Contract Name:
CTokenAdmin
Contract Source Code:
pragma solidity ^0.5.16;
import "./CToken.sol";
/**
* @title Compound's CErc20 Contract
* @notice CTokens which wrap an EIP-20 underlying
* @author Compound
*/
contract CErc20 is CToken, CErc20Interface {
/**
* @notice Initialize the new money market
* @param underlying_ The address of the underlying asset
* @param comptroller_ The address of the Comptroller
* @param interestRateModel_ The address of the interest rate model
* @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18
* @param name_ ERC-20 name of this token
* @param symbol_ ERC-20 symbol of this token
* @param decimals_ ERC-20 decimal precision of this token
*/
function initialize(
address underlying_,
ComptrollerInterface comptroller_,
InterestRateModel interestRateModel_,
uint256 initialExchangeRateMantissa_,
string memory name_,
string memory symbol_,
uint8 decimals_
) public {
// CToken initialize does the bulk of the work
super.initialize(comptroller_, interestRateModel_, initialExchangeRateMantissa_, name_, symbol_, decimals_);
// Set underlying and sanity check it
underlying = underlying_;
EIP20Interface(underlying).totalSupply();
}
/*** User Interface ***/
/**
* @notice Sender supplies assets into the market and receives cTokens in exchange
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param mintAmount The amount of the underlying asset to supply
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function mint(uint256 mintAmount) external returns (uint256) {
(uint256 err, ) = mintInternal(mintAmount, false);
require(err == 0, "mint failed");
}
/**
* @notice Sender redeems cTokens in exchange for the underlying asset
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param redeemTokens The number of cTokens to redeem into underlying
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeem(uint256 redeemTokens) external returns (uint256) {
require(redeemInternal(redeemTokens, false) == 0, "redeem failed");
}
/**
* @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param redeemAmount The amount of underlying to redeem
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeemUnderlying(uint256 redeemAmount) external returns (uint256) {
require(redeemUnderlyingInternal(redeemAmount, false) == 0, "redeem underlying failed");
}
/**
* @notice Sender borrows assets from the protocol to their own address
* @param borrowAmount The amount of the underlying asset to borrow
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function borrow(uint256 borrowAmount) external returns (uint256) {
require(borrowInternal(borrowAmount, false) == 0, "borrow failed");
}
/**
* @notice Sender repays their own borrow
* @param repayAmount The amount to repay
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function repayBorrow(uint256 repayAmount) external returns (uint256) {
(uint256 err, ) = repayBorrowInternal(repayAmount, false);
require(err == 0, "repay failed");
}
/**
* @notice Sender repays a borrow belonging to borrower
* @param borrower the account with the debt being payed off
* @param repayAmount The amount to repay
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function repayBorrowBehalf(address borrower, uint256 repayAmount) external returns (uint256) {
(uint256 err, ) = repayBorrowBehalfInternal(borrower, repayAmount, false);
require(err == 0, "repay behalf failed");
}
/**
* @notice The sender liquidates the borrowers collateral.
* The collateral seized is transferred to the liquidator.
* @param borrower The borrower of this cToken to be liquidated
* @param repayAmount The amount of the underlying borrowed asset to repay
* @param cTokenCollateral The market in which to seize collateral from the borrower
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function liquidateBorrow(
address borrower,
uint256 repayAmount,
CTokenInterface cTokenCollateral
) external returns (uint256) {
(uint256 err, ) = liquidateBorrowInternal(borrower, repayAmount, cTokenCollateral, false);
require(err == 0, "liquidate borrow failed");
}
/**
* @notice The sender adds to reserves.
* @param addAmount The amount fo underlying token to add as reserves
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _addReserves(uint256 addAmount) external returns (uint256) {
require(_addReservesInternal(addAmount, false) == 0, "add reserves failed");
}
/*** Safe Token ***/
/**
* @notice Gets balance of this contract in terms of the underlying
* @dev This excludes the value of the current message, if any
* @return The quantity of underlying tokens owned by this contract
*/
function getCashPrior() internal view returns (uint256) {
EIP20Interface token = EIP20Interface(underlying);
return token.balanceOf(address(this));
}
/**
* @dev Similar to EIP20 transfer, except it handles a False result from `transferFrom` and reverts in that case.
* This will revert due to insufficient balance or insufficient allowance.
* This function returns the actual amount received,
* which may be less than `amount` if there is a fee attached to the transfer.
*
* Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.
* See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
*/
function doTransferIn(
address from,
uint256 amount,
bool isNative
) internal returns (uint256) {
isNative; // unused
EIP20NonStandardInterface token = EIP20NonStandardInterface(underlying);
uint256 balanceBefore = EIP20Interface(underlying).balanceOf(address(this));
token.transferFrom(from, address(this), amount);
bool success;
assembly {
switch returndatasize()
case 0 {
// This is a non-standard ERC-20
success := not(0) // set success to true
}
case 32 {
// This is a compliant ERC-20
returndatacopy(0, 0, 32)
success := mload(0) // Set `success = returndata` of external call
}
default {
// This is an excessively non-compliant ERC-20, revert.
revert(0, 0)
}
}
require(success, "transfer failed");
// Calculate the amount that was *actually* transferred
uint256 balanceAfter = EIP20Interface(underlying).balanceOf(address(this));
return sub_(balanceAfter, balanceBefore);
}
/**
* @dev Similar to EIP20 transfer, except it handles a False success from `transfer` and returns an explanatory
* error code rather than reverting. If caller has not called checked protocol's balance, this may revert due to
* insufficient cash held in this contract. If caller has checked protocol's balance prior to this call, and verified
* it is >= amount, this should not revert in normal conditions.
*
* Note: This wrapper safely handles non-standard ERC-20 tokens that do not return a value.
