDiscount = packedBonusDiscounts[auth.key];
if (invite.unitSize > 1) {
quantity = quantity * invite.unitSize;
}
uint256 curSupply = _totalMinted();
uint256 numBonusMints = ArchetypeLogicErc721a.bonusMintsAwarded(quantity, packedDiscount);
_mint(to, quantity + numBonusMints);
validateAndCreditMint(invite, auth, quantity, numBonusMints, curSupply, affiliate, signature);
}
function validateAndCreditMint(
AdvancedInvite storage invite,
Auth calldata auth,
uint256 quantity,
uint256 numBonusMints,
uint256 curSupply,
address affiliate,
bytes calldata signature
) internal {
uint256 totalQuantity = quantity + numBonusMints;
ValidationArgs memory args;
{
args = ValidationArgs({
owner: owner(),
affiliate: affiliate,
quantity: totalQuantity,
curSupply: curSupply,
listSupply: _listSupply[auth.key]
});
}
uint128 cost = uint128(
ArchetypeLogicErc721a.computePrice(
invite,
config.affiliateDiscount,
quantity,
args.listSupply,
args.affiliate != address(0)
)
);
ArchetypeLogicErc721a.validateMint(invite, config, auth, _minted, signature, args, cost);
if (invite.limit < invite.maxSupply) {
_minted[_msgSender()][auth.key] += totalQuantity;
}
if (invite.maxSupply < UINT32_MAX) {
_listSupply[auth.key] += totalQuantity;
}
ArchetypeLogicErc721a.updateBalances(
invite.tokenAddress,
config,
_ownerBalance,
_affiliateBalance,
affiliate,
quantity,
cost
);
if (msg.value > cost) {
_refund(_msgSender(), msg.value - cost);
}
}
function burnToMint(Auth calldata auth, uint256[] calldata tokenIds) external payable {
BurnInvite storage burnInvite = burnInvites[auth.key];
uint256 curSupply = _totalMinted();
uint128 cost = burnInvite.price;
ArchetypeLogicErc721a.validateBurnToMint(burnInvite, config, auth, tokenIds, curSupply, _minted, cost);
address msgSender = _msgSender();
for (uint256 i; i < tokenIds.length; ) {
address burnAddress = burnInvite.burnAddress != address(0)
? burnInvite.burnAddress
: address(0x000000000000000000000000000000000000dEaD);
burnInvite.burnErc721.transferFrom(msgSender, burnAddress, tokenIds[i]);
unchecked {
++i;
}
}
uint256 quantity = burnInvite.reversed
? tokenIds.length * burnInvite.ratio
: tokenIds.length / burnInvite.ratio;
_mint(msgSender, quantity);
if (burnInvite.limit < config.maxSupply) {
_minted[msgSender][keccak256(abi.encodePacked("burn", auth.key))] += quantity;
}
ArchetypeLogicErc721a.updateBalances(
burnInvite.tokenAddress,
config,
_ownerBalance,
_affiliateBalance,
address(0), // burn to mint does not support affiliates
quantity,
cost
);
if (msg.value > cost) {
_refund(_msgSender(), msg.value - cost);
}
}
function tokenURI(uint256 tokenId) public view virtual override(ERC721AUpgradeable, IERC721AUpgradeable) returns (string memory) {
if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
return
bytes(config.baseUri).length != 0
? string(abi.encodePacked(config.baseUri, LibString.toString(tokenId)))
: "";
}
function withdraw() external {
address[] memory tokens = new address[](1);
tokens[0] = address(0);
withdrawTokens(tokens);
}
function withdrawTokens(address[] memory tokens) public {
ArchetypeLogicErc721a.withdrawTokens(payoutConfig, _ownerBalance, owner(), tokens);
}
function withdrawAffiliate() external {
address[] memory tokens = new address[](1);
tokens[0] = address(0);
withdrawTokensAffiliate(tokens);
}
function withdrawTokensAffiliate(address[] memory tokens) public {
ArchetypeLogicErc721a.withdrawTokensAffiliate(_affiliateBalance, tokens);
}
function ownerBalance() external view returns (uint128) {
return _ownerBalance[address(0)];
}
function ownerBalanceToken(address token) external view returns (uint128) {
return _ownerBalance[token];
}
function affiliateBalance(address affiliate) external view returns (uint128) {
return _affiliateBalance[affiliate][address(0)];
}
function affiliateBalanceToken(address affiliate, address token) external view returns (uint128) {
return _affiliateBalance[affiliate][token];
}
function minted(address minter, bytes32 key) external view returns (uint256) {
return _minted[minter][key];
}
function listSupply(bytes32 key) external view returns (uint256) {
return _listSupply[key];
}
function platform() external pure returns (address) {
return PLATFORM;
}
function computePrice(
bytes32 key,
uint256 quantity,
bool affiliateUsed
) external view returns (uint256) {
AdvancedInvite storage i = invites[key];
uint256 listSupply_ = _listSupply[key];
return ArchetypeLogicErc721a.computePrice(i, config.affiliateDiscount, quantity, listSupply_, affiliateUsed);
}
//
// OWNER ONLY
//
function setBaseURI(string memory baseUri) external _onlyOwner {
if (options.uriLocked) {
revert LockedForever();
}
config.baseUri = baseUri;
}
/// @notice the password is "forever"
function lockURI(string memory password) external _onlyOwner {
if (keccak256(abi.encodePacked(password)) != keccak256(abi.encodePacked("forever"))) {
revert WrongPassword();
}
options.uriLocked = true;
}
/// @notice the password is "forever"
// max supply cannot subceed total supply. Be careful changing.
function setMaxSupply(uint32 maxSupply, string memory password) external _onlyOwner {
if (keccak256(abi.encodePacked(password)) != keccak256(abi.encodePacked("forever"))) {
revert WrongPassword();
}
if (options.maxSupplyLocked) {
revert LockedForever();
}
if (maxSupply < _totalMinted()) {
revert MaxSupplyExceeded();
}
config.maxSupply = maxSupply;
}
/// @notice the password is "forever"
function lockMaxSupply(string memory password) external _onlyOwner {
if (keccak256(abi.encodePacked(password)) != keccak256(abi.encodePacked("forever"))) {
revert WrongPassword();
}
options.maxSupplyLocked = true;
}
function setAffiliateFee(uint16 affiliateFee) external _onlyOwner {
if (options.affiliateFeeLocked) {
revert LockedForever();
}
if (affiliateFee > MAXBPS) {
revert InvalidConfig();
}
config.affiliateFee = affiliateFee;
}
function setAffiliateDiscount(uint16 affiliateDiscount) external _onlyOwner {
if (options.affiliateFeeLocked) {
revert LockedForever();
}
if (affiliateDiscount > MAXBPS) {
revert InvalidConfig();
}
config.affiliateDiscount = affiliateDiscount;
}
/// @notice the password is "forever"
function lockAffiliateFee(string memory password) external _onlyOwner {
if (keccak256(abi.encodePacked(password)) != keccak256(abi.encodePacked("forever"))) {
revert WrongPassword();
}
options.affiliateFeeLocked = true;
}
function setOwnerAltPayout(address ownerAltPayout) external _onlyOwner {
if (options.ownerAltPayoutLocked) {
revert LockedForever();
}
payoutConfig.ownerAltPayout = ownerAltPayout;
}
function lockOwnerAltPayout() external _onlyOwner {
options.ownerAltPayoutLocked = true;
}
function setMaxBatchSize(uint32 maxBatchSize) external _onlyOwner {
config.maxBatchSize = maxBatchSize;
}
function setBonusDiscounts(bytes32 _key, BonusDiscount[] calldata _bonusDiscounts) public onlyOwner {
if(_bonusDiscounts.length > 8) {
revert InvalidConfig();
}
uint256 packed;
for (uint8 i = 0; i < _bonusDiscounts.length; i++) {
if (i > 0 && _bonusDiscounts[i].numMints >= _bonusDiscounts[i - 1].numMints) {
revert InvalidConfig();
}
uint32 discount = (uint32(_bonusDiscounts[i].numMints) << 16) | uint32(_bonusDiscounts[i].numBonusMints);
packed |= uint256(discount) << (32 * i);
}
packedBonusDiscounts[_key] = packed;
}
function setBonusInvite(
bytes32 _key,
bytes32 _cid,
AdvancedInvite calldata _advancedInvite,
BonusDiscount[] calldata _bonusDiscount
) external _onlyOwner {
setBonusDiscounts(_key, _bonusDiscount);
setAdvancedInvite(_key, _cid, _advancedInvite);
}
function setInvite(
bytes32 _key,
bytes32 _cid,
Invite calldata _invite
) external _onlyOwner {
setAdvancedInvite(_key, _cid, AdvancedInvite({
price: _invite.price,
reservePrice: _invite.price,
delta: 0,
start: _invite.start,
end: _invite.end,
limit: _invite.limit,
maxSupply: _invite.maxSupply,
interval: 0,
unitSize: _invite.unitSize,
tokenAddress: _invite.tokenAddress,
isBlacklist: _invite.isBlacklist
}));
}
function setAdvancedInvite(
bytes32 _key,
bytes32 _cid,
AdvancedInvite memory _AdvancedInvite
) public _onlyOwner {
// approve token for withdrawals if erc20 list
if (_AdvancedInvite.tokenAddress != address(0)) {
bool success = IERC20(_AdvancedInvite.tokenAddress).approve(PAYOUTS, 2**256 - 1);
if (!success) {
revert NotApprovedToTransfer();
}
}
if (_AdvancedInvite.start < block.timestamp) {
_AdvancedInvite.start = uint32(block.timestamp);
}
invites[_key] = _AdvancedInvite;
emit Invited(_key, _cid);
}
function setBurnInvite(
bytes32 _key,
bytes32 _cid,
BurnInvite memory _burnInvite
) external _onlyOwner {
if (_burnInvite.start < block.timestamp) {
_burnInvite.start = uint32(block.timestamp);
}
burnInvites[_key] = _burnInvite;
emit BurnInvited(_key, _cid);
}
//
// INTERNAL
//
function _startTokenId() internal view virtual override returns (uint256) {
return 1;
}
function _msgSender() internal view returns (address) {
return msg.sender == BATCH ? tx.origin : msg.sender;
}
modifier _onlyPlatform() {
if (_msgSender() != PLATFORM) {
revert NotPlatform();
}
_;
}
modifier _onlyOwner() {
if (_msgSender() != owner()) {
revert NotOwner();
}
_;
}
function _refund(address to, uint256 refund) internal {
(bool success, ) = payable(to).call{ value: refund }("");
if (!success) {
revert TransferFailed();
}
}
//ERC2981 ROYALTY
function supportsInterface(bytes4 interfaceId)
public
view
virtual
override(IERC721AUpgradeable, ERC721AUpgradeable, ERC2981Upgradeable)
returns (bool)
{
// Supports the following `interfaceId`s:
// - IERC165: 0x01ffc9a7
// - IERC721: 0x80ac58cd
// - IERC721Metadata: 0x5b5e139f
// - IERC2981: 0x2a55205a
return
ERC721AUpgradeable.supportsInterface(interfaceId) ||
ERC2981Upgradeable.supportsInterface(interfaceId);
}
function setDefaultRoyalty(address receiver, uint16 feeNumerator) public _onlyOwner {
config.defaultRoyalty = feeNumerator;
_setDefaultRoyalty(receiver, feeNumerator);
}
}
// SPDX-License-Identifier: MIT
// ArchetypeLogic v0.8.0
//
// d8888 888 888
// d88888 888 888
// d88P888 888 888
// d88P 888 888d888 .d8888b 88888b. .d88b. 888888 888 888 88888b. .d88b.
// d88P 888 888P" d88P" 888 "88b d8P Y8b 888 888 888 888 "88b d8P Y8b
// d88P 888 888 888 888 888 88888888 888 888 888 888 888 88888888
// d8888888888 888 Y88b. 888 888 Y8b. Y88b. Y88b 888 888 d88P Y8b.
// d88P 888 888 "Y8888P 888 888 "Y8888 "Y888 "Y88888 88888P" "Y8888
// 888 888
// Y8b d88P 888
// "Y88P" 888
pragma solidity ^0.8.20;
import "../ArchetypePayouts.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "solady/src/utils/MerkleProofLib.sol";
import "solady/src/utils/ECDSA.sol";
error InvalidConfig();
error MintNotYetStarted();
error MintEnded();
error WalletUnauthorizedToMint();
error InsufficientEthSent();
error ExcessiveEthSent();
error Erc20BalanceTooLow();
error MaxSupplyExceeded();
error ListMaxSupplyExceeded();
error NumberOfMintsExceeded();
error MintingPaused();
error InvalidReferral();
error InvalidSignature();
error MaxBatchSizeExceeded();
error BurnToMintDisabled();
error NotTokenOwner();
error NotPlatform();
error NotOwner();
error NotShareholder();
error NotApprovedToTransfer();
error InvalidAmountOfTokens();
error WrongPassword();
error LockedForever();
error Blacklisted();
//
// STRUCTS
//
struct Auth {
bytes32 key;
bytes32[] proof;
}
struct BonusDiscount {
uint16 numMints;
uint16 numBonusMints;
}
struct Config {
string baseUri;
address affiliateSigner;
uint32 maxSupply;
uint32 maxBatchSize;
uint16 affiliateFee; //BPS
uint16 affiliateDiscount; //BPS
uint16 defaultRoyalty; //BPS
}
// allocation splits for withdrawn owner funds, must sum to 100%
struct PayoutConfig {
uint16 ownerBps;
uint16 platformBps;
uint16 partnerBps;
uint16 superAffiliateBps;
address partner;
address superAffiliate;
address ownerAltPayout;
}
struct Options {
bool uriLocked;
bool maxSupplyLocked;
bool affiliateFeeLocked;
bool ownerAltPayoutLocked;
}
struct AdvancedInvite {
uint128 price;
uint128 reservePrice;
uint128 delta;
uint32 start;
uint32 end;
uint32 limit;
uint32 maxSupply;
uint32 interval;
uint32 unitSize; // mint 1 get x
address tokenAddress;
bool isBlacklist;
}
struct Invite {
uint128 price;
uint32 start;
uint32 end;
uint32 limit;
uint32 maxSupply;
uint32 unitSize; // mint 1 get x
address tokenAddress;
bool isBlacklist;
}
struct BurnInvite {
IERC721 burnErc721;
address burnAddress;
address tokenAddress;
uint128 price; // flat price - does not support discounts
bool reversed; // side of the ratio (false=burn {ratio} get 1, true=burn 1 get {ratio})
uint16 ratio;
uint32 start;
uint32 end;
uint64 limit;
}
struct ValidationArgs {
address owner;
address affiliate;
uint256 quantity;
uint256 curSupply;
uint256 listSupply;
}
// UPDATE CONSTANTS BEFORE DEPLOY
address constant PLATFORM = 0x8952caF7E5bf1fe63ebe94148ca802F3eF127C98;
address constant BATCH = 0xEa49e7bE310716dA66725c84a5127d2F6A202eAf;
address constant PAYOUTS = 0xaAfdfA4a935d8511bF285af11A0544ce7e4a1199;
uint16 constant MAXBPS = 5000; // max fee or discount is 50%
uint32 constant UINT32_MAX = 2**32 - 1;
library ArchetypeLogicErc721a {
//
// EVENTS
//
event Invited(bytes32 indexed key, bytes32 indexed cid);
event BurnInvited(bytes32 indexed key, bytes32 indexed cid);
event Referral(address indexed affiliate, address token, uint128 wad, uint256 numMints);
event Withdrawal(address indexed src, address token, uint128 wad);
// calculate price based on affiliate usage and mint discounts
function computePrice(
AdvancedInvite storage invite,
uint16 affiliateDiscount,
uint256 numTokens,
uint256 listSupply,
bool affiliateUsed
) public view returns (uint256) {
uint256 price = invite.price;
uint256 cost;
if (invite.interval > 0 && invite.delta > 0) {
// Apply dutch pricing
uint256 diff = (((block.timestamp - invite.start) / invite.interval) * invite.delta);
if (price > invite.reservePrice) {
if (diff > price - invite.reservePrice) {
price = invite.reservePrice;
} else {
price = price - diff;
}
} else if (price < invite.reservePrice) {
if (diff > invite.reservePrice - price) {
price = invite.reservePrice;
} else {
price = price + diff;
}
}
cost = price * numTokens;
} else if (invite.interval == 0 && invite.delta > 0) {
// Apply linear curve
uint256 lastPrice = price + invite.delta * listSupply;
cost = lastPrice * numTokens + (invite.delta * numTokens * (numTokens - 1)) / 2;
} else {
cost = price * numTokens;
}
if (affiliateUsed) {
cost = cost - ((cost * affiliateDiscount) / 10000);
}
return cost;
}
function bonusMintsAwarded(uint256 numNfts, uint256 packedDiscount) internal pure returns (uint256) {
for (uint8 i = 0; i < 8; i++) {
uint32 discount = uint32((packedDiscount >> (32 * i)) & 0xFFFFFFFF);
uint16 tierNumMints = uint16(discount >> 16);
uint16 tierBonusMints = uint16(discount);
if (tierNumMints == 0) {
break; // End of valid discounts
}
if (numNfts >= tierNumMints) {
return (numNfts / tierNumMints) * tierBonusMints;
}
}
return 0;
}
function validateMint(
AdvancedInvite storage i,
Config storage config,
Auth calldata auth,
mapping(address => mapping(bytes32 => uint256)) storage minted,
bytes calldata signature,
ValidationArgs memory args,
uint128 cost
) public view {
address msgSender = _msgSender();
if (args.affiliate != address(0)) {
if (
args.affiliate == PLATFORM || args.affiliate == args.owner || args.affiliate == msgSender
) {
revert InvalidReferral();
}
validateAffiliate(args.affiliate, signature, config.affiliateSigner);
}
if (i.limit == 0) {
revert MintingPaused();
}
if (!i.isBlacklist) {
if (!verify(auth, i.tokenAddress, msgSender)) {
revert WalletUnauthorizedToMint();
}
} else {
if (verify(auth, i.tokenAddress, msgSender)) {
revert Blacklisted();
}
}
if (block.timestamp < i.start) {
revert MintNotYetStarted();
}
if (i.end > i.start && block.timestamp > i.end) {
revert MintEnded();
}
if (i.limit < i.maxSupply) {
uint256 totalAfterMint = minted[msgSender][auth.key] + args.quantity;
if (totalAfterMint > i.limit) {
revert NumberOfMintsExceeded();
}
}
if (i.maxSupply < config.maxSupply) {
uint256 totalAfterMint = args.listSupply + args.quantity;
if (totalAfterMint > i.maxSupply) {
revert ListMaxSupplyExceeded();
}
}
if (args.quantity > config.maxBatchSize) {
revert MaxBatchSizeExceeded();
}
if ((args.curSupply + args.quantity) > config.maxSupply) {
revert MaxSupplyExceeded();
}
if (i.tokenAddress != address(0)) {
IERC20 erc20Token = IERC20(i.tokenAddress);
if (erc20Token.allowance(msgSender, address(this)) < cost) {
revert NotApprovedToTransfer();
}
if (erc20Token.balanceOf(msgSender) < cost) {
revert Erc20BalanceTooLow();
}
if (msg.value != 0) {
revert ExcessiveEthSent();
}
} else {
if (msg.value < cost) {
revert InsufficientEthSent();
}
}
}
function validateBurnToMint(
BurnInvite storage burnInvite,
Config storage config,
Auth calldata auth,
uint256[] calldata tokenIds,
uint256 curSupply,
mapping(address => mapping(bytes32 => uint256)) storage minted,
uint128 cost
) public view {
if (burnInvite.limit == 0) {
revert MintingPaused();
}
if (block.timestamp < burnInvite.start) {
revert MintNotYetStarted();
}
if (burnInvite.end > burnInvite.start && block.timestamp > burnInvite.end) {
revert MintEnded();
}
// check if msgSender owns tokens and has correct approvals
address msgSender = _msgSender();
for (uint256 i; i < tokenIds.length; ) {
if (burnInvite.burnErc721.ownerOf(tokenIds[i]) != msgSender) {
revert NotTokenOwner();
}
unchecked {
++i;
}
}
if (!verify(auth, burnInvite.tokenAddress, msgSender)) {
revert WalletUnauthorizedToMint();
}
if (!burnInvite.burnErc721.isApprovedForAll(msgSender, address(this))) {
revert NotApprovedToTransfer();
}
uint256 quantity;
if (burnInvite.reversed) {
quantity = tokenIds.length * burnInvite.ratio;
} else {
if (tokenIds.length % burnInvite.ratio != 0) {
revert InvalidAmountOfTokens();
}
quantity = tokenIds.length / burnInvite.ratio;
}
if (quantity > config.maxBatchSize) {
revert MaxBatchSizeExceeded();
}
if (burnInvite.limit < config.maxSupply) {
uint256 totalAfterMint = minted[msgSender][keccak256(abi.encodePacked("burn", auth.key))] +
quantity;
if (totalAfterMint > burnInvite.limit) {
revert NumberOfMintsExceeded();
}
}
if ((curSupply + quantity) > config.maxSupply) {
revert MaxSupplyExceeded();
}
if (burnInvite.tokenAddress != address(0)) {
IERC20 erc20Token = IERC20(burnInvite.tokenAddress);
if (erc20Token.allowance(msgSender, address(this)) < cost) {
revert NotApprovedToTransfer();
}
if (erc20Token.balanceOf(msgSender) < cost) {
revert Erc20BalanceTooLow();
}
if (msg.value != 0) {
revert ExcessiveEthSent();
}
} else {
if (msg.value < cost) {
revert InsufficientEthSent();
}
}
}
function updateBalances(
address tokenAddress,
Config storage config,
mapping(address => uint128) storage _ownerBalance,
mapping(address => mapping(address => uint128)) storage _affiliateBalance,
address affiliate,
uint256 quantity,
uint128 value
) public {
uint128 affiliateWad;
if (affiliate != address(0)) {
affiliateWad = (value * config.affiliateFee) / 10000;
_affiliateBalance[affiliate][tokenAddress] += affiliateWad;
emit Referral(affiliate, tokenAddress, affiliateWad, quantity);
}
uint128 balance = _ownerBalance[tokenAddress];
uint128 ownerWad = value - affiliateWad;
_ownerBalance[tokenAddress] = balance + ownerWad;
if (tokenAddress != address(0)) {
IERC20 erc20Token = IERC20(tokenAddress);
bool success = erc20Token.transferFrom(_msgSender(), address(this), value);
if (!success) {
revert TransferFailed();
}
}
}
function withdrawTokensAffiliate(
mapping(address => mapping(address => uint128)) storage _affiliateBalance,
address[] calldata tokens
) public {
address msgSender = _msgSender();
for (uint256 i; i < tokens.length; i++) {
address tokenAddress = tokens[i];
uint128 wad = _affiliateBalance[msgSender][tokenAddress];
_affiliateBalance[msgSender][tokenAddress] = 0;
if (wad == 0) {
revert BalanceEmpty();
}
if (tokenAddress == address(0)) {
bool success = false;
(success, ) = msgSender.call{ value: wad }("");
if (!success) {
revert TransferFailed();
}
} else {
IERC20 erc20Token = IERC20(tokenAddress);
bool success = erc20Token.transfer(msgSender, wad);
if (!success) {
revert TransferFailed();
}
}
emit Withdrawal(msgSender, tokenAddress, wad);
}
}
function withdrawTokens(
PayoutConfig storage payoutConfig,
mapping(address => uint128) storage _ownerBalance,
address owner,
address[] calldata tokens
) public {
address msgSender = _msgSender();
for (uint256 i; i < tokens.length; i++) {
address tokenAddress = tokens[i];
uint128 wad;
if (
msgSender == owner ||
msgSender == PLATFORM ||
msgSender == payoutConfig.partner ||
msgSender == payoutConfig.superAffiliate ||
msgSender == payoutConfig.ownerAltPayout
) {
wad = _ownerBalance[tokenAddress];
_ownerBalance[tokenAddress] = 0;
} else {
revert NotShareholder();
}
if (wad == 0) {
revert BalanceEmpty();
}
if (payoutConfig.ownerAltPayout == address(0)) {
address[] memory recipients = new address[](4);
recipients[0] = owner;
recipients[1] = PLATFORM;
recipients[2] = payoutConfig.partner;
recipients[3] = payoutConfig.superAffiliate;
uint16[] memory splits = new uint16[](4);
splits[0] = payoutConfig.ownerBps;
splits[1] = payoutConfig.platformBps;
splits[2] = payoutConfig.partnerBps;
splits[3] = payoutConfig.superAffiliateBps;
if (tokenAddress == address(0)) {
ArchetypePayouts(PAYOUTS).updateBalances{ value: wad }(
wad,
tokenAddress,
recipients,
splits
);
} else {
ArchetypePayouts(PAYOUTS).updateBalances(wad, tokenAddress, recipients, splits);
}
} else {
uint256 ownerShare = (uint256(wad) * payoutConfig.ownerBps) / 10000;
uint256 remainingShare = wad - ownerShare;
if (tokenAddress == address(0)) {
(bool success, ) = payable(payoutConfig.ownerAltPayout).call{ value: ownerShare }("");
if (!success) revert TransferFailed();
} else {
IERC20(tokenAddress).transfer(payoutConfig.ownerAltPayout, ownerShare);
}
address[] memory recipients = new address[](3);
recipients[0] = PLATFORM;
recipients[1] = payoutConfig.partner;
recipients[2] = payoutConfig.superAffiliate;
uint16[] memory splits = new uint16[](3);
uint16 remainingBps = 10000 - payoutConfig.ownerBps;
splits[1] = uint16((uint256(payoutConfig.partnerBps) * 10000) / remainingBps);
splits[2] = uint16((uint256(payoutConfig.superAffiliateBps) * 10000) / remainingBps);
splits[0] = 10000 - splits[1] - splits[2];
if (tokenAddress == address(0)) {
ArchetypePayouts(PAYOUTS).updateBalances{ value: remainingShare }(
remainingShare,
tokenAddress,
recipients,
splits
);
} else {
ArchetypePayouts(PAYOUTS).updateBalances(
remainingShare,
tokenAddress,
recipients,
splits
);
}
}
emit Withdrawal(msgSender, tokenAddress, wad);
}
}
function validateAffiliate(
address affiliate,
bytes calldata signature,
address affiliateSigner
) public view {
bytes32 signedMessagehash = ECDSA.toEthSignedMessageHash(
keccak256(abi.encodePacked(affiliate))
);
address signer = ECDSA.recover(signedMessagehash, signature);
if (signer != affiliateSigner) {
revert InvalidSignature();
}
}
function verify(
Auth calldata auth,
address tokenAddress,
address account
) public pure returns (bool) {
// keys 0-255 and tokenAddress are public
if (uint256(auth.key) <= 0xff || auth.key == keccak256(abi.encodePacked(tokenAddress))) {
return true;
}
return MerkleProofLib.verify(auth.proof, auth.key, keccak256(abi.encodePacked(account)));
}
function _msgSender() internal view returns (address) {
return msg.sender == BATCH ? tx.origin : msg.sender;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
import 'erc721a-upgradeable/contracts/ERC721A__Initializable.sol';
import 'erc721a-upgradeable/contracts/ERC721AUpgradeable.sol';
pragma solidity ^0.8.4;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract ERC721A__OwnableUpgradeable is ERC721A__Initializable, ERC721AUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal onlyInitializingERC721A {
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal onlyInitializingERC721A {
_transferOwnership(_msgSenderERC721A());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_isOwner();
_;
}
function _isOwner() internal view {
require(owner() == _msgSenderERC721A(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev This is a base contract to aid in writing upgradeable diamond facet contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*/
import {ERC721A__InitializableStorage} from './ERC721A__InitializableStorage.sol';
abstract contract ERC721A__Initializable {
using ERC721A__InitializableStorage for ERC721A__InitializableStorage.Layout;
/**
* @dev Modifier to protect an initializer function from being invoked twice.