* See here: https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
*/
function doTransferOut(
address payable to,
uint256 amount,
bool isNative
) internal {
isNative; // unused
EIP20NonStandardInterface token = EIP20NonStandardInterface(underlying);
token.transfer(to, amount);
bool success;
assembly {
switch returndatasize()
case 0 {
// This is a non-standard ERC-20
success := not(0) // set success to true
}
case 32 {
// This is a complaint ERC-20
returndatacopy(0, 0, 32)
success := mload(0) // Set `success = returndata` of external call
}
default {
// This is an excessively non-compliant ERC-20, revert.
revert(0, 0)
}
}
require(success, "transfer failed");
}
/**
* @notice Transfer `tokens` tokens from `src` to `dst` by `spender`
* @dev Called by both `transfer` and `transferFrom` internally
* @param spender The address of the account performing the transfer
* @param src The address of the source account
* @param dst The address of the destination account
* @param tokens The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transferTokens(
address spender,
address src,
address dst,
uint256 tokens
) internal returns (uint256) {
/* Fail if transfer not allowed */
require(comptroller.transferAllowed(address(this), src, dst, tokens) == 0, "rejected");
/* Do not allow self-transfers */
require(src != dst, "bad input");
/* Get the allowance, infinite for the account owner */
uint256 startingAllowance = 0;
if (spender == src) {
startingAllowance = uint256(-1);
} else {
startingAllowance = transferAllowances[src][spender];
}
/* Do the calculations, checking for {under,over}flow */
accountTokens[src] = sub_(accountTokens[src], tokens);
accountTokens[dst] = add_(accountTokens[dst], tokens);
/* Eat some of the allowance (if necessary) */
if (startingAllowance != uint256(-1)) {
transferAllowances[src][spender] = sub_(startingAllowance, tokens);
}
/* We emit a Transfer event */
emit Transfer(src, dst, tokens);
comptroller.transferVerify(address(this), src, dst, tokens);
return uint256(Error.NO_ERROR);
}
/**
* @notice Get the account's cToken balances
* @param account The address of the account
*/
function getCTokenBalanceInternal(address account) internal view returns (uint256) {
return accountTokens[account];
}
struct MintLocalVars {
uint256 exchangeRateMantissa;
uint256 mintTokens;
uint256 actualMintAmount;
}
/**
* @notice User supplies assets into the market and receives cTokens in exchange
* @dev Assumes interest has already been accrued up to the current block
* @param minter The address of the account which is supplying the assets
* @param mintAmount The amount of the underlying asset to supply
* @param isNative The amount is in native or not
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
*/
function mintFresh(
address minter,
uint256 mintAmount,
bool isNative
) internal returns (uint256, uint256) {
/* Fail if mint not allowed */
require(comptroller.mintAllowed(address(this), minter, mintAmount) == 0, "rejected");
/*
* Return if mintAmount is zero.
* Put behind `mintAllowed` for accruing potential COMP rewards.
*/
if (mintAmount == 0) {
return (uint256(Error.NO_ERROR), 0);
}
/* Verify market's block number equals current block number */
require(accrualBlockNumber == getBlockNumber(), "market is stale");
MintLocalVars memory vars;
vars.exchangeRateMantissa = exchangeRateStoredInternal();
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/*
* We call `doTransferIn` for the minter and the mintAmount.
* Note: The cToken must handle variations between ERC-20 and ETH underlying.
* `doTransferIn` reverts if anything goes wrong, since we can't be sure if
* side-effects occurred. The function returns the amount actually transferred,
* in case of a fee. On success, the cToken holds an additional `actualMintAmount`
* of cash.
*/
vars.actualMintAmount = doTransferIn(minter, mintAmount, isNative);
/*
* We get the current exchange rate and calculate the number of cTokens to be minted:
* mintTokens = actualMintAmount / exchangeRate
*/
vars.mintTokens = div_ScalarByExpTruncate(vars.actualMintAmount, Exp({mantissa: vars.exchangeRateMantissa}));
/*
* We calculate the new total supply of cTokens and minter token balance, checking for overflow:
* totalSupply = totalSupply + mintTokens
* accountTokens[minter] = accountTokens[minter] + mintTokens
*/
totalSupply = add_(totalSupply, vars.mintTokens);
accountTokens[minter] = add_(accountTokens[minter], vars.mintTokens);
/* We emit a Mint event, and a Transfer event */
emit Mint(minter, vars.actualMintAmount, vars.mintTokens);
emit Transfer(address(this), minter, vars.mintTokens);
/* We call the defense hook */
comptroller.mintVerify(address(this), minter, vars.actualMintAmount, vars.mintTokens);
return (uint256(Error.NO_ERROR), vars.actualMintAmount);
}
struct RedeemLocalVars {
uint256 exchangeRateMantissa;
uint256 redeemTokens;
uint256 redeemAmount;
uint256 totalSupplyNew;
uint256 accountTokensNew;
}
/**
* @notice User redeems cTokens in exchange for the underlying asset
* @dev Assumes interest has already been accrued up to the current block. Only one of redeemTokensIn or redeemAmountIn may be non-zero and it would do nothing if both are zero.
* @param redeemer The address of the account which is redeeming the tokens
* @param redeemTokensIn The number of cTokens to redeem into underlying
* @param redeemAmountIn The number of underlying tokens to receive from redeeming cTokens
* @param isNative The amount is in native or not
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeemFresh(
address payable redeemer,
uint256 redeemTokensIn,
uint256 redeemAmountIn,
bool isNative
) internal returns (uint256) {
require(redeemTokensIn == 0 || redeemAmountIn == 0, "bad input");
RedeemLocalVars memory vars;
/* exchangeRate = invoke Exchange Rate Stored() */
vars.exchangeRateMantissa = exchangeRateStoredInternal();
/* If redeemTokensIn > 0: */
if (redeemTokensIn > 0) {
/*
* We calculate the exchange rate and the amount of underlying to be redeemed:
* redeemTokens = redeemTokensIn
* redeemAmount = redeemTokensIn x exchangeRateCurrent
*/
vars.redeemTokens = redeemTokensIn;
vars.redeemAmount = mul_ScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn);
} else {
/*
* We get the current exchange rate and calculate the amount to be redeemed:
* redeemTokens = redeemAmountIn / exchangeRate
* redeemAmount = redeemAmountIn
*/
vars.redeemTokens = div_ScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa}));
vars.redeemAmount = redeemAmountIn;
}
/* Fail if redeem not allowed */
require(comptroller.redeemAllowed(address(this), redeemer, vars.redeemTokens) == 0, "rejected");
/*
* Return if redeemTokensIn and redeemAmountIn are zero.
* Put behind `redeemAllowed` for accruing potential COMP rewards.