*/
modifier initializerERC721A() {
// If the contract is initializing we ignore whether _initialized is set in order to support multiple
// inheritance patterns, but we only do this in the context of a constructor, because in other contexts the
// contract may have been reentered.
require(
ERC721A__InitializableStorage.layout()._initializing
? _isConstructor()
: !ERC721A__InitializableStorage.layout()._initialized,
'ERC721A__Initializable: contract is already initialized'
);
bool isTopLevelCall = !ERC721A__InitializableStorage.layout()._initializing;
if (isTopLevelCall) {
ERC721A__InitializableStorage.layout()._initializing = true;
ERC721A__InitializableStorage.layout()._initialized = true;
}
_;
if (isTopLevelCall) {
ERC721A__InitializableStorage.layout()._initializing = false;
}
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} modifier, directly or indirectly.
*/
modifier onlyInitializingERC721A() {
require(
ERC721A__InitializableStorage.layout()._initializing,
'ERC721A__Initializable: contract is not initializing'
);
_;
}
/// @dev Returns true if and only if the function is running in the constructor
function _isConstructor() private view returns (bool) {
// extcodesize checks the size of the code stored in an address, and
// address returns the current address. Since the code is still not
// deployed when running a constructor, any checks on its code size will
// yield zero, making it an effective way to detect if a contract is
// under construction or not.
address self = address(this);
uint256 cs;
assembly {
cs := extcodesize(self)
}
return cs == 0;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev This is a base storage for the initialization function for upgradeable diamond facet contracts
**/
library ERC721A__InitializableStorage {
struct Layout {
/*
* Indicates that the contract has been initialized.
*/
bool _initialized;
/*
* Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
bytes32 internal constant STORAGE_SLOT = keccak256('ERC721A.contracts.storage.initializable.facet');
function layout() internal pure returns (Layout storage l) {
bytes32 slot = STORAGE_SLOT;
assembly {
l.slot := slot
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library ERC721AStorage {
// Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
struct TokenApprovalRef {
address value;
}
struct Layout {
// =============================================================
// STORAGE
// =============================================================
// The next token ID to be minted.
uint256 _currentIndex;
// The number of tokens burned.
uint256 _burnCounter;
// Token name
string _name;
// Token symbol
string _symbol;
// Mapping from token ID to ownership details
// An empty struct value does not necessarily mean the token is unowned.
// See {_packedOwnershipOf} implementation for details.
//
// Bits Layout:
// - [0..159] `addr`
// - [160..223] `startTimestamp`
// - [224] `burned`
// - [225] `nextInitialized`
// - [232..255] `extraData`
mapping(uint256 => uint256) _packedOwnerships;
// Mapping owner address to address data.
//
// Bits Layout:
// - [0..63] `balance`
// - [64..127] `numberMinted`
// - [128..191] `numberBurned`
// - [192..255] `aux`
mapping(address => uint256) _packedAddressData;
// Mapping from token ID to approved address.
mapping(uint256 => ERC721AStorage.TokenApprovalRef) _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) _operatorApprovals;
// The amount of tokens minted above `_sequentialUpTo()`.
// We call these spot mints (i.e. non-sequential mints).
uint256 _spotMinted;
}
bytes32 internal constant STORAGE_SLOT = keccak256('ERC721A.contracts.storage.ERC721A');
function layout() internal pure returns (Layout storage l) {
bytes32 slot = STORAGE_SLOT;
assembly {
l.slot := slot
}
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.3.0
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721AUpgradeable.sol';
import {ERC721AStorage} from './ERC721AStorage.sol';
import './ERC721A__Initializable.sol';
/**
* @dev Interface of ERC721 token receiver.
*/
interface ERC721A__IERC721ReceiverUpgradeable {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
/**
* @title ERC721A
*
* @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
* Non-Fungible Token Standard, including the Metadata extension.
* Optimized for lower gas during batch mints.
*
* Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
* starting from `_startTokenId()`.
*
* The `_sequentialUpTo()` function can be overriden to enable spot mints
* (i.e. non-consecutive mints) for `tokenId`s greater than `_sequentialUpTo()`.
*
* Assumptions:
*
* - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
* - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
*/
contract ERC721AUpgradeable is ERC721A__Initializable, IERC721AUpgradeable {
using ERC721AStorage for ERC721AStorage.Layout;
// =============================================================
// CONSTANTS
// =============================================================
// Mask of an entry in packed address data.
uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
// The bit position of `numberMinted` in packed address data.
uint256 private constant _BITPOS_NUMBER_MINTED = 64;
// The bit position of `numberBurned` in packed address data.
uint256 private constant _BITPOS_NUMBER_BURNED = 128;
// The bit position of `aux` in packed address data.
uint256 private constant _BITPOS_AUX = 192;
// Mask of all 256 bits in packed address data except the 64 bits for `aux`.
uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
// The bit position of `startTimestamp` in packed ownership.
uint256 private constant _BITPOS_START_TIMESTAMP = 160;
// The bit mask of the `burned` bit in packed ownership.
uint256 private constant _BITMASK_BURNED = 1 << 224;
// The bit position of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
// The bit mask of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
// The bit position of `extraData` in packed ownership.
uint256 private constant _BITPOS_EXTRA_DATA = 232;
// Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
// The mask of the lower 160 bits for addresses.
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
// The maximum `quantity` that can be minted with {_mintERC2309}.
// This limit is to prevent overflows on the address data entries.
// For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
// is required to cause an overflow, which is unrealistic.
uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
// The `Transfer` event signature is given by:
// `keccak256(bytes("Transfer(address,address,uint256)"))`.
bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
// =============================================================
// CONSTRUCTOR
// =============================================================
function __ERC721A_init(string memory name_, string memory symbol_) internal onlyInitializingERC721A {
__ERC721A_init_unchained(name_, symbol_);
}
function __ERC721A_init_unchained(string memory name_, string memory symbol_) internal onlyInitializingERC721A {
ERC721AStorage.layout()._name = name_;
ERC721AStorage.layout()._symbol = symbol_;
ERC721AStorage.layout()._currentIndex = _startTokenId();
if (_sequentialUpTo() < _startTokenId()) _revert(SequentialUpToTooSmall.selector);
}
// =============================================================
// TOKEN COUNTING OPERATIONS
// =============================================================
/**
* @dev Returns the starting token ID for sequential mints.
*
* Override this function to change the starting token ID for sequential mints.
*
* Note: The value returned must never change after any tokens have been minted.
*/
function _startTokenId() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev Returns the maximum token ID (inclusive) for sequential mints.
*
* Override this function to return a value less than 2**256 - 1,
* but greater than `_startTokenId()`, to enable spot (non-sequential) mints.
*
* Note: The value returned must never change after any tokens have been minted.
*/
function _sequentialUpTo() internal view virtual returns (uint256) {
return type(uint256).max;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view virtual returns (uint256) {
return ERC721AStorage.layout()._currentIndex;
}
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() public view virtual override returns (uint256 result) {
// Counter underflow is impossible as `_burnCounter` cannot be incremented
// more than `_currentIndex + _spotMinted - _startTokenId()` times.
unchecked {
// With spot minting, the intermediate `result` can be temporarily negative,
// and the computation must be unchecked.
result = ERC721AStorage.layout()._currentIndex - ERC721AStorage.layout()._burnCounter - _startTokenId();
if (_sequentialUpTo() != type(uint256).max) result += ERC721AStorage.layout()._spotMinted;
}
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view virtual returns (uint256 result) {
// Counter underflow is impossible as `_currentIndex` does not decrement,
// and it is initialized to `_startTokenId()`.
unchecked {
result = ERC721AStorage.layout()._currentIndex - _startTokenId();
if (_sequentialUpTo() != type(uint256).max) result += ERC721AStorage.layout()._spotMinted;
}
}
/**
* @dev Returns the total number of tokens burned.
*/
function _totalBurned() internal view virtual returns (uint256) {
return ERC721AStorage.layout()._burnCounter;
}
/**
* @dev Returns the total number of tokens that are spot-minted.
*/
function _totalSpotMinted() internal view virtual returns (uint256) {
return ERC721AStorage.layout()._spotMinted;
}
// =============================================================
// ADDRESS DATA OPERATIONS
// =============================================================
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector);
return ERC721AStorage.layout()._packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens minted by `owner`.
*/
function _numberMinted(address owner) internal view returns (uint256) {
return
(ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens burned by or on behalf of `owner`.
*/
function _numberBurned(address owner) internal view returns (uint256) {
return
(ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
*/
function _getAux(address owner) internal view returns (uint64) {
return uint64(ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_AUX);
}
/**
* Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
* If there are multiple variables, please pack them into a uint64.
*/
function _setAux(address owner, uint64 aux) internal virtual {
uint256 packed = ERC721AStorage.layout()._packedAddressData[owner];
uint256 auxCasted;
// Cast `aux` with assembly to avoid redundant masking.
assembly {
auxCasted := aux
}
packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
ERC721AStorage.layout()._packedAddressData[owner] = packed;
}
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
// The interface IDs are constants representing the first 4 bytes
// of the XOR of all function selectors in the interface.
// See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
// (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
return
interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
}
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() public view virtual override returns (string memory) {
return ERC721AStorage.layout()._name;
}
/**
* @dev Returns the token collection symbol.
*/
function symbol() public view virtual override returns (string memory) {
return ERC721AStorage.layout()._symbol;
}
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector);
string memory baseURI = _baseURI();
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, it can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return '';
}
// =============================================================
// OWNERSHIPS OPERATIONS
// =============================================================
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return address(uint160(_packedOwnershipOf(tokenId)));
}
/**
* @dev Gas spent here starts off proportional to the maximum mint batch size.
* It gradually moves to O(1) as tokens get transferred around over time.
*/
function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnershipOf(tokenId));
}
/**
* @dev Returns the unpacked `TokenOwnership` struct at `index`.
*/
function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(ERC721AStorage.layout()._packedOwnerships[index]);
}
/**
* @dev Returns whether the ownership slot at `index` is initialized.
* An uninitialized slot does not necessarily mean that the slot has no owner.
*/
function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) {
return ERC721AStorage.layout()._packedOwnerships[index] != 0;
}
/**
* @dev Initializes the ownership slot minted at `index` for efficiency purposes.
*/
function _initializeOwnershipAt(uint256 index) internal virtual {
if (ERC721AStorage.layout()._packedOwnerships[index] == 0) {
ERC721AStorage.layout()._packedOwnerships[index] = _packedOwnershipOf(index);
}
}
/**
* @dev Returns the packed ownership data of `tokenId`.
*/
function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) {
if (_startTokenId() <= tokenId) {
packed = ERC721AStorage.layout()._packedOwnerships[tokenId];
if (tokenId > _sequentialUpTo()) {
if (_packedOwnershipExists(packed)) return packed;
_revert(OwnerQueryForNonexistentToken.selector);
}
// If the data at the starting slot does not exist, start the scan.
if (packed == 0) {
if (tokenId >= ERC721AStorage.layout()._currentIndex) _revert(OwnerQueryForNonexistentToken.selector);
// Invariant:
// There will always be an initialized ownership slot
// (i.e. `ownership.addr != address(0) && ownership.burned == false`)
// before an unintialized ownership slot
// (i.e. `ownership.addr == address(0) && ownership.burned == false`)
// Hence, `tokenId` will not underflow.
//
// We can directly compare the packed value.
// If the address is zero, packed will be zero.
for (;;) {
unchecked {
packed = ERC721AStorage.layout()._packedOwnerships[--tokenId];
}
if (packed == 0) continue;
if (packed & _BITMASK_BURNED == 0) return packed;
// Otherwise, the token is burned, and we must revert.
// This handles the case of batch burned tokens, where only the burned bit
// of the starting slot is set, and remaining slots are left uninitialized.
_revert(OwnerQueryForNonexistentToken.selector);
}
}
// Otherwise, the data exists and we can skip the scan.
// This is possible because we have already achieved the target condition.
// This saves 2143 gas on transfers of initialized tokens.
// If the token is not burned, return `packed`. Otherwise, revert.
if (packed & _BITMASK_BURNED == 0) return packed;
}
_revert(OwnerQueryForNonexistentToken.selector);
}
/**
* @dev Returns the unpacked `TokenOwnership` struct from `packed`.
*/
function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
ownership.addr = address(uint160(packed));
ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
ownership.burned = packed & _BITMASK_BURNED != 0;
ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
}
/**
* @dev Packs ownership data into a single uint256.
*/
function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
}
}
/**
* @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
*/
function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
// For branchless setting of the `nextInitialized` flag.
assembly {
// `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
}
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
*/
function approve(address to, uint256 tokenId) public payable virtual override {
_approve(to, tokenId, true);
}
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
if (!_exists(tokenId)) _revert(ApprovalQueryForNonexistentToken.selector);
return ERC721AStorage.layout()._tokenApprovals[tokenId].value;
}
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
ERC721AStorage.layout()._operatorApprovals[_msgSenderERC721A()][operator] = approved;
emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
}
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return ERC721AStorage.layout()._operatorApprovals[owner][operator];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted. See {_mint}.
*/
function _exists(uint256 tokenId) internal view virtual returns (bool result) {
if (_startTokenId() <= tokenId) {
if (tokenId > _sequentialUpTo())
return _packedOwnershipExists(ERC721AStorage.layout()._packedOwnerships[tokenId]);
if (tokenId < ERC721AStorage.layout()._currentIndex) {
uint256 packed;
while ((packed = ERC721AStorage.layout()._packedOwnerships[tokenId]) == 0) --tokenId;
result = packed & _BITMASK_BURNED == 0;
}
}
}
/**
* @dev Returns whether `packed` represents a token that exists.
*/
function _packedOwnershipExists(uint256 packed) private pure returns (bool result) {
assembly {
// The following is equivalent to `owner != address(0) && burned == false`.
// Symbolically tested.
result := gt(and(packed, _BITMASK_ADDRESS), and(packed, _BITMASK_BURNED))
}
}
/**
* @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
*/
function _isSenderApprovedOrOwner(
address approvedAddress,
address owner,
address msgSender
) private pure returns (bool result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
msgSender := and(msgSender, _BITMASK_ADDRESS)
// `msgSender == owner || msgSender == approvedAddress`.
result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
}
}
/**
* @dev Returns the storage slot and value for the approved address of `tokenId`.
*/
function _getApprovedSlotAndAddress(uint256 tokenId)
private
view
returns (uint256 approvedAddressSlot, address approvedAddress)
{
ERC721AStorage.TokenApprovalRef storage tokenApproval = ERC721AStorage.layout()._tokenApprovals[tokenId];
// The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
assembly {
approvedAddressSlot := tokenApproval.slot
approvedAddress := sload(approvedAddressSlot)
}
}
// =============================================================
// TRANSFER OPERATIONS
// =============================================================
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
// Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean.
from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS));
if (address(uint160(prevOwnershipPacked)) != from) _revert(TransferFromIncorrectOwner.selector);
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
_beforeTokenTransfers(from, to, tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// We can directly increment and decrement the balances.
--ERC721AStorage.layout()._packedAddressData[from]; // Updates: `balance -= 1`.
++ERC721AStorage.layout()._packedAddressData[to]; // Updates: `balance += 1`.
// Updates:
// - `address` to the next owner.
// - `startTimestamp` to the timestamp of transfering.
// - `burned` to `false`.
// - `nextInitialized` to `true`.
ERC721AStorage.layout()._packedOwnerships[tokenId] = _packOwnershipData(
to,
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (ERC721AStorage.layout()._packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != ERC721AStorage.layout()._currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
ERC721AStorage.layout()._packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
from, // `from`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
if (toMasked == 0) _revert(TransferToZeroAddress.selector);
_afterTokenTransfers(from, to, tokenId, 1);
}
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
safeTransferFrom(from, to, tokenId, '');
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public payable virtual override {
transferFrom(from, to, tokenId);
if (to.code.length != 0)
if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
}
/**
* @dev Hook that is called before a set of serially-ordered token IDs
* are about to be transferred. This includes minting.
* And also called before burning one token.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Hook that is called after a set of serially-ordered token IDs
* have been transferred. This includes minting.
* And also called after one token has been burned.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
* transferred to `to`.
* - When `from` is zero, `tokenId` has been minted for `to`.
* - When `to` is zero, `tokenId` has been burned by `from`.
* - `from` and `to` are never both zero.
*/
function _afterTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
*
* `from` - Previous owner of the given token ID.
* `to` - Target address that will receive the token.
* `tokenId` - Token ID to be transferred.
* `_data` - Optional data to send along with the call.
*
* Returns whether the call correctly returned the expected magic value.
*/
function _checkContractOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
try
ERC721A__IERC721ReceiverUpgradeable(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data)
returns (bytes4 retval) {
return retval == ERC721A__IERC721ReceiverUpgradeable(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
assembly {
revert(add(32, reason), mload(reason))
}
}
}
// =============================================================
// MINT OPERATIONS
// =============================================================
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {Transfer} event for each mint.
*/
function _mint(address to, uint256 quantity) internal virtual {
uint256 startTokenId = ERC721AStorage.layout()._currentIndex;
if (quantity == 0) _revert(MintZeroQuantity.selector);
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are incredibly unrealistic.
// `balance` and `numberMinted` have a maximum limit of 2**64.
// `tokenId` has a maximum limit of 2**256.
unchecked {
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
ERC721AStorage.layout()._packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
ERC721AStorage.layout()._packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
if (toMasked == 0) _revert(MintToZeroAddress.selector);
uint256 end = startTokenId + quantity;
uint256 tokenId = startTokenId;
if (end - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);
do {
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
// The `!=` check ensures that large values of `quantity`
// that overflows uint256 will make the loop run out of gas.
} while (++tokenId != end);
ERC721AStorage.layout()._currentIndex = end;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* This function is intended for efficient minting only during contract creation.
*
* It emits only one {ConsecutiveTransfer} as defined in
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
* instead of a sequence of {Transfer} event(s).
*
* Calling this function outside of contract creation WILL make your contract
* non-compliant with the ERC721 standard.
* For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
* {ConsecutiveTransfer} event is only permissible during contract creation.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {ConsecutiveTransfer} event.
*/
function _mintERC2309(address to, uint256 quantity) internal virtual {
uint256 startTokenId = ERC721AStorage.layout()._currentIndex;
if (to == address(0)) _revert(MintToZeroAddress.selector);
if (quantity == 0) _revert(MintZeroQuantity.selector);
if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) _revert(MintERC2309QuantityExceedsLimit.selector);
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are unrealistic due to the above check for `quantity` to be below the limit.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
ERC721AStorage.layout()._packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
ERC721AStorage.layout()._packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
if (startTokenId + quantity - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);
emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
ERC721AStorage.layout()._currentIndex = startTokenId + quantity;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Safely mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
* - `quantity` must be greater than 0.
*
* See {_mint}.
*
* Emits a {Transfer} event for each mint.
*/
function _safeMint(
address to,
uint256 quantity,
bytes memory _data
) internal virtual {
_mint(to, quantity);
unchecked {
if (to.code.length != 0) {
uint256 end = ERC721AStorage.layout()._currentIndex;
uint256 index = end - quantity;
do {
if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
} while (index < end);
// This prevents reentrancy to `_safeMint`.
// It does not prevent reentrancy to `_safeMintSpot`.
if (ERC721AStorage.layout()._currentIndex != end) revert();
}
}
}
/**
* @dev Equivalent to `_safeMint(to, quantity, '')`.
*/
function _safeMint(address to, uint256 quantity) internal virtual {
_safeMint(to, quantity, '');
}
/**
* @dev Mints a single token at `tokenId`.
*
* Note: A spot-minted `tokenId` that has been burned can be re-minted again.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` must be greater than `_sequentialUpTo()`.
* - `tokenId` must not exist.
*
* Emits a {Transfer} event for each mint.
*/
function _mintSpot(address to, uint256 tokenId) internal virtual {
if (tokenId <= _sequentialUpTo()) _revert(SpotMintTokenIdTooSmall.selector);
uint256 prevOwnershipPacked = ERC721AStorage.layout()._packedOwnerships[tokenId];
if (_packedOwnershipExists(prevOwnershipPacked)) _revert(TokenAlreadyExists.selector);
_beforeTokenTransfers(address(0), to, tokenId, 1);
// Overflows are incredibly unrealistic.
// The `numberMinted` for `to` is incremented by 1, and has a max limit of 2**64 - 1.
// `_spotMinted` is incremented by 1, and has a max limit of 2**256 - 1.
unchecked {
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `true` (as `quantity == 1`).
ERC721AStorage.layout()._packedOwnerships[tokenId] = _packOwnershipData(
to,
_nextInitializedFlag(1) | _nextExtraData(address(0), to, prevOwnershipPacked)
);
// Updates:
// - `balance += 1`.
// - `numberMinted += 1`.
//
// We can directly add to the `balance` and `numberMinted`.
ERC721AStorage.layout()._packedAddressData[to] += (1 << _BITPOS_NUMBER_MINTED) | 1;
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
if (toMasked == 0) _revert(MintToZeroAddress.selector);
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
++ERC721AStorage.layout()._spotMinted;
}
_afterTokenTransfers(address(0), to, tokenId, 1);
}
/**
* @dev Safely mints a single token at `tokenId`.
*
* Note: A spot-minted `tokenId` that has been burned can be re-minted again.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}.
* - `tokenId` must be greater than `_sequentialUpTo()`.
* - `tokenId` must not exist.
*
* See {_mintSpot}.
*
* Emits a {Transfer} event.
*/
function _safeMintSpot(
address to,
uint256 tokenId,
bytes memory _data
) internal virtual {
_mintSpot(to, tokenId);
unchecked {
if (to.code.length != 0) {
uint256 currentSpotMinted = ERC721AStorage.layout()._spotMinted;
if (!_checkContractOnERC721Received(address(0), to, tokenId, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
// This prevents reentrancy to `_safeMintSpot`.
// It does not prevent reentrancy to `_safeMint`.
if (ERC721AStorage.layout()._spotMinted != currentSpotMinted) revert();
}
}
}
/**
* @dev Equivalent to `_safeMintSpot(to, tokenId, '')`.
*/
function _safeMintSpot(address to, uint256 tokenId) internal virtual {
_safeMintSpot(to, tokenId, '');
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_approve(to, tokenId, false)`.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_approve(to, tokenId, false);
}
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function _approve(
address to,
uint256 tokenId,
bool approvalCheck
) internal virtual {
address owner = ownerOf(tokenId);
if (approvalCheck && _msgSenderERC721A() != owner)
if (!isApprovedForAll(owner, _msgSenderERC721A())) {
_revert(ApprovalCallerNotOwnerNorApproved.selector);
}
ERC721AStorage.layout()._tokenApprovals[tokenId].value = to;
emit Approval(owner, to, tokenId);
}
// =============================================================
// BURN OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_burn(tokenId, false)`.
*/
function _burn(uint256 tokenId) internal virtual {
_burn(tokenId, false);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
address from = address(uint160(prevOwnershipPacked));
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
if (approvalCheck) {
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
}
_beforeTokenTransfers(from, address(0), tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// Updates:
// - `balance -= 1`.
// - `numberBurned += 1`.
//
// We can directly decrement the balance, and increment the number burned.
// This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
ERC721AStorage.layout()._packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
// Updates:
// - `address` to the last owner.
// - `startTimestamp` to the timestamp of burning.
// - `burned` to `true`.
// - `nextInitialized` to `true`.
ERC721AStorage.layout()._packedOwnerships[tokenId] = _packOwnershipData(
from,
(_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (ERC721AStorage.layout()._packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != ERC721AStorage.layout()._currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
ERC721AStorage.layout()._packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, address(0), tokenId);
_afterTokenTransfers(from, address(0), tokenId, 1);
// Overflow not possible, as `_burnCounter` cannot be exceed `_currentIndex + _spotMinted` times.
unchecked {
ERC721AStorage.layout()._burnCounter++;
}
}
// =============================================================
// EXTRA DATA OPERATIONS
// =============================================================
/**
* @dev Directly sets the extra data for the ownership data `index`.
*/
function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
uint256 packed = ERC721AStorage.layout()._packedOwnerships[index];
if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector);
uint256 extraDataCasted;
// Cast `extraData` with assembly to avoid redundant masking.
assembly {
extraDataCasted := extraData
}
packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
ERC721AStorage.layout()._packedOwnerships[index] = packed;
}
/**
* @dev Called during each token transfer to set the 24bit `extraData` field.
* Intended to be overridden by the cosumer contract.
*
* `previousExtraData` - the value of `extraData` before transfer.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _extraData(
address from,
address to,
uint24 previousExtraData
) internal view virtual returns (uint24) {}
/**
* @dev Returns the next extra data for the packed ownership data.
* The returned result is shifted into position.
*/
function _nextExtraData(
address from,
address to,
uint256 prevOwnershipPacked
) private view returns (uint256) {
uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
}
// =============================================================
// OTHER OPERATIONS
// =============================================================
/**
* @dev Returns the message sender (defaults to `msg.sender`).
*
* If you are writing GSN compatible contracts, you need to override this function.
*/
function _msgSenderERC721A() internal view virtual returns (address) {
return msg.sender;
}
/**
* @dev Converts a uint256 to its ASCII string decimal representation.
*/
function _toString(uint256 value) internal pure virtual returns (string memory str) {
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
let m := add(mload(0x40), 0xa0)
// Update the free memory pointer to allocate.
mstore(0x40, m)
// Assign the `str` to the end.
str := sub(m, 0x20)
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
// prettier-ignore
for { let temp := value } 1 {} {
str := sub(str, 1)
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
// prettier-ignore
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
/**
* @dev For more efficient reverts.
*/
function _revert(bytes4 errorSelector) internal pure {
assembly {
mstore(0x00, errorSelector)
revert(0x00, 0x04)
}
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.3.0
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721AQueryableUpgradeable.sol';
import '../ERC721AUpgradeable.sol';
import '../ERC721A__Initializable.sol';
/**
* @title ERC721AQueryable.
*
* @dev ERC721A subclass with convenience query functions.