*/
if (redeemTokensIn == 0 && redeemAmountIn == 0) {
return uint256(Error.NO_ERROR);
}
/* Verify market's block number equals current block number */
require(accrualBlockNumber == getBlockNumber(), "market is stale");
/*
* We calculate the new total supply and redeemer balance, checking for underflow:
* totalSupplyNew = totalSupply - redeemTokens
* accountTokensNew = accountTokens[redeemer] - redeemTokens
*/
vars.totalSupplyNew = sub_(totalSupply, vars.redeemTokens);
vars.accountTokensNew = sub_(accountTokens[redeemer], vars.redeemTokens);
/* Reverts if protocol has insufficient cash */
require(getCashPrior() >= vars.redeemAmount, "insufficient cash");
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/* We write previously calculated values into storage */
totalSupply = vars.totalSupplyNew;
accountTokens[redeemer] = vars.accountTokensNew;
/*
* We invoke doTransferOut for the redeemer and the redeemAmount.
* Note: The cToken must handle variations between ERC-20 and ETH underlying.
* On success, the cToken has redeemAmount less of cash.
* doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
*/
doTransferOut(redeemer, vars.redeemAmount, isNative);
/* We emit a Transfer event, and a Redeem event */
emit Transfer(redeemer, address(this), vars.redeemTokens);
emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens);
/* We call the defense hook */
comptroller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens);
return uint256(Error.NO_ERROR);
}
/**
* @notice Transfers collateral tokens (this market) to the liquidator.
* @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken.
* Its absolutely critical to use msg.sender as the seizer cToken and not a parameter.
* @param seizerToken The contract seizing the collateral (i.e. borrowed cToken)
* @param liquidator The account receiving seized collateral
* @param borrower The account having collateral seized
* @param seizeTokens The number of cTokens to seize
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function seizeInternal(
address seizerToken,
address liquidator,
address borrower,
uint256 seizeTokens
) internal returns (uint256) {
/* Fail if seize not allowed */
require(
comptroller.seizeAllowed(address(this), seizerToken, liquidator, borrower, seizeTokens) == 0,
"rejected"
);
/*
* Return if seizeTokens is zero.
* Put behind `seizeAllowed` for accruing potential COMP rewards.
*/
if (seizeTokens == 0) {
return uint256(Error.NO_ERROR);
}
/* Fail if borrower = liquidator */
require(borrower != liquidator, "invalid account pair");
/*
* We calculate the new borrower and liquidator token balances, failing on underflow/overflow:
* borrowerTokensNew = accountTokens[borrower] - seizeTokens
* liquidatorTokensNew = accountTokens[liquidator] + seizeTokens
*/
accountTokens[borrower] = sub_(accountTokens[borrower], seizeTokens);
accountTokens[liquidator] = add_(accountTokens[liquidator], seizeTokens);
/* Emit a Transfer event */
emit Transfer(borrower, liquidator, seizeTokens);
/* We call the defense hook */
comptroller.seizeVerify(address(this), seizerToken, liquidator, borrower, seizeTokens);
return uint256(Error.NO_ERROR);
}
}
pragma solidity ^0.5.16;
import "./ComptrollerInterface.sol";
import "./CTokenInterfaces.sol";
import "./ErrorReporter.sol";
import "./Exponential.sol";
import "./EIP20Interface.sol";
import "./EIP20NonStandardInterface.sol";
import "./InterestRateModel.sol";
/**
* @title Compound's CToken Contract
* @notice Abstract base for CTokens
* @author Compound
*/
contract CToken is CTokenInterface, Exponential, TokenErrorReporter {
/**
* @notice Initialize the money market
* @param comptroller_ The address of the Comptroller
* @param interestRateModel_ The address of the interest rate model
* @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18
* @param name_ EIP-20 name of this token
* @param symbol_ EIP-20 symbol of this token
* @param decimals_ EIP-20 decimal precision of this token
*/
function initialize(
ComptrollerInterface comptroller_,
InterestRateModel interestRateModel_,
uint256 initialExchangeRateMantissa_,
string memory name_,
string memory symbol_,
uint8 decimals_
) public {
require(msg.sender == admin, "admin only");
require(accrualBlockNumber == 0 && borrowIndex == 0, "initialized");
// Set initial exchange rate
initialExchangeRateMantissa = initialExchangeRateMantissa_;
require(initialExchangeRateMantissa > 0, "invalid exchange rate");
// Set the comptroller
uint256 err = _setComptroller(comptroller_);
require(err == uint256(Error.NO_ERROR), "set comptroller failed");
// Initialize block number and borrow index (block number mocks depend on comptroller being set)
accrualBlockNumber = getBlockNumber();
borrowIndex = mantissaOne;
// Set the interest rate model (depends on block number / borrow index)
err = _setInterestRateModelFresh(interestRateModel_);
require(err == uint256(Error.NO_ERROR), "set IRM failed");
name = name_;
symbol = symbol_;
decimals = decimals_;
// The counter starts true to prevent changing it from zero to non-zero (i.e. smaller cost/refund)
_notEntered = true;
}
/**
* @notice Transfer `amount` tokens from `msg.sender` to `dst`
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transfer(address dst, uint256 amount) external nonReentrant returns (bool) {
return transferTokens(msg.sender, msg.sender, dst, amount) == uint256(Error.NO_ERROR);
}
/**
* @notice Transfer `amount` tokens from `src` to `dst`
* @param src The address of the source account
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transferFrom(
address src,
address dst,
uint256 amount
) external nonReentrant returns (bool) {
return transferTokens(msg.sender, src, dst, amount) == uint256(Error.NO_ERROR);
}
/**
* @notice Approve `spender` to transfer up to `amount` from `src`
* @dev This will overwrite the approval amount for `spender`
* and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
* @param spender The address of the account which may transfer tokens
* @param amount The number of tokens that are approved (-1 means infinite)
* @return Whether or not the approval succeeded
*/
function approve(address spender, uint256 amount) external returns (bool) {
address src = msg.sender;
transferAllowances[src][spender] = amount;
emit Approval(src, spender, amount);
return true;
}
/**
* @notice Get the current allowance from `owner` for `spender`
* @param owner The address of the account which owns the tokens to be spent
* @param spender The address of the account which may transfer tokens
* @return The number of tokens allowed to be spent (-1 means infinite)
*/
function allowance(address owner, address spender) external view returns (uint256) {
return transferAllowances[owner][spender];
}
/**
* @notice Get the token balance of the `owner`
* @param owner The address of the account to query
* @return The number of tokens owned by `owner`
*/
function balanceOf(address owner) external view returns (uint256) {
return accountTokens[owner];
}
/**
* @notice Get the underlying balance of the `owner`
* @dev This also accrues interest in a transaction
* @param owner The address of the account to query
* @return The amount of underlying owned by `owner`
*/
function balanceOfUnderlying(address owner) external returns (uint256) {
Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()});
return mul_ScalarTruncate(exchangeRate, accountTokens[owner]);
}
/**
* @notice Get a snapshot of the account's balances, and the cached exchange rate
* @dev This is used by comptroller to more efficiently perform liquidity checks.
* @param account Address of the account to snapshot
* @return (possible error, token balance, borrow balance, exchange rate mantissa)
*/
function getAccountSnapshot(address account)
external
view
returns (
uint256,
uint256,
uint256,
uint256
)
{
uint256 cTokenBalance = getCTokenBalanceInternal(account);
uint256 borrowBalance = borrowBalanceStoredInternal(account);
uint256 exchangeRateMantissa = exchangeRateStoredInternal();
return (uint256(Error.NO_ERROR), cTokenBalance, borrowBalance, exchangeRateMantissa);
}
/**
* @dev Function to simply retrieve block number
* This exists mainly for inheriting test contracts to stub this result.
*/
function getBlockNumber() internal view returns (uint256) {
return block.timestamp;
}
/**
* @notice Returns the current per-block borrow interest rate for this cToken
* @return The borrow interest rate per block, scaled by 1e18
*/
function borrowRatePerBlock() external view returns (uint256) {
return interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves);
}
/**
* @notice Returns the current per-block supply interest rate for this cToken
* @return The supply interest rate per block, scaled by 1e18
*/
function supplyRatePerBlock() external view returns (uint256) {
return interestRateModel.getSupplyRate(getCashPrior(), totalBorrows, totalReserves, reserveFactorMantissa);
}
/**
* @notice Returns the estimated per-block borrow interest rate for this cToken after some change
* @return The borrow interest rate per block, scaled by 1e18
*/
function estimateBorrowRatePerBlockAfterChange(uint256 change, bool repay) external view returns (uint256) {
uint256 cashPriorNew;
uint256 totalBorrowsNew;
if (repay) {
cashPriorNew = add_(getCashPrior(), change);
totalBorrowsNew = sub_(totalBorrows, change);
} else {
cashPriorNew = sub_(getCashPrior(), change);
totalBorrowsNew = add_(totalBorrows, change);
}
return interestRateModel.getBorrowRate(cashPriorNew, totalBorrowsNew, totalReserves);
}
/**
* @notice Returns the estimated per-block supply interest rate for this cToken after some change
* @return The supply interest rate per block, scaled by 1e18
*/
function estimateSupplyRatePerBlockAfterChange(uint256 change, bool repay) external view returns (uint256) {
uint256 cashPriorNew;
uint256 totalBorrowsNew;
if (repay) {
cashPriorNew = add_(getCashPrior(), change);
totalBorrowsNew = sub_(totalBorrows, change);
} else {
cashPriorNew = sub_(getCashPrior(), change);
totalBorrowsNew = add_(totalBorrows, change);
}
return interestRateModel.getSupplyRate(cashPriorNew, totalBorrowsNew, totalReserves, reserveFactorMantissa);
}
/**
* @notice Returns the current total borrows plus accrued interest
* @return The total borrows with interest
*/
function totalBorrowsCurrent() external nonReentrant returns (uint256) {
accrueInterest();
return totalBorrows;
}
/**
* @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex
* @param account The address whose balance should be calculated after updating borrowIndex
* @return The calculated balance
*/
function borrowBalanceCurrent(address account) external nonReentrant returns (uint256) {
accrueInterest();
return borrowBalanceStored(account);
}
/**
* @notice Return the borrow balance of account based on stored data
* @param account The address whose balance should be calculated
* @return The calculated balance
*/
function borrowBalanceStored(address account) public view returns (uint256) {
return borrowBalanceStoredInternal(account);
}
/**
* @notice Return the borrow balance of account based on stored data
* @param account The address whose balance should be calculated
* @return the calculated balance or 0 if error code is non-zero
*/
function borrowBalanceStoredInternal(address account) internal view returns (uint256) {
/* Get borrowBalance and borrowIndex */
BorrowSnapshot storage borrowSnapshot = accountBorrows[account];
/* If borrowBalance = 0 then borrowIndex is likely also 0.
* Rather than failing the calculation with a division by 0, we immediately return 0 in this case.
*/
if (borrowSnapshot.principal == 0) {
return 0;
}
/* Calculate new borrow balance using the interest index:
* recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex
*/
uint256 principalTimesIndex = mul_(borrowSnapshot.principal, borrowIndex);
uint256 result = div_(principalTimesIndex, borrowSnapshot.interestIndex);
return result;
}
/**
* @notice Accrue interest then return the up-to-date exchange rate
* @return Calculated exchange rate scaled by 1e18
*/
function exchangeRateCurrent() public nonReentrant returns (uint256) {
accrueInterest();
return exchangeRateStored();
}
/**
* @notice Calculates the exchange rate from the underlying to the CToken
* @dev This function does not accrue interest before calculating the exchange rate
* @return Calculated exchange rate scaled by 1e18
*/
function exchangeRateStored() public view returns (uint256) {
return exchangeRateStoredInternal();
}
/**
* @notice Calculates the exchange rate from the underlying to the CToken
* @dev This function does not accrue interest before calculating the exchange rate
* @return calculated exchange rate scaled by 1e18
*/
function exchangeRateStoredInternal() internal view returns (uint256) {
uint256 _totalSupply = totalSupply;
if (_totalSupply == 0) {
/*
* If there are no tokens minted:
* exchangeRate = initialExchangeRate
*/
return initialExchangeRateMantissa;
} else {
/*
* Otherwise:
* exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply
*/
uint256 totalCash = getCashPrior();
uint256 cashPlusBorrowsMinusReserves = sub_(add_(totalCash, totalBorrows), totalReserves);
uint256 exchangeRate = div_(cashPlusBorrowsMinusReserves, Exp({mantissa: _totalSupply}));
return exchangeRate;
}
}
/**
* @notice Get cash balance of this cToken in the underlying asset
* @return The quantity of underlying asset owned by this contract
*/
function getCash() external view returns (uint256) {
return getCashPrior();
}
/**
* @notice Applies accrued interest to total borrows and reserves
* @dev This calculates interest accrued from the last checkpointed block
* up to the current block and writes new checkpoint to storage.