*/
abstract contract ERC721AQueryableUpgradeable is
ERC721A__Initializable,
ERC721AUpgradeable,
IERC721AQueryableUpgradeable
{
function __ERC721AQueryable_init() internal onlyInitializingERC721A {
__ERC721AQueryable_init_unchained();
}
function __ERC721AQueryable_init_unchained() internal onlyInitializingERC721A {}
/**
* @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
*
* If the `tokenId` is out of bounds:
*
* - `addr = address(0)`
* - `startTimestamp = 0`
* - `burned = false`
* - `extraData = 0`
*
* If the `tokenId` is burned:
*
* - `addr = <Address of owner before token was burned>`
* - `startTimestamp = <Timestamp when token was burned>`
* - `burned = true`
* - `extraData = <Extra data when token was burned>`
*
* Otherwise:
*
* - `addr = <Address of owner>`
* - `startTimestamp = <Timestamp of start of ownership>`
* - `burned = false`
* - `extraData = <Extra data at start of ownership>`
*/
function explicitOwnershipOf(uint256 tokenId)
public
view
virtual
override
returns (TokenOwnership memory ownership)
{
unchecked {
if (tokenId >= _startTokenId()) {
if (tokenId > _sequentialUpTo()) return _ownershipAt(tokenId);
if (tokenId < _nextTokenId()) {
// If the `tokenId` is within bounds,
// scan backwards for the initialized ownership slot.
while (!_ownershipIsInitialized(tokenId)) --tokenId;
return _ownershipAt(tokenId);
}
}
}
}
/**
* @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
* See {ERC721AQueryable-explicitOwnershipOf}
*/
function explicitOwnershipsOf(uint256[] calldata tokenIds)
external
view
virtual
override
returns (TokenOwnership[] memory)
{
TokenOwnership[] memory ownerships;
uint256 i = tokenIds.length;
assembly {
// Grab the free memory pointer.
ownerships := mload(0x40)
// Store the length.
mstore(ownerships, i)
// Allocate one word for the length,
// `tokenIds.length` words for the pointers.
i := shl(5, i) // Multiply `i` by 32.
mstore(0x40, add(add(ownerships, 0x20), i))
}
while (i != 0) {
uint256 tokenId;
assembly {
i := sub(i, 0x20)
tokenId := calldataload(add(tokenIds.offset, i))
}
TokenOwnership memory ownership = explicitOwnershipOf(tokenId);
assembly {
// Store the pointer of `ownership` in the `ownerships` array.
mstore(add(add(ownerships, 0x20), i), ownership)
}
}
return ownerships;
}
/**
* @dev Returns an array of token IDs owned by `owner`,
* in the range [`start`, `stop`)
* (i.e. `start <= tokenId < stop`).
*
* This function allows for tokens to be queried if the collection
* grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
*
* Requirements:
*
* - `start < stop`
*/
function tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) external view virtual override returns (uint256[] memory) {
return _tokensOfOwnerIn(owner, start, stop);
}
/**
* @dev Returns an array of token IDs owned by `owner`.
*
* This function scans the ownership mapping and is O(`totalSupply`) in complexity.
* It is meant to be called off-chain.
*
* See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
* multiple smaller scans if the collection is large enough to cause
* an out-of-gas error (10K collections should be fine).
*/
function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) {
// If spot mints are enabled, full-range scan is disabled.
if (_sequentialUpTo() != type(uint256).max) _revert(NotCompatibleWithSpotMints.selector);
uint256 start = _startTokenId();
uint256 stop = _nextTokenId();
uint256[] memory tokenIds;
if (start != stop) tokenIds = _tokensOfOwnerIn(owner, start, stop);
return tokenIds;
}
/**
* @dev Helper function for returning an array of token IDs owned by `owner`.
*
* Note that this function is optimized for smaller bytecode size over runtime gas,
* since it is meant to be called off-chain.
*/
function _tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) private view returns (uint256[] memory tokenIds) {
unchecked {
if (start >= stop) _revert(InvalidQueryRange.selector);
// Set `start = max(start, _startTokenId())`.
if (start < _startTokenId()) start = _startTokenId();
uint256 nextTokenId = _nextTokenId();
// If spot mints are enabled, scan all the way until the specified `stop`.
uint256 stopLimit = _sequentialUpTo() != type(uint256).max ? stop : nextTokenId;
// Set `stop = min(stop, stopLimit)`.
if (stop >= stopLimit) stop = stopLimit;
// Number of tokens to scan.
uint256 tokenIdsMaxLength = balanceOf(owner);
// Set `tokenIdsMaxLength` to zero if the range contains no tokens.
if (start >= stop) tokenIdsMaxLength = 0;
// If there are one or more tokens to scan.
if (tokenIdsMaxLength != 0) {
// Set `tokenIdsMaxLength = min(balanceOf(owner), tokenIdsMaxLength)`.
if (stop - start <= tokenIdsMaxLength) tokenIdsMaxLength = stop - start;
uint256 m; // Start of available memory.
assembly {
// Grab the free memory pointer.
tokenIds := mload(0x40)
// Allocate one word for the length, and `tokenIdsMaxLength` words
// for the data. `shl(5, x)` is equivalent to `mul(32, x)`.
m := add(tokenIds, shl(5, add(tokenIdsMaxLength, 1)))
mstore(0x40, m)
}
// We need to call `explicitOwnershipOf(start)`,
// because the slot at `start` may not be initialized.
TokenOwnership memory ownership = explicitOwnershipOf(start);
address currOwnershipAddr;
// If the starting slot exists (i.e. not burned),
// initialize `currOwnershipAddr`.
// `ownership.address` will not be zero,
// as `start` is clamped to the valid token ID range.
if (!ownership.burned) currOwnershipAddr = ownership.addr;
uint256 tokenIdsIdx;
// Use a do-while, which is slightly more efficient for this case,
// as the array will at least contain one element.
do {
if (_sequentialUpTo() != type(uint256).max) {
// Skip the remaining unused sequential slots.
if (start == nextTokenId) start = _sequentialUpTo() + 1;
// Reset `currOwnershipAddr`, as each spot-minted token is a batch of one.
if (start > _sequentialUpTo()) currOwnershipAddr = address(0);
}
ownership = _ownershipAt(start); // This implicitly allocates memory.
assembly {
switch mload(add(ownership, 0x40))
// if `ownership.burned == false`.
case 0 {
// if `ownership.addr != address(0)`.
// The `addr` already has it's upper 96 bits clearned,
// since it is written to memory with regular Solidity.
if mload(ownership) {
currOwnershipAddr := mload(ownership)
}
// if `currOwnershipAddr == owner`.
// The `shl(96, x)` is to make the comparison agnostic to any
// dirty upper 96 bits in `owner`.
if iszero(shl(96, xor(currOwnershipAddr, owner))) {
tokenIdsIdx := add(tokenIdsIdx, 1)
mstore(add(tokenIds, shl(5, tokenIdsIdx)), start)
}
}
// Otherwise, reset `currOwnershipAddr`.
// This handles the case of batch burned tokens
// (burned bit of first slot set, remaining slots left uninitialized).
default {
currOwnershipAddr := 0
}
start := add(start, 1)
// Free temporary memory implicitly allocated for ownership
// to avoid quadratic memory expansion costs.
mstore(0x40, m)
}
} while (!(start == stop || tokenIdsIdx == tokenIdsMaxLength));
// Store the length of the array.
assembly {
mstore(tokenIds, tokenIdsIdx)
}
}
}
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.3.0
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import '../IERC721AUpgradeable.sol';
/**
* @dev Interface of ERC721AQueryable.
*/
interface IERC721AQueryableUpgradeable is IERC721AUpgradeable {
/**
* Invalid query range (`start` >= `stop`).
*/
error InvalidQueryRange();
/**
* @dev Returns the `TokenOwnership` struct at `tokenId` without reverting.
*
* If the `tokenId` is out of bounds:
*
* - `addr = address(0)`
* - `startTimestamp = 0`
* - `burned = false`
* - `extraData = 0`
*
* If the `tokenId` is burned:
*
* - `addr = <Address of owner before token was burned>`
* - `startTimestamp = <Timestamp when token was burned>`
* - `burned = true`
* - `extraData = <Extra data when token was burned>`
*
* Otherwise:
*
* - `addr = <Address of owner>`
* - `startTimestamp = <Timestamp of start of ownership>`
* - `burned = false`
* - `extraData = <Extra data at start of ownership>`
*/
function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory);
/**
* @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order.
* See {ERC721AQueryable-explicitOwnershipOf}
*/
function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory);
/**
* @dev Returns an array of token IDs owned by `owner`,
* in the range [`start`, `stop`)
* (i.e. `start <= tokenId < stop`).
*
* This function allows for tokens to be queried if the collection
* grows too big for a single call of {ERC721AQueryable-tokensOfOwner}.
*
* Requirements:
*
* - `start < stop`
*/
function tokensOfOwnerIn(
address owner,
uint256 start,
uint256 stop
) external view returns (uint256[] memory);
/**
* @dev Returns an array of token IDs owned by `owner`.
*
* This function scans the ownership mapping and is O(`totalSupply`) in complexity.
* It is meant to be called off-chain.
*
* See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into
* multiple smaller scans if the collection is large enough to cause
* an out-of-gas error (10K collections should be fine).
*/
function tokensOfOwner(address owner) external view returns (uint256[] memory);
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.3.0
// Creator: Chiru Labs
pragma solidity ^0.8.4;
/**
* @dev Interface of ERC721A.
*/
interface IERC721AUpgradeable {
/**
* The caller must own the token or be an approved operator.
*/
error ApprovalCallerNotOwnerNorApproved();
/**
* The token does not exist.
*/
error ApprovalQueryForNonexistentToken();
/**
* Cannot query the balance for the zero address.
*/
error BalanceQueryForZeroAddress();
/**
* Cannot mint to the zero address.
*/
error MintToZeroAddress();
/**
* The quantity of tokens minted must be more than zero.
*/
error MintZeroQuantity();
/**
* The token does not exist.
*/
error OwnerQueryForNonexistentToken();
/**
* The caller must own the token or be an approved operator.
*/
error TransferCallerNotOwnerNorApproved();
/**
* The token must be owned by `from`.
*/
error TransferFromIncorrectOwner();
/**
* Cannot safely transfer to a contract that does not implement the
* ERC721Receiver interface.
*/
error TransferToNonERC721ReceiverImplementer();
/**
* Cannot transfer to the zero address.
*/
error TransferToZeroAddress();
/**
* The token does not exist.
*/
error URIQueryForNonexistentToken();
/**
* The `quantity` minted with ERC2309 exceeds the safety limit.
*/
error MintERC2309QuantityExceedsLimit();
/**
* The `extraData` cannot be set on an unintialized ownership slot.
*/
error OwnershipNotInitializedForExtraData();
/**
* `_sequentialUpTo()` must be greater than `_startTokenId()`.
*/
error SequentialUpToTooSmall();
/**
* The `tokenId` of a sequential mint exceeds `_sequentialUpTo()`.
*/
error SequentialMintExceedsLimit();
/**
* Spot minting requires a `tokenId` greater than `_sequentialUpTo()`.
*/
error SpotMintTokenIdTooSmall();
/**
* Cannot mint over a token that already exists.
*/
error TokenAlreadyExists();
/**
* The feature is not compatible with spot mints.
*/
error NotCompatibleWithSpotMints();
// =============================================================
// STRUCTS
// =============================================================
struct TokenOwnership {
// The address of the owner.
address addr;
// Stores the start time of ownership with minimal overhead for tokenomics.
uint64 startTimestamp;
// Whether the token has been burned.
bool burned;
// Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
uint24 extraData;
}
// =============================================================
// TOKEN COUNTERS
// =============================================================
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() external view returns (uint256);
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
// =============================================================
// IERC721
// =============================================================
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables
* (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`,
* checking first that contract recipients are aware of the ERC721 protocol
* to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move
* this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external payable;
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom}
* whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external payable;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
// =============================================================
// IERC2309
// =============================================================
/**
* @dev Emitted when tokens in `fromTokenId` to `toTokenId`
* (inclusive) is transferred from `from` to `to`, as defined in the
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
*
* See {_mintERC2309} for more details.
*/
event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Gas optimized ECDSA wrapper.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
///
/// @dev Note:
/// - The recovery functions use the ecrecover precompile (0x1).
/// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure.
/// This is for more safety by default.
/// Use the `tryRecover` variants if you need to get the zero address back
/// upon recovery failure instead.
/// - As of Solady version 0.0.134, all `bytes signature` variants accept both
/// regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
/// See: https://eips.ethereum.org/EIPS/eip-2098
/// This is for calldata efficiency on smart accounts prevalent on L2s.
///
/// WARNING! Do NOT directly use signatures as unique identifiers:
/// - The recovery operations do NOT check if a signature is non-malleable.
/// - Use a nonce in the digest to prevent replay attacks on the same contract.
/// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
/// EIP-712 also enables readable signing of typed data for better user safety.
/// - If you need a unique hash from a signature, please use the `canonicalHash` functions.
library ECDSA {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The order of the secp256k1 elliptic curve.
uint256 internal constant N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141;
/// @dev `N/2 + 1`. Used for checking the malleability of the signature.
uint256 private constant _HALF_N_PLUS_1 =
0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a1;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The signature is invalid.
error InvalidSignature();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RECOVERY OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function recover(bytes32 hash, bytes memory signature) internal view returns (address result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
for {} 1 {} {
mstore(0x00, hash)
mstore(0x40, mload(add(signature, 0x20))) // `r`.
if eq(mload(signature), 64) {
let vs := mload(add(signature, 0x40))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(mload(signature), 65) {
mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
mstore(0x60, mload(add(signature, 0x40))) // `s`.
break
}
result := 0
break
}
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function recoverCalldata(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
for {} 1 {} {
if eq(signature.length, 64) {
let vs := calldataload(add(signature.offset, 0x20))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, calldataload(signature.offset)) // `r`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(signature.length, 65) {
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
break
}
result := 0
break
}
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, r)
mstore(0x60, shr(1, shl(1, vs))) // `s`.
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* TRY-RECOVER OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// WARNING!
// These functions will NOT revert upon recovery failure.
// Instead, they will return the zero address upon recovery failure.
// It is critical that the returned address is NEVER compared against
// a zero address (e.g. an uninitialized address variable).
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function tryRecover(bytes32 hash, bytes memory signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
for {} 1 {} {
mstore(0x00, hash)
mstore(0x40, mload(add(signature, 0x20))) // `r`.
if eq(mload(signature), 64) {
let vs := mload(add(signature, 0x40))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(mload(signature), 65) {
mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
mstore(0x60, mload(add(signature, 0x40))) // `s`.
break
}
result := 0
break
}
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function tryRecoverCalldata(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
for {} 1 {} {
if eq(signature.length, 64) {
let vs := calldataload(add(signature.offset, 0x20))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, calldataload(signature.offset)) // `r`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(signature.length, 65) {
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
break
}
result := 0
break
}
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, r)
mstore(0x60, shr(1, shl(1, vs))) // `s`.
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HASHING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an Ethereum Signed Message, created from a `hash`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign)
/// JSON-RPC method as part of EIP-191.
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, hash) // Store into scratch space for keccak256.
mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32") // 28 bytes.
result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
}
}
/// @dev Returns an Ethereum Signed Message, created from `s`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign)
/// JSON-RPC method as part of EIP-191.
/// Note: Supports lengths of `s` up to 999999 bytes.
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let sLength := mload(s)
let o := 0x20
mstore(o, "\x19Ethereum Signed Message:\n") // 26 bytes, zero-right-padded.
mstore(0x00, 0x00)
// Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
for { let temp := sLength } 1 {} {
o := sub(o, 1)
mstore8(o, add(48, mod(temp, 10)))
temp := div(temp, 10)
if iszero(temp) { break }
}
let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
// Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
mstore(s, sLength) // Restore the length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CANONICAL HASH FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// The following functions returns the hash of the signature in it's canonicalized format,
// which is the 65-byte `abi.encodePacked(r, s, uint8(v))`, where `v` is either 27 or 28.
// If `s` is greater than `N / 2` then it will be converted to `N - s`
// and the `v` value will be flipped.
// If the signature has an invalid length, or if `v` is invalid,
// a uniquely corrupt hash will be returned.
// These functions are useful for "poor-mans-VRF".
/// @dev Returns the canonical hash of `signature`.
function canonicalHash(bytes memory signature) internal pure returns (bytes32 result) {
// @solidity memory-safe-assembly
assembly {
let l := mload(signature)
for {} 1 {} {
mstore(0x00, mload(add(signature, 0x20))) // `r`.
let s := mload(add(signature, 0x40))
let v := mload(add(signature, 0x41))
if eq(l, 64) {
v := add(shr(255, s), 27)
s := shr(1, shl(1, s))
}
if iszero(lt(s, _HALF_N_PLUS_1)) {
v := xor(v, 7)
s := sub(N, s)
}
mstore(0x21, v)
mstore(0x20, s)
result := keccak256(0x00, 0x41)
mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
break
}
// If the length is neither 64 nor 65, return a uniquely corrupted hash.
if iszero(lt(sub(l, 64), 2)) {
// `bytes4(keccak256("InvalidSignatureLength"))`.
result := xor(keccak256(add(signature, 0x20), l), 0xd62f1ab2)
}
}
}
/// @dev Returns the canonical hash of `signature`.
function canonicalHashCalldata(bytes calldata signature)
internal
pure
returns (bytes32 result)
{
// @solidity memory-safe-assembly
assembly {
let l := signature.length
for {} 1 {} {
mstore(0x00, calldataload(signature.offset)) // `r`.
let s := calldataload(add(signature.offset, 0x20))
let v := calldataload(add(signature.offset, 0x21))
if eq(l, 64) {
v := add(shr(255, s), 27)
s := shr(1, shl(1, s))
}
if iszero(lt(s, _HALF_N_PLUS_1)) {
v := xor(v, 7)
s := sub(N, s)
}
mstore(0x21, v)
mstore(0x20, s)
result := keccak256(0x00, 0x41)
mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
break
}
// If the length is neither 64 nor 65, return a uniquely corrupted hash.
if iszero(lt(sub(l, 64), 2)) {
calldatacopy(mload(0x40), signature.offset, l)
// `bytes4(keccak256("InvalidSignatureLength"))`.
result := xor(keccak256(mload(0x40), l), 0xd62f1ab2)
}
}
}
/// @dev Returns the canonical hash of `signature`.
function canonicalHash(bytes32 r, bytes32 vs) internal pure returns (bytes32 result) {
// @solidity memory-safe-assembly
assembly {
mstore(0x00, r) // `r`.
let v := add(shr(255, vs), 27)
let s := shr(1, shl(1, vs))
mstore(0x21, v)
mstore(0x20, s)
result := keccak256(0x00, 0x41)
mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
}
}
/// @dev Returns the canonical hash of `signature`.
function canonicalHash(uint8 v, bytes32 r, bytes32 s) internal pure returns (bytes32 result) {
// @solidity memory-safe-assembly
assembly {
mstore(0x00, r) // `r`.
if iszero(lt(s, _HALF_N_PLUS_1)) {
v := xor(v, 7)
s := sub(N, s)
}
mstore(0x21, v)
mstore(0x20, s)
result := keccak256(0x00, 0x41)
mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EMPTY CALLDATA HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an empty calldata bytes.
function emptySignature() internal pure returns (bytes calldata signature) {
/// @solidity memory-safe-assembly
assembly {
signature.length := 0
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
///
/// @dev Note:
/// For performance and bytecode compactness, most of the string operations are restricted to
/// byte strings (7-bit ASCII), except where otherwise specified.
/// Usage of byte string operations on charsets with runes spanning two or more bytes
/// can lead to undefined behavior.
library LibString {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The length of the output is too small to contain all the hex digits.
error HexLengthInsufficient();
/// @dev The length of the string is more than 32 bytes.
error TooBigForSmallString();
/// @dev The input string must be a 7-bit ASCII.
error StringNot7BitASCII();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when the `search` is not found in the string.
uint256 internal constant NOT_FOUND = type(uint256).max;
/// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant ALPHANUMERIC_7_BIT_ASCII = 0x7fffffe07fffffe03ff000000000000;
/// @dev Lookup for 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant LETTERS_7_BIT_ASCII = 0x7fffffe07fffffe0000000000000000;
/// @dev Lookup for 'abcdefghijklmnopqrstuvwxyz'.
uint128 internal constant LOWERCASE_7_BIT_ASCII = 0x7fffffe000000000000000000000000;
/// @dev Lookup for 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant UPPERCASE_7_BIT_ASCII = 0x7fffffe0000000000000000;
/// @dev Lookup for '0123456789'.
uint128 internal constant DIGITS_7_BIT_ASCII = 0x3ff000000000000;
/// @dev Lookup for '0123456789abcdefABCDEF'.
uint128 internal constant HEXDIGITS_7_BIT_ASCII = 0x7e0000007e03ff000000000000;
/// @dev Lookup for '01234567'.
uint128 internal constant OCTDIGITS_7_BIT_ASCII = 0xff000000000000;
/// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'.
uint128 internal constant PRINTABLE_7_BIT_ASCII = 0x7fffffffffffffffffffffff00003e00;
/// @dev Lookup for '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'.
uint128 internal constant PUNCTUATION_7_BIT_ASCII = 0x78000001f8000001fc00fffe00000000;
/// @dev Lookup for ' \t\n\r\x0b\x0c'.
uint128 internal constant WHITESPACE_7_BIT_ASCII = 0x100003e00;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* DECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the base 10 decimal representation of `value`.
function toString(uint256 value) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits.
result := add(mload(0x40), 0x80)
mstore(0x40, add(result, 0x20)) // Allocate memory.
mstore(result, 0) // Zeroize the slot after the string.
let end := result // Cache the end of the memory to calculate the length later.
let w := not(0) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
result := add(result, w) // `sub(result, 1)`.
// Store the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(result, add(48, mod(temp, 10)))
temp := div(temp, 10) // Keep dividing `temp` until zero.
if iszero(temp) { break }
}
let n := sub(end, result)
result := sub(result, 0x20) // Move the pointer 32 bytes back to make room for the length.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the base 10 decimal representation of `value`.
function toString(int256 value) internal pure returns (string memory result) {
if (value >= 0) return toString(uint256(value));
unchecked {
result = toString(~uint256(value) + 1);
}
/// @solidity memory-safe-assembly
assembly {
// We still have some spare memory space on the left,
// as we have allocated 3 words (96 bytes) for up to 78 digits.
let n := mload(result) // Load the string length.
mstore(result, 0x2d) // Store the '-' character.
result := sub(result, 1) // Move back the string pointer by a byte.
mstore(result, add(n, 1)) // Update the string length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HEXADECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2 + 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexString(uint256 value, uint256 length)
internal
pure
returns (string memory result)
{
result = toHexStringNoPrefix(value, length);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is not prefixed with "0x" and is encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexStringNoPrefix(uint256 value, uint256 length)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
// for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
// We add 0x20 to the total and round down to a multiple of 0x20.
// (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
result := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
mstore(0x40, add(result, 0x20)) // Allocate memory.
mstore(result, 0) // Zeroize the slot after the string.
let end := result // Cache the end to calculate the length later.
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let start := sub(result, add(length, length))
let w := not(1) // Tsk.
let temp := value
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for {} 1 {} {
result := add(result, w) // `sub(result, 2)`.
mstore8(add(result, 1), mload(and(temp, 15)))
mstore8(result, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(xor(result, start)) { break }
}
if temp {
mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
revert(0x1c, 0x04)
}
let n := sub(end, result)
result := sub(result, 0x20)
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2 + 2` bytes.
function toHexString(uint256 value) internal pure returns (string memory result) {
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x".
/// The output excludes leading "0" from the `toHexString` output.
/// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
function toMinimalHexString(uint256 value) internal pure returns (string memory result) {
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present.
let n := add(mload(result), 2) // Compute the length.
mstore(add(result, o), 0x3078) // Store the "0x" prefix, accounting for leading zero.
result := sub(add(result, o), 2) // Move the pointer, accounting for leading zero.
mstore(result, sub(n, o)) // Store the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output excludes leading "0" from the `toHexStringNoPrefix` output.
/// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
function toMinimalHexStringNoPrefix(uint256 value)
internal
pure
returns (string memory result)
{
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present.
let n := mload(result) // Get the length.
result := add(result, o) // Move the pointer, accounting for leading zero.
mstore(result, sub(n, o)) // Store the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2` bytes.
function toHexStringNoPrefix(uint256 value) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x40 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
result := add(mload(0x40), 0x80)
mstore(0x40, add(result, 0x20)) // Allocate memory.
mstore(result, 0) // Zeroize the slot after the string.
let end := result // Cache the end to calculate the length later.
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
let w := not(1) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
result := add(result, w) // `sub(result, 2)`.
mstore8(add(result, 1), mload(and(temp, 15)))
mstore8(result, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(temp) { break }
}
let n := sub(end, result)
result := sub(result, 0x20)
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
/// and the alphabets are capitalized conditionally according to
/// https://eips.ethereum.org/EIPS/eip-55
function toHexStringChecksummed(address value) internal pure returns (string memory result) {
result = toHexString(value);
/// @solidity memory-safe-assembly
assembly {
let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
let o := add(result, 0x22)
let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
let t := shl(240, 136) // `0b10001000 << 240`
for { let i := 0 } 1 {} {
mstore(add(i, i), mul(t, byte(i, hashed)))
i := add(i, 1)
if eq(i, 20) { break }
}
mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
o := add(o, 0x20)
mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
function toHexString(address value) internal pure returns (string memory result) {
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(address value) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
// Allocate memory.
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x28 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
mstore(0x40, add(result, 0x80))
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
result := add(result, 2)
mstore(result, 40) // Store the length.
let o := add(result, 0x20)
mstore(add(o, 40), 0) // Zeroize the slot after the string.
value := shl(96, value)
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let i := 0 } 1 {} {
let p := add(o, add(i, i))
let temp := byte(i, value)
mstore8(add(p, 1), mload(and(temp, 15)))
mstore8(p, mload(shr(4, temp)))
i := add(i, 1)
if eq(i, 20) { break }
}
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexString(bytes memory raw) internal pure returns (string memory result) {
result = toHexStringNoPrefix(raw);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
let n := mload(raw)
result := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
mstore(result, add(n, n)) // Store the length of the output.
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
let o := add(result, 0x20)
let end := add(raw, n)
for {} iszero(eq(raw, end)) {} {
raw := add(raw, 1)
mstore8(add(o, 1), mload(and(mload(raw), 15)))
mstore8(o, mload(and(shr(4, mload(raw)), 15)))
o := add(o, 2)
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RUNE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the number of UTF characters in the string.
function runeCount(string memory s) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
mstore(0x00, div(not(0), 255))
mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
let o := add(s, 0x20)
let end := add(o, mload(s))
for { result := 1 } 1 { result := add(result, 1) } {
o := add(o, byte(0, mload(shr(250, mload(o)))))
if iszero(lt(o, end)) { break }
}
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string.
/// (i.e. all characters codes are in [0..127])
function is7BitASCII(string memory s) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
let mask := shl(7, div(not(0), 255))
let n := mload(s)
if n {
let o := add(s, 0x20)
let end := add(o, n)
let last := mload(end)
mstore(end, 0)
for {} 1 {} {
if and(mask, mload(o)) {
result := 0
break
}
o := add(o, 0x20)
if iszero(lt(o, end)) { break }
}
mstore(end, last)
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string,
/// AND all characters are in the `allowed` lookup.
/// Note: If `s` is empty, returns true regardless of `allowed`.
function is7BitASCII(string memory s, uint128 allowed) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
if mload(s) {
let allowed_ := shr(128, shl(128, allowed))
let o := add(s, 0x20)
for { let end := add(o, mload(s)) } 1 {} {
result := and(result, shr(byte(0, mload(o)), allowed_))
o := add(o, 1)
if iszero(and(result, lt(o, end))) { break }
}
}
}
}
/// @dev Converts the bytes in the 7-bit ASCII string `s` to
/// an allowed lookup for use in `is7BitASCII(s, allowed)`.