*/
function accrueInterest() public returns (uint256) {
/* Remember the initial block number */
uint256 currentBlockNumber = getBlockNumber();
uint256 accrualBlockNumberPrior = accrualBlockNumber;
/* Short-circuit accumulating 0 interest */
if (accrualBlockNumberPrior == currentBlockNumber) {
return uint256(Error.NO_ERROR);
}
/* Read the previous values out of storage */
uint256 cashPrior = getCashPrior();
uint256 borrowsPrior = totalBorrows;
uint256 reservesPrior = totalReserves;
uint256 borrowIndexPrior = borrowIndex;
/* Calculate the current borrow interest rate */
uint256 borrowRateMantissa = interestRateModel.getBorrowRate(cashPrior, borrowsPrior, reservesPrior);
require(borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate too high");
/* Calculate the number of blocks elapsed since the last accrual */
uint256 blockDelta = sub_(currentBlockNumber, accrualBlockNumberPrior);
/*
* Calculate the interest accumulated into borrows and reserves and the new index:
* simpleInterestFactor = borrowRate * blockDelta
* interestAccumulated = simpleInterestFactor * totalBorrows
* totalBorrowsNew = interestAccumulated + totalBorrows
* totalReservesNew = interestAccumulated * reserveFactor + totalReserves
* borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex
*/
Exp memory simpleInterestFactor = mul_(Exp({mantissa: borrowRateMantissa}), blockDelta);
uint256 interestAccumulated = mul_ScalarTruncate(simpleInterestFactor, borrowsPrior);
uint256 totalBorrowsNew = add_(interestAccumulated, borrowsPrior);
uint256 totalReservesNew = mul_ScalarTruncateAddUInt(
Exp({mantissa: reserveFactorMantissa}),
interestAccumulated,
reservesPrior
);
uint256 borrowIndexNew = mul_ScalarTruncateAddUInt(simpleInterestFactor, borrowIndexPrior, borrowIndexPrior);
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/* We write the previously calculated values into storage */
accrualBlockNumber = currentBlockNumber;
borrowIndex = borrowIndexNew;
totalBorrows = totalBorrowsNew;
totalReserves = totalReservesNew;
/* We emit an AccrueInterest event */
emit AccrueInterest(cashPrior, interestAccumulated, borrowIndexNew, totalBorrowsNew);
return uint256(Error.NO_ERROR);
}
/**
* @notice Sender supplies assets into the market and receives cTokens in exchange
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param mintAmount The amount of the underlying asset to supply
* @param isNative The amount is in native or not
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount.
*/
function mintInternal(uint256 mintAmount, bool isNative) internal nonReentrant returns (uint256, uint256) {
accrueInterest();
// mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to
return mintFresh(msg.sender, mintAmount, isNative);
}
/**
* @notice Sender redeems cTokens in exchange for the underlying asset
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param redeemTokens The number of cTokens to redeem into underlying
* @param isNative The amount is in native or not
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeemInternal(uint256 redeemTokens, bool isNative) internal nonReentrant returns (uint256) {
accrueInterest();
// redeemFresh emits redeem-specific logs on errors, so we don't need to
return redeemFresh(msg.sender, redeemTokens, 0, isNative);
}
/**
* @notice Sender redeems cTokens in exchange for a specified amount of underlying asset
* @dev Accrues interest whether or not the operation succeeds, unless reverted
* @param redeemAmount The amount of underlying to receive from redeeming cTokens
* @param isNative The amount is in native or not
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function redeemUnderlyingInternal(uint256 redeemAmount, bool isNative) internal nonReentrant returns (uint256) {
accrueInterest();
// redeemFresh emits redeem-specific logs on errors, so we don't need to
return redeemFresh(msg.sender, 0, redeemAmount, isNative);
}
/**
* @notice Sender borrows assets from the protocol to their own address
* @param borrowAmount The amount of the underlying asset to borrow
* @param isNative The amount is in native or not
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function borrowInternal(uint256 borrowAmount, bool isNative) internal nonReentrant returns (uint256) {
accrueInterest();
// borrowFresh emits borrow-specific logs on errors, so we don't need to
return borrowFresh(msg.sender, borrowAmount, isNative);
}
struct BorrowLocalVars {
MathError mathErr;
uint256 accountBorrows;
uint256 accountBorrowsNew;
uint256 totalBorrowsNew;
}
/**
* @notice Users borrow assets from the protocol to their own address
* @param borrowAmount The amount of the underlying asset to borrow
* @param isNative The amount is in native or not
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function borrowFresh(
address payable borrower,
uint256 borrowAmount,
bool isNative
) internal returns (uint256) {
/* Fail if borrow not allowed */
require(comptroller.borrowAllowed(address(this), borrower, borrowAmount) == 0, "rejected");
/* Verify market's block number equals current block number */
require(accrualBlockNumber == getBlockNumber(), "market is stale");
/* Reverts if protocol has insufficient cash */
require(getCashPrior() >= borrowAmount, "insufficient cash");
BorrowLocalVars memory vars;
/*
* We calculate the new borrower and total borrow balances, failing on overflow:
* accountBorrowsNew = accountBorrows + borrowAmount
* totalBorrowsNew = totalBorrows + borrowAmount
*/
vars.accountBorrows = borrowBalanceStoredInternal(borrower);
vars.accountBorrowsNew = add_(vars.accountBorrows, borrowAmount);
vars.totalBorrowsNew = add_(totalBorrows, borrowAmount);
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/* We write the previously calculated values into storage */
accountBorrows[borrower].principal = vars.accountBorrowsNew;
accountBorrows[borrower].interestIndex = borrowIndex;
totalBorrows = vars.totalBorrowsNew;
/*
* We invoke doTransferOut for the borrower and the borrowAmount.
* Note: The cToken must handle variations between ERC-20 and ETH underlying.
* On success, the cToken borrowAmount less of cash.
* doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
*/
doTransferOut(borrower, borrowAmount, isNative);
/* We emit a Borrow event */
emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);
/* We call the defense hook */
comptroller.borrowVerify(address(this), borrower, borrowAmount);
return uint256(Error.NO_ERROR);
}
/**
* @notice Sender repays their own borrow
* @param repayAmount The amount to repay
* @param isNative The amount is in native or not
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
*/
function repayBorrowInternal(uint256 repayAmount, bool isNative) internal nonReentrant returns (uint256, uint256) {
accrueInterest();
// repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
return repayBorrowFresh(msg.sender, msg.sender, repayAmount, isNative);
}
/**
* @notice Sender repays a borrow belonging to borrower
* @param borrower the account with the debt being payed off
* @param repayAmount The amount to repay
* @param isNative The amount is in native or not
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
*/
function repayBorrowBehalfInternal(
address borrower,
uint256 repayAmount,
bool isNative
) internal nonReentrant returns (uint256, uint256) {
accrueInterest();
// repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to
return repayBorrowFresh(msg.sender, borrower, repayAmount, isNative);
}
struct RepayBorrowLocalVars {
Error err;
MathError mathErr;
uint256 repayAmount;
uint256 borrowerIndex;
uint256 accountBorrows;
uint256 accountBorrowsNew;
uint256 totalBorrowsNew;
uint256 actualRepayAmount;
}
/**
* @notice Borrows are repaid by another user (possibly the borrower).
* @param payer the account paying off the borrow
* @param borrower the account with the debt being payed off
* @param repayAmount the amount of underlying tokens being returned
* @param isNative The amount is in native or not
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
*/
function repayBorrowFresh(
address payer,
address borrower,
uint256 repayAmount,
bool isNative
) internal returns (uint256, uint256) {
/* Fail if repayBorrow not allowed */
require(comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount) == 0, "rejected");
/* Verify market's block number equals current block number */
require(accrualBlockNumber == getBlockNumber(), "market is stale");
RepayBorrowLocalVars memory vars;
/* We remember the original borrowerIndex for verification purposes */
vars.borrowerIndex = accountBorrows[borrower].interestIndex;
/* We fetch the amount the borrower owes, with accumulated interest */
vars.accountBorrows = borrowBalanceStoredInternal(borrower);
/* If repayAmount == -1, repayAmount = accountBorrows */
if (repayAmount == uint256(-1)) {
vars.repayAmount = vars.accountBorrows;
} else {
vars.repayAmount = repayAmount;
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/*
* We call doTransferIn for the payer and the repayAmount
* Note: The cToken must handle variations between ERC-20 and ETH underlying.
* On success, the cToken holds an additional repayAmount of cash.
* doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred.
* it returns the amount actually transferred, in case of a fee.
*/
vars.actualRepayAmount = doTransferIn(payer, vars.repayAmount, isNative);
/*
* We calculate the new borrower and total borrow balances, failing on underflow:
* accountBorrowsNew = accountBorrows - actualRepayAmount
* totalBorrowsNew = totalBorrows - actualRepayAmount
*/
vars.accountBorrowsNew = sub_(vars.accountBorrows, vars.actualRepayAmount);
vars.totalBorrowsNew = sub_(totalBorrows, vars.actualRepayAmount);
/* We write the previously calculated values into storage */
accountBorrows[borrower].principal = vars.accountBorrowsNew;
accountBorrows[borrower].interestIndex = borrowIndex;
totalBorrows = vars.totalBorrowsNew;
/* We emit a RepayBorrow event */
emit RepayBorrow(payer, borrower, vars.actualRepayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew);
/* We call the defense hook */
comptroller.repayBorrowVerify(address(this), payer, borrower, vars.actualRepayAmount, vars.borrowerIndex);
return (uint256(Error.NO_ERROR), vars.actualRepayAmount);
}
/**
* @notice The sender liquidates the borrowers collateral.
* The collateral seized is transferred to the liquidator.
* @param borrower The borrower of this cToken to be liquidated
* @param repayAmount The amount of the underlying borrowed asset to repay
* @param cTokenCollateral The market in which to seize collateral from the borrower
* @param isNative The amount is in native or not
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
*/
function liquidateBorrowInternal(
address borrower,
uint256 repayAmount,
CTokenInterface cTokenCollateral,
bool isNative
) internal nonReentrant returns (uint256, uint256) {
accrueInterest();
require(cTokenCollateral.accrueInterest() == uint256(Error.NO_ERROR), "accrue interest failed");
// liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to
return liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral, isNative);
}
struct LiquidateBorrowLocalVars {
uint256 repayBorrowError;
uint256 actualRepayAmount;
uint256 amountSeizeError;
uint256 seizeTokens;
}
/**
* @notice The liquidator liquidates the borrowers collateral.
* The collateral seized is transferred to the liquidator.
* @param borrower The borrower of this cToken to be liquidated
* @param liquidator The address repaying the borrow and seizing collateral
* @param cTokenCollateral The market in which to seize collateral from the borrower
* @param repayAmount The amount of the underlying borrowed asset to repay
* @param isNative The amount is in native or not
* @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount.
*/
function liquidateBorrowFresh(
address liquidator,
address borrower,
uint256 repayAmount,
CTokenInterface cTokenCollateral,
bool isNative
) internal returns (uint256, uint256) {
/* Fail if liquidate not allowed */
require(
comptroller.liquidateBorrowAllowed(
address(this),
address(cTokenCollateral),
liquidator,
borrower,
repayAmount
) == 0,
"rejected"
);
/* Verify market's block number equals current block number */
require(accrualBlockNumber == getBlockNumber(), "market is stale");
/* Verify cTokenCollateral market's block number equals current block number */
require(cTokenCollateral.accrualBlockNumber() == getBlockNumber(), "market is stale");
/* Fail if borrower = liquidator */
require(borrower != liquidator, "invalid account pair");
/* Fail if repayAmount = 0 or repayAmount = -1 */
require(repayAmount > 0 && repayAmount != uint256(-1), "invalid amount");
LiquidateBorrowLocalVars memory vars;
/* Fail if repayBorrow fails */
(vars.repayBorrowError, vars.actualRepayAmount) = repayBorrowFresh(liquidator, borrower, repayAmount, isNative);
require(vars.repayBorrowError == uint256(Error.NO_ERROR), "repay borrow failed");
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/* We calculate the number of collateral tokens that will be seized */
(vars.amountSeizeError, vars.seizeTokens) = comptroller.liquidateCalculateSeizeTokens(
address(this),
address(cTokenCollateral),
vars.actualRepayAmount
);
require(vars.amountSeizeError == uint256(Error.NO_ERROR), "calculate seize amount failed");
/* Revert if borrower collateral token balance < seizeTokens */
require(cTokenCollateral.balanceOf(borrower) >= vars.seizeTokens, "seize too much");
// If this is also the collateral, run seizeInternal to avoid re-entrancy, otherwise make an external call
uint256 seizeError;
if (address(cTokenCollateral) == address(this)) {
seizeError = seizeInternal(address(this), liquidator, borrower, vars.seizeTokens);
} else {
seizeError = cTokenCollateral.seize(liquidator, borrower, vars.seizeTokens);
}
/* Revert if seize tokens fails (since we cannot be sure of side effects) */
require(seizeError == uint256(Error.NO_ERROR), "token seizure failed");
/* We emit a LiquidateBorrow event */
emit LiquidateBorrow(liquidator, borrower, vars.actualRepayAmount, address(cTokenCollateral), vars.seizeTokens);
/* We call the defense hook */
comptroller.liquidateBorrowVerify(
address(this),
address(cTokenCollateral),
liquidator,
borrower,
vars.actualRepayAmount,
vars.seizeTokens
);
return (uint256(Error.NO_ERROR), vars.actualRepayAmount);
}
/**
* @notice Transfers collateral tokens (this market) to the liquidator.