/// To save runtime gas, you can cache the result in an immutable variable.
function to7BitASCIIAllowedLookup(string memory s) internal pure returns (uint128 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
let o := add(s, 0x20)
for { let end := add(o, mload(s)) } 1 {} {
result := or(result, shl(byte(0, mload(o)), 1))
o := add(o, 1)
if iszero(lt(o, end)) { break }
}
if shr(128, result) {
mstore(0x00, 0xc9807e0d) // `StringNot7BitASCII()`.
revert(0x1c, 0x04)
}
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// For performance and bytecode compactness, byte string operations are restricted
// to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
// Usage of byte string operations on charsets with runes spanning two or more bytes
// can lead to undefined behavior.
/// @dev Returns `subject` all occurrences of `needle` replaced with `replacement`.
function replace(string memory subject, string memory needle, string memory replacement)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let needleLen := mload(needle)
let replacementLen := mload(replacement)
let d := sub(result, subject) // Memory difference.
let i := add(subject, 0x20) // Subject bytes pointer.
let end := add(i, mload(subject))
if iszero(gt(needleLen, mload(subject))) {
let subjectSearchEnd := add(sub(end, needleLen), 1)
let h := 0 // The hash of `needle`.
if iszero(lt(needleLen, 0x20)) { h := keccak256(add(needle, 0x20), needleLen) }
let s := mload(add(needle, 0x20))
for { let m := shl(3, sub(0x20, and(needleLen, 0x1f))) } 1 {} {
let t := mload(i)
// Whether the first `needleLen % 32` bytes of `subject` and `needle` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(i, needleLen), h)) {
mstore(add(i, d), t)
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
// Copy the `replacement` one word at a time.
for { let j := 0 } 1 {} {
mstore(add(add(i, d), j), mload(add(add(replacement, 0x20), j)))
j := add(j, 0x20)
if iszero(lt(j, replacementLen)) { break }
}
d := sub(add(d, replacementLen), needleLen)
if needleLen {
i := add(i, needleLen)
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
mstore(add(i, d), t)
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
}
}
let n := add(sub(d, add(result, 0x20)), end)
// Copy the rest of the string one word at a time.
for {} lt(i, end) { i := add(i, 0x20) } { mstore(add(i, d), mload(i)) }
let o := add(i, d)
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from left to right, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function indexOf(string memory subject, string memory needle, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
result := not(0) // Initialize to `NOT_FOUND`.
for { let subjectLen := mload(subject) } 1 {} {
if iszero(mload(needle)) {
result := from
if iszero(gt(from, subjectLen)) { break }
result := subjectLen
break
}
let needleLen := mload(needle)
let subjectStart := add(subject, 0x20)
subject := add(subjectStart, from)
let end := add(sub(add(subjectStart, subjectLen), needleLen), 1)
let m := shl(3, sub(0x20, and(needleLen, 0x1f)))
let s := mload(add(needle, 0x20))
if iszero(and(lt(subject, end), lt(from, subjectLen))) { break }
if iszero(lt(needleLen, 0x20)) {
for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
if eq(keccak256(subject, needleLen), h) {
result := sub(subject, subjectStart)
break
}
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
for {} 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
result := sub(subject, subjectStart)
break
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from left to right.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function indexOf(string memory subject, string memory needle)
internal
pure
returns (uint256 result)
{
result = indexOf(subject, needle, 0);
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from right to left, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function lastIndexOf(string memory subject, string memory needle, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for {} 1 {} {
result := not(0) // Initialize to `NOT_FOUND`.
let needleLen := mload(needle)
if gt(needleLen, mload(subject)) { break }
let w := result
let fromMax := sub(mload(subject), needleLen)
if iszero(gt(fromMax, from)) { from := fromMax }
let end := add(add(subject, 0x20), w)
subject := add(add(subject, 0x20), from)
if iszero(gt(subject, end)) { break }
// As this function is not too often used,
// we shall simply use keccak256 for smaller bytecode size.
for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} {
if eq(keccak256(subject, needleLen), h) {
result := sub(subject, add(end, 1))
break
}
subject := add(subject, w) // `sub(subject, 1)`.
if iszero(gt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from right to left.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function lastIndexOf(string memory subject, string memory needle)
internal
pure
returns (uint256 result)
{
result = lastIndexOf(subject, needle, type(uint256).max);
}
/// @dev Returns true if `needle` is found in `subject`, false otherwise.
function contains(string memory subject, string memory needle) internal pure returns (bool) {
return indexOf(subject, needle) != NOT_FOUND;
}
/// @dev Returns whether `subject` starts with `needle`.
function startsWith(string memory subject, string memory needle)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let needleLen := mload(needle)
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
iszero(gt(needleLen, mload(subject))),
eq(
keccak256(add(subject, 0x20), needleLen),
keccak256(add(needle, 0x20), needleLen)
)
)
}
}
/// @dev Returns whether `subject` ends with `needle`.
function endsWith(string memory subject, string memory needle)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let needleLen := mload(needle)
// Whether `needle` is not longer than `subject`.
let inRange := iszero(gt(needleLen, mload(subject)))
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
eq(
keccak256(
// `subject + 0x20 + max(subjectLen - needleLen, 0)`.
add(add(subject, 0x20), mul(inRange, sub(mload(subject), needleLen))),
needleLen
),
keccak256(add(needle, 0x20), needleLen)
),
inRange
)
}
}
/// @dev Returns `subject` repeated `times`.
function repeat(string memory subject, uint256 times)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLen := mload(subject)
if iszero(or(iszero(times), iszero(subjectLen))) {
result := mload(0x40)
subject := add(subject, 0x20)
let o := add(result, 0x20)
for {} 1 {} {
// Copy the `subject` one word at a time.
for { let j := 0 } 1 {} {
mstore(add(o, j), mload(add(subject, j)))
j := add(j, 0x20)
if iszero(lt(j, subjectLen)) { break }
}
o := add(o, subjectLen)
times := sub(times, 1)
if iszero(times) { break }
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
mstore(result, sub(o, add(result, 0x20))) // Store the length.
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function slice(string memory subject, uint256 start, uint256 end)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLen := mload(subject)
if iszero(gt(subjectLen, end)) { end := subjectLen }
if iszero(gt(subjectLen, start)) { start := subjectLen }
if lt(start, end) {
result := mload(0x40)
let n := sub(end, start)
let i := add(subject, start)
let w := not(0x1f)
// Copy the `subject` one word at a time, backwards.
for { let j := and(add(n, 0x1f), w) } 1 {} {
mstore(add(result, j), mload(add(i, j)))
j := add(j, w) // `sub(j, 0x20)`.
if iszero(j) { break }
}
let o := add(add(result, 0x20), n)
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
mstore(result, n) // Store the length.
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
/// `start` is a byte offset.
function slice(string memory subject, uint256 start)
internal
pure
returns (string memory result)
{
result = slice(subject, start, type(uint256).max);
}
/// @dev Returns all the indices of `needle` in `subject`.
/// The indices are byte offsets.
function indicesOf(string memory subject, string memory needle)
internal
pure
returns (uint256[] memory result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLen := mload(needle)
if iszero(gt(searchLen, mload(subject))) {
result := mload(0x40)
let i := add(subject, 0x20)
let o := add(result, 0x20)
let subjectSearchEnd := add(sub(add(i, mload(subject)), searchLen), 1)
let h := 0 // The hash of `needle`.
if iszero(lt(searchLen, 0x20)) { h := keccak256(add(needle, 0x20), searchLen) }
let s := mload(add(needle, 0x20))
for { let m := shl(3, sub(0x20, and(searchLen, 0x1f))) } 1 {} {
let t := mload(i)
// Whether the first `searchLen % 32` bytes of `subject` and `needle` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(i, searchLen), h)) {
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
mstore(o, sub(i, add(subject, 0x20))) // Append to `result`.
o := add(o, 0x20)
i := add(i, searchLen) // Advance `i` by `searchLen`.
if searchLen {
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
}
mstore(result, shr(5, sub(o, add(result, 0x20)))) // Store the length of `result`.
// Allocate memory for result.
// We allocate one more word, so this array can be recycled for {split}.
mstore(0x40, add(o, 0x20))
}
}
}
/// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
function split(string memory subject, string memory delimiter)
internal
pure
returns (string[] memory result)
{
uint256[] memory indices = indicesOf(subject, delimiter);
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
let indexPtr := add(indices, 0x20)
let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
mstore(add(indicesEnd, w), mload(subject))
mstore(indices, add(mload(indices), 1))
for { let prevIndex := 0 } 1 {} {
let index := mload(indexPtr)
mstore(indexPtr, 0x60)
if iszero(eq(index, prevIndex)) {
let element := mload(0x40)
let l := sub(index, prevIndex)
mstore(element, l) // Store the length of the element.
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(l, 0x1f), w) } 1 {} {
mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
mstore(add(add(element, 0x20), l), 0) // Zeroize the slot after the string.
// Allocate memory for the length and the bytes, rounded up to a multiple of 32.
mstore(0x40, add(element, and(add(l, 0x3f), w)))
mstore(indexPtr, element) // Store the `element` into the array.
}
prevIndex := add(index, mload(delimiter))
indexPtr := add(indexPtr, 0x20)
if iszero(lt(indexPtr, indicesEnd)) { break }
}
result := indices
if iszero(mload(delimiter)) {
result := add(indices, 0x20)
mstore(result, sub(mload(indices), 2))
}
}
}
/// @dev Returns a concatenated string of `a` and `b`.
/// Cheaper than `string.concat()` and does not de-align the free memory pointer.
function concat(string memory a, string memory b)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let w := not(0x1f)
let aLen := mload(a)
// Copy `a` one word at a time, backwards.
for { let o := and(add(aLen, 0x20), w) } 1 {} {
mstore(add(result, o), mload(add(a, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let bLen := mload(b)
let output := add(result, aLen)
// Copy `b` one word at a time, backwards.
for { let o := and(add(bLen, 0x20), w) } 1 {} {
mstore(add(output, o), mload(add(b, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let totalLen := add(aLen, bLen)
let last := add(add(result, 0x20), totalLen)
mstore(last, 0) // Zeroize the slot after the string.
mstore(result, totalLen) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate memory.
}
}
/// @dev Returns a copy of the string in either lowercase or UPPERCASE.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function toCase(string memory subject, bool toUpper)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let n := mload(subject)
if n {
result := mload(0x40)
let o := add(result, 0x20)
let d := sub(subject, result)
let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
for { let end := add(o, n) } 1 {} {
let b := byte(0, mload(add(d, o)))
mstore8(o, xor(and(shr(b, flags), 0x20), b))
o := add(o, 1)
if eq(o, end) { break }
}
mstore(result, n) // Store the length.
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
}
/// @dev Returns a string from a small bytes32 string.
/// `s` must be null-terminated, or behavior will be undefined.
function fromSmallString(bytes32 s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let n := 0
for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'.
mstore(result, n) // Store the length.
let o := add(result, 0x20)
mstore(o, s) // Store the bytes of the string.
mstore(add(o, n), 0) // Zeroize the slot after the string.
mstore(0x40, add(result, 0x40)) // Allocate memory.
}
}
/// @dev Returns the small string, with all bytes after the first null byte zeroized.
function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'.
mstore(0x00, s)
mstore(result, 0x00)
result := mload(0x00)
}
}
/// @dev Returns the string as a normalized null-terminated small string.
function toSmallString(string memory s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(s)
if iszero(lt(result, 33)) {
mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
revert(0x1c, 0x04)
}
result := shl(shl(3, sub(32, result)), mload(add(s, result)))
}
}
/// @dev Returns a lowercased copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function lower(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, false);
}
/// @dev Returns an UPPERCASED copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function upper(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, true);
}
/// @dev Escapes the string to be used within HTML tags.
function escapeHTML(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let end := add(s, mload(s))
let o := add(result, 0x20)
// Store the bytes of the packed offsets and strides into the scratch space.
// `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
mstore(0x1f, 0x900094)
mstore(0x08, 0xc0000000a6ab)
// Store ""&'<>" into the scratch space.
mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
for {} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
// Not in `["\"","'","&","<",">"]`.
if iszero(and(shl(c, 1), 0x500000c400000000)) {
mstore8(o, c)
o := add(o, 1)
continue
}
let t := shr(248, mload(c))
mstore(o, mload(and(t, 0x1f)))
o := add(o, shr(5, t))
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
/// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
function escapeJSON(string memory s, bool addDoubleQuotes)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let o := add(result, 0x20)
if addDoubleQuotes {
mstore8(o, 34)
o := add(1, o)
}
// Store "\\u0000" in scratch space.
// Store "0123456789abcdef" in scratch space.
// Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
// into the scratch space.
mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
// Bitmask for detecting `["\"","\\"]`.
let e := or(shl(0x22, 1), shl(0x5c, 1))
for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
if iszero(lt(c, 0x20)) {
if iszero(and(shl(c, 1), e)) {
// Not in `["\"","\\"]`.
mstore8(o, c)
o := add(o, 1)
continue
}
mstore8(o, 0x5c) // "\\".
mstore8(add(o, 1), c)
o := add(o, 2)
continue
}
if iszero(and(shl(c, 1), 0x3700)) {
// Not in `["\b","\t","\n","\f","\d"]`.
mstore8(0x1d, mload(shr(4, c))) // Hex value.
mstore8(0x1e, mload(and(c, 15))) // Hex value.
mstore(o, mload(0x19)) // "\\u00XX".
o := add(o, 6)
continue
}
mstore8(o, 0x5c) // "\\".
mstore8(add(o, 1), mload(add(c, 8)))
o := add(o, 2)
}
if addDoubleQuotes {
mstore8(o, 34)
o := add(1, o)
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
function escapeJSON(string memory s) internal pure returns (string memory result) {
result = escapeJSON(s, false);
}
/// @dev Encodes `s` so that it can be safely used in a URI,
/// just like `encodeURIComponent` in JavaScript.
/// See: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
/// See: https://datatracker.ietf.org/doc/html/rfc2396
/// See: https://datatracker.ietf.org/doc/html/rfc3986
function encodeURIComponent(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
// Store "0123456789ABCDEF" in scratch space.
// Uppercased to be consistent with JavaScript's implementation.
mstore(0x0f, 0x30313233343536373839414243444546)
let o := add(result, 0x20)
for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
// If not in `[0-9A-Z-a-z-_.!~*'()]`.
if iszero(and(1, shr(c, 0x47fffffe87fffffe03ff678200000000))) {
mstore8(o, 0x25) // '%'.
mstore8(add(o, 1), mload(and(shr(4, c), 15)))
mstore8(add(o, 2), mload(and(c, 15)))
o := add(o, 3)
continue
}
mstore8(o, c)
o := add(o, 1)
}
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/// @dev Returns whether `a` equals `b`.
function eq(string memory a, string memory b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
}
}
/// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
// These should be evaluated on compile time, as far as possible.
let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
let x := not(or(m, or(b, add(m, and(b, m)))))
let r := shl(7, iszero(iszero(shr(128, x))))
r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
}
}
/// @dev Packs a single string with its length into a single word.
/// Returns `bytes32(0)` if the length is zero or greater than 31.
function packOne(string memory a) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
// We don't need to zero right pad the string,
// since this is our own custom non-standard packing scheme.
result :=
mul(
// Load the length and the bytes.
mload(add(a, 0x1f)),
// `length != 0 && length < 32`. Abuses underflow.
// Assumes that the length is valid and within the block gas limit.
lt(sub(mload(a), 1), 0x1f)
)
}
}
/// @dev Unpacks a string packed using {packOne}.
/// Returns the empty string if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packOne}, the output behavior is undefined.
function unpackOne(bytes32 packed) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40) // Grab the free memory pointer.
mstore(0x40, add(result, 0x40)) // Allocate 2 words (1 for the length, 1 for the bytes).
mstore(result, 0) // Zeroize the length slot.
mstore(add(result, 0x1f), packed) // Store the length and bytes.
mstore(add(add(result, 0x20), mload(result)), 0) // Right pad with zeroes.
}
}
/// @dev Packs two strings with their lengths into a single word.
/// Returns `bytes32(0)` if combined length is zero or greater than 30.
function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let aLen := mload(a)
// We don't need to zero right pad the strings,
// since this is our own custom non-standard packing scheme.
result :=
mul(
or( // Load the length and the bytes of `a` and `b`.
shl(shl(3, sub(0x1f, aLen)), mload(add(a, aLen))), mload(sub(add(b, 0x1e), aLen))),
// `totalLen != 0 && totalLen < 31`. Abuses underflow.
// Assumes that the lengths are valid and within the block gas limit.
lt(sub(add(aLen, mload(b)), 1), 0x1e)
)
}
}
/// @dev Unpacks strings packed using {packTwo}.
/// Returns the empty strings if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packTwo}, the output behavior is undefined.
function unpackTwo(bytes32 packed)
internal
pure
returns (string memory resultA, string memory resultB)
{
/// @solidity memory-safe-assembly
assembly {
resultA := mload(0x40) // Grab the free memory pointer.
resultB := add(resultA, 0x40)
// Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
mstore(0x40, add(resultB, 0x40))
// Zeroize the length slots.
mstore(resultA, 0)
mstore(resultB, 0)
// Store the lengths and bytes.
mstore(add(resultA, 0x1f), packed)
mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
// Right pad with zeroes.
mstore(add(add(resultA, 0x20), mload(resultA)), 0)
mstore(add(add(resultB, 0x20), mload(resultB)), 0)
}
}
/// @dev Directly returns `a` without copying.
function directReturn(string memory a) internal pure {
assembly {
// Assumes that the string does not start from the scratch space.
let retStart := sub(a, 0x20)
let retUnpaddedSize := add(mload(a), 0x40)
// Right pad with zeroes. Just in case the string is produced
// by a method that doesn't zero right pad.
mstore(add(retStart, retUnpaddedSize), 0)
mstore(retStart, 0x20) // Store the return offset.
// End the transaction, returning the string.
return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize)))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Gas optimized verification of proof of inclusion for a leaf in a Merkle tree.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/MerkleProofLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/MerkleProofLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol)
library MerkleProofLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* MERKLE PROOF VERIFICATION OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`.
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf)
internal
pure
returns (bool isValid)
{
/// @solidity memory-safe-assembly
assembly {
if mload(proof) {
// Initialize `offset` to the offset of `proof` elements in memory.
let offset := add(proof, 0x20)
// Left shift by 5 is equivalent to multiplying by 0x20.
let end := add(offset, shl(5, mload(proof)))
// Iterate over proof elements to compute root hash.
for {} 1 {} {
// Slot of `leaf` in scratch space.
// If the condition is true: 0x20, otherwise: 0x00.
let scratch := shl(5, gt(leaf, mload(offset)))
// Store elements to hash contiguously in scratch space.
// Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes.
mstore(scratch, leaf)
mstore(xor(scratch, 0x20), mload(offset))
// Reuse `leaf` to store the hash to reduce stack operations.
leaf := keccak256(0x00, 0x40)
offset := add(offset, 0x20)
if iszero(lt(offset, end)) { break }
}
}
isValid := eq(leaf, root)
}
}
/// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`.
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf)
internal
pure
returns (bool isValid)
{
/// @solidity memory-safe-assembly
assembly {
if proof.length {
// Left shift by 5 is equivalent to multiplying by 0x20.
let end := add(proof.offset, shl(5, proof.length))
// Initialize `offset` to the offset of `proof` in the calldata.
let offset := proof.offset
// Iterate over proof elements to compute root hash.
for {} 1 {} {
// Slot of `leaf` in scratch space.
// If the condition is true: 0x20, otherwise: 0x00.
let scratch := shl(5, gt(leaf, calldataload(offset)))
// Store elements to hash contiguously in scratch space.
// Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes.
mstore(scratch, leaf)
mstore(xor(scratch, 0x20), calldataload(offset))
// Reuse `leaf` to store the hash to reduce stack operations.
leaf := keccak256(0x00, 0x40)
offset := add(offset, 0x20)
if iszero(lt(offset, end)) { break }
}
}
isValid := eq(leaf, root)
}
}
/// @dev Returns whether all `leaves` exist in the Merkle tree with `root`,
/// given `proof` and `flags`.
///
/// Note:
/// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length`
/// will always return false.
/// - The sum of the lengths of `proof` and `leaves` must never overflow.
/// - Any non-zero word in the `flags` array is treated as true.
/// - The memory offset of `proof` must be non-zero
/// (i.e. `proof` is not pointing to the scratch space).
function verifyMultiProof(
bytes32[] memory proof,
bytes32 root,
bytes32[] memory leaves,
bool[] memory flags
) internal pure returns (bool isValid) {
// Rebuilds the root by consuming and producing values on a queue.
// The queue starts with the `leaves` array, and goes into a `hashes` array.
// After the process, the last element on the queue is verified
// to be equal to the `root`.
//
// The `flags` array denotes whether the sibling
// should be popped from the queue (`flag == true`), or
// should be popped from the `proof` (`flag == false`).
/// @solidity memory-safe-assembly
assembly {
// Cache the lengths of the arrays.
let leavesLength := mload(leaves)
let proofLength := mload(proof)
let flagsLength := mload(flags)
// Advance the pointers of the arrays to point to the data.
leaves := add(0x20, leaves)
proof := add(0x20, proof)
flags := add(0x20, flags)
// If the number of flags is correct.
for {} eq(add(leavesLength, proofLength), add(flagsLength, 1)) {} {
// For the case where `proof.length + leaves.length == 1`.
if iszero(flagsLength) {
// `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`.
isValid := eq(mload(xor(leaves, mul(xor(proof, leaves), proofLength))), root)
break
}
// The required final proof offset if `flagsLength` is not zero, otherwise zero.
let proofEnd := add(proof, shl(5, proofLength))
// We can use the free memory space for the queue.
// We don't need to allocate, since the queue is temporary.
let hashesFront := mload(0x40)
// Copy the leaves into the hashes.
// Sometimes, a little memory expansion costs less than branching.
// Should cost less, even with a high free memory offset of 0x7d00.
leavesLength := shl(5, leavesLength)
for { let i := 0 } iszero(eq(i, leavesLength)) { i := add(i, 0x20) } {
mstore(add(hashesFront, i), mload(add(leaves, i)))
}
// Compute the back of the hashes.
let hashesBack := add(hashesFront, leavesLength)
// This is the end of the memory for the queue.
// We recycle `flagsLength` to save on stack variables (sometimes save gas).
flagsLength := add(hashesBack, shl(5, flagsLength))
for {} 1 {} {
// Pop from `hashes`.
let a := mload(hashesFront)
// Pop from `hashes`.
let b := mload(add(hashesFront, 0x20))
hashesFront := add(hashesFront, 0x40)
// If the flag is false, load the next proof,
// else, pops from the queue.
if iszero(mload(flags)) {
// Loads the next proof.
b := mload(proof)
proof := add(proof, 0x20)
// Unpop from `hashes`.
hashesFront := sub(hashesFront, 0x20)
}
// Advance to the next flag.
flags := add(flags, 0x20)
// Slot of `a` in scratch space.
// If the condition is true: 0x20, otherwise: 0x00.
let scratch := shl(5, gt(a, b))
// Hash the scratch space and push the result onto the queue.
mstore(scratch, a)
mstore(xor(scratch, 0x20), b)
mstore(hashesBack, keccak256(0x00, 0x40))
hashesBack := add(hashesBack, 0x20)
if iszero(lt(hashesBack, flagsLength)) { break }
}
isValid :=
and(
// Checks if the last value in the queue is same as the root.
eq(mload(sub(hashesBack, 0x20)), root),
// And whether all the proofs are used, if required.
eq(proofEnd, proof)
)
break
}
}
}
/// @dev Returns whether all `leaves` exist in the Merkle tree with `root`,
/// given `proof` and `flags`.
///
/// Note:
/// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length`
/// will always return false.
/// - Any non-zero word in the `flags` array is treated as true.
/// - The calldata offset of `proof` must be non-zero
/// (i.e. `proof` is from a regular Solidity function with a 4-byte selector).
function verifyMultiProofCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32[] calldata leaves,
bool[] calldata flags
) internal pure returns (bool isValid) {
// Rebuilds the root by consuming and producing values on a queue.
// The queue starts with the `leaves` array, and goes into a `hashes` array.
// After the process, the last element on the queue is verified
// to be equal to the `root`.
//
// The `flags` array denotes whether the sibling
// should be popped from the queue (`flag == true`), or
// should be popped from the `proof` (`flag == false`).
/// @solidity memory-safe-assembly
assembly {
// If the number of flags is correct.
for {} eq(add(leaves.length, proof.length), add(flags.length, 1)) {} {
// For the case where `proof.length + leaves.length == 1`.
if iszero(flags.length) {
// `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`.
// forgefmt: disable-next-item
isValid := eq(
calldataload(
xor(leaves.offset, mul(xor(proof.offset, leaves.offset), proof.length))
),
root
)
break
}
// The required final proof offset if `flagsLength` is not zero, otherwise zero.
let proofEnd := add(proof.offset, shl(5, proof.length))
// We can use the free memory space for the queue.
// We don't need to allocate, since the queue is temporary.
let hashesFront := mload(0x40)
// Copy the leaves into the hashes.
// Sometimes, a little memory expansion costs less than branching.
// Should cost less, even with a high free memory offset of 0x7d00.
calldatacopy(hashesFront, leaves.offset, shl(5, leaves.length))
// Compute the back of the hashes.
let hashesBack := add(hashesFront, shl(5, leaves.length))
// This is the end of the memory for the queue.
// We recycle `flagsLength` to save on stack variables (sometimes save gas).
flags.length := add(hashesBack, shl(5, flags.length))
// We don't need to make a copy of `proof.offset` or `flags.offset`,
// as they are pass-by-value (this trick may not always save gas).
for {} 1 {} {
// Pop from `hashes`.
let a := mload(hashesFront)
// Pop from `hashes`.
let b := mload(add(hashesFront, 0x20))
hashesFront := add(hashesFront, 0x40)
// If the flag is false, load the next proof,
// else, pops from the queue.
if iszero(calldataload(flags.offset)) {
// Loads the next proof.
b := calldataload(proof.offset)
proof.offset := add(proof.offset, 0x20)
// Unpop from `hashes`.
hashesFront := sub(hashesFront, 0x20)
}
// Advance to the next flag offset.
flags.offset := add(flags.offset, 0x20)
// Slot of `a` in scratch space.
// If the condition is true: 0x20, otherwise: 0x00.
let scratch := shl(5, gt(a, b))
// Hash the scratch space and push the result onto the queue.
mstore(scratch, a)
mstore(xor(scratch, 0x20), b)
mstore(hashesBack, keccak256(0x00, 0x40))
hashesBack := add(hashesBack, 0x20)
if iszero(lt(hashesBack, flags.length)) { break }
}
isValid :=
and(
// Checks if the last value in the queue is same as the root.
eq(mload(sub(hashesBack, 0x20)), root),
// And whether all the proofs are used, if required.
eq(proofEnd, proof.offset)
)
break
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EMPTY CALLDATA HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an empty calldata bytes32 array.
function emptyProof() internal pure returns (bytes32[] calldata proof) {
/// @solidity memory-safe-assembly
assembly {
proof.length := 0
}
}
/// @dev Returns an empty calldata bytes32 array.
function emptyLeaves() internal pure returns (bytes32[] calldata leaves) {
/// @solidity memory-safe-assembly
assembly {
leaves.length := 0
}
}
/// @dev Returns an empty calldata bool array.
function emptyFlags() internal pure returns (bool[] calldata flags) {
/// @solidity memory-safe-assembly
assembly {
flags.length := 0
}
}
}