* @dev Will fail unless called by another cToken during the process of liquidation.
* Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter.
* @param liquidator The account receiving seized collateral
* @param borrower The account having collateral seized
* @param seizeTokens The number of cTokens to seize
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function seize(
address liquidator,
address borrower,
uint256 seizeTokens
) external nonReentrant returns (uint256) {
return seizeInternal(msg.sender, liquidator, borrower, seizeTokens);
}
/*** Admin Functions ***/
/**
* @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
* @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer.
* @param newPendingAdmin New pending admin.
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setPendingAdmin(address payable newPendingAdmin) external returns (uint256) {
// Check caller = admin
if (msg.sender != admin) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK);
}
// Save current value, if any, for inclusion in log
address oldPendingAdmin = pendingAdmin;
// Store pendingAdmin with value newPendingAdmin
pendingAdmin = newPendingAdmin;
// Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin)
emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin);
return uint256(Error.NO_ERROR);
}
/**
* @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin
* @dev Admin function for pending admin to accept role and update admin
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _acceptAdmin() external returns (uint256) {
// Check caller is pendingAdmin and pendingAdmin ≠ address(0)
if (msg.sender != pendingAdmin || msg.sender == address(0)) {
return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK);
}
// Save current values for inclusion in log
address oldAdmin = admin;
address oldPendingAdmin = pendingAdmin;
// Store admin with value pendingAdmin
admin = pendingAdmin;
// Clear the pending value
pendingAdmin = address(0);
emit NewAdmin(oldAdmin, admin);
emit NewPendingAdmin(oldPendingAdmin, pendingAdmin);
return uint256(Error.NO_ERROR);
}
/**
* @notice Sets a new comptroller for the market
* @dev Admin function to set a new comptroller
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setComptroller(ComptrollerInterface newComptroller) public returns (uint256) {
// Check caller is admin
if (msg.sender != admin) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_COMPTROLLER_OWNER_CHECK);
}
ComptrollerInterface oldComptroller = comptroller;
// Ensure invoke comptroller.isComptroller() returns true
require(newComptroller.isComptroller(), "not comptroller");
// Set market's comptroller to newComptroller
comptroller = newComptroller;
// Emit NewComptroller(oldComptroller, newComptroller)
emit NewComptroller(oldComptroller, newComptroller);
return uint256(Error.NO_ERROR);
}
/**
* @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh
* @dev Admin function to accrue interest and set a new reserve factor
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setReserveFactor(uint256 newReserveFactorMantissa) external nonReentrant returns (uint256) {
accrueInterest();
// _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to.
return _setReserveFactorFresh(newReserveFactorMantissa);
}
/**
* @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual)
* @dev Admin function to set a new reserve factor
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setReserveFactorFresh(uint256 newReserveFactorMantissa) internal returns (uint256) {
// Check caller is admin
if (msg.sender != admin) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK);
}
// Verify market's block number equals current block number
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK);
}
// Check newReserveFactor ≤ maxReserveFactor
if (newReserveFactorMantissa > reserveFactorMaxMantissa) {
return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK);
}
uint256 oldReserveFactorMantissa = reserveFactorMantissa;
reserveFactorMantissa = newReserveFactorMantissa;
emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa);
return uint256(Error.NO_ERROR);
}
/**
* @notice Accrues interest and reduces reserves by transferring from msg.sender
* @param addAmount Amount of addition to reserves
* @param isNative The amount is in native or not
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _addReservesInternal(uint256 addAmount, bool isNative) internal nonReentrant returns (uint256) {
accrueInterest();
// _addReservesFresh emits reserve-addition-specific logs on errors, so we don't need to.
(uint256 error, ) = _addReservesFresh(addAmount, isNative);
return error;
}
/**
* @notice Add reserves by transferring from caller
* @dev Requires fresh interest accrual
* @param addAmount Amount of addition to reserves
* @param isNative The amount is in native or not
* @return (uint, uint) An error code (0=success, otherwise a failure (see ErrorReporter.sol for details)) and the actual amount added, net token fees
*/
function _addReservesFresh(uint256 addAmount, bool isNative) internal returns (uint256, uint256) {
// totalReserves + actualAddAmount
uint256 totalReservesNew;
uint256 actualAddAmount;
// We fail gracefully unless market's block number equals current block number
if (accrualBlockNumber != getBlockNumber()) {
return (fail(Error.MARKET_NOT_FRESH, FailureInfo.ADD_RESERVES_FRESH_CHECK), actualAddAmount);
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
/*
* We call doTransferIn for the caller and the addAmount
* Note: The cToken must handle variations between ERC-20 and ETH underlying.
* On success, the cToken holds an additional addAmount of cash.
* doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred.
* it returns the amount actually transferred, in case of a fee.
*/
actualAddAmount = doTransferIn(msg.sender, addAmount, isNative);
totalReservesNew = add_(totalReserves, actualAddAmount);
// Store reserves[n+1] = reserves[n] + actualAddAmount
totalReserves = totalReservesNew;
/* Emit NewReserves(admin, actualAddAmount, reserves[n+1]) */
emit ReservesAdded(msg.sender, actualAddAmount, totalReservesNew);
/* Return (NO_ERROR, actualAddAmount) */
return (uint256(Error.NO_ERROR), actualAddAmount);
}
/**
* @notice Accrues interest and reduces reserves by transferring to admin
* @param reduceAmount Amount of reduction to reserves
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _reduceReserves(uint256 reduceAmount) external nonReentrant returns (uint256) {
accrueInterest();
// _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to.
return _reduceReservesFresh(reduceAmount);
}
/**
* @notice Reduces reserves by transferring to admin
* @dev Requires fresh interest accrual
* @param reduceAmount Amount of reduction to reserves
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _reduceReservesFresh(uint256 reduceAmount) internal returns (uint256) {
// totalReserves - reduceAmount
uint256 totalReservesNew;
// Check caller is admin
if (msg.sender != admin) {
return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK);
}
// We fail gracefully unless market's block number equals current block number
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK);
}
// Fail gracefully if protocol has insufficient underlying cash
if (getCashPrior() < reduceAmount) {
return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE);
}
// Check reduceAmount ≤ reserves[n] (totalReserves)
if (reduceAmount > totalReserves) {
return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION);
}
/////////////////////////
// EFFECTS & INTERACTIONS
// (No safe failures beyond this point)
totalReservesNew = sub_(totalReserves, reduceAmount);
// Store reserves[n+1] = reserves[n] - reduceAmount
totalReserves = totalReservesNew;
// doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred.
// Restrict reducing reserves in wrapped token. Implementations except `CWrappedNative` won't use parameter `isNative`.
doTransferOut(admin, reduceAmount, false);
emit ReservesReduced(admin, reduceAmount, totalReservesNew);
return uint256(Error.NO_ERROR);
}
/**
* @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh
* @dev Admin function to accrue interest and update the interest rate model
* @param newInterestRateModel the new interest rate model to use
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint256) {
accrueInterest();
// _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to.
return _setInterestRateModelFresh(newInterestRateModel);
}
/**
* @notice updates the interest rate model (*requires fresh interest accrual)
* @dev Admin function to update the interest rate model
* @param newInterestRateModel the new interest rate model to use
* @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details)
*/
function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint256) {
// Used to store old model for use in the event that is emitted on success
InterestRateModel oldInterestRateModel;
// Check caller is admin
if (msg.sender != admin) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK);
}
// We fail gracefully unless market's block number equals current block number
if (accrualBlockNumber != getBlockNumber()) {
return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK);
}
// Track the market's current interest rate model
oldInterestRateModel = interestRateModel;
// Ensure invoke newInterestRateModel.isInterestRateModel() returns true
require(newInterestRateModel.isInterestRateModel(), "invalid IRM");
// Set the interest rate model to newInterestRateModel
interestRateModel = newInterestRateModel;
// Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel)
emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel);
return uint256(Error.NO_ERROR);
}
/*** Safe Token ***/
/**
* @notice Gets balance of this contract in terms of the underlying
* @dev This excludes the value of the current message, if any
* @return The quantity of underlying owned by this contract
*/
function getCashPrior() internal view returns (uint256);
/**
* @dev Performs a transfer in, reverting upon failure. Returns the amount actually transferred to the protocol, in case of a fee.
* This may revert due to insufficient balance or insufficient allowance.
*/
function doTransferIn(
address from,
uint256 amount,
bool isNative
) internal returns (uint256);
/**
* @dev Performs a transfer out, ideally returning an explanatory error code upon failure rather than reverting.
* If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract.
* If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions.
*/
function doTransferOut(
address payable to,
uint256 amount,
bool isNative
) internal;
/**
* @notice Transfer `tokens` tokens from `src` to `dst` by `spender`
* @dev Called by both `transfer` and `transferFrom` internally
*/
function transferTokens(
address spender,
address src,
address dst,
uint256 tokens
) internal returns (uint256);
/**
* @notice Get the account's cToken balances
*/
function getCTokenBalanceInternal(address account) internal view returns (uint256);
/**
* @notice User supplies assets into the market and receives cTokens in exchange
* @dev Assumes interest has already been accrued up to the current block
*/
function mintFresh(
address minter,
uint256 mintAmount,
bool isNative
) internal returns (uint256, uint256);
/**
* @notice User redeems cTokens in exchange for the underlying asset
* @dev Assumes interest has already been accrued up to the current block
*/
function redeemFresh(
address payable redeemer,
uint256 redeemTokensIn,
uint256 redeemAmountIn,
bool isNative
) internal returns (uint256);
/**
* @notice Transfers collateral tokens (this market) to the liquidator.
* @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken.
* Its absolutely critical to use msg.sender as the seizer cToken and not a parameter.
*/
function seizeInternal(
address seizerToken,
address liquidator,
address borrower,
uint256 seizeTokens
) internal returns (uint256);
/*** Reentrancy Guard ***/
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
*/
modifier nonReentrant() {
require(_notEntered, "re-entered");
_notEntered = false;
_;
_notEntered = true; // get a gas-refund post-Istanbul
}
}
pragma solidity ^0.5.16;
import "./CErc20.sol";
import "./CToken.sol";
import "./EIP20NonStandardInterface.sol";
contract CTokenAdmin is Exponential {
uint256 public constant timeLock = 2 days;
/// @notice Admin address
address payable public admin;
/// @notice Reserve manager address
address payable public reserveManager;
/// @notice Admin queue
mapping(address => mapping(address => uint256)) public adminQueue;
/// @notice Implementation queue
mapping(address => mapping(address => uint256)) public implementationQueue;
/// @notice Emits when a new admin is assigned
event SetAdmin(address indexed oldAdmin, address indexed newAdmin);
/// @notice Emits when a new reserve manager is assigned
event SetReserveManager(address indexed oldReserveManager, address indexed newAdmin);
/// @notice Emits when a new cToken pending admin is queued
event PendingAdminQueued(address indexed cToken, address indexed newPendingAdmin, uint256 expiration);
/// @notice Emits when a new cToken pending admin is cleared
event PendingAdminCleared(address indexed cToken, address indexed newPendingAdmin);
/// @notice Emits when a new cToken pending admin becomes active
event PendingAdminChanged(address indexed cToken, address indexed newPendingAdmin);
/// @notice Emits when a new cToken implementation is queued
event ImplementationQueued(address indexed cToken, address indexed newImplementation, uint256 expiration);
/// @notice Emits when a new cToken implementation is cleared
event ImplementationCleared(address indexed cToken, address indexed newImplementation);
/// @notice Emits when a new cToken implementation becomes active
event ImplementationChanged(address indexed cToken, address indexed newImplementation);
/**
* @dev Throws if called by any account other than the admin.
*/
modifier onlyAdmin() {
require(msg.sender == admin, "only the admin may call this function");
_;
}
/**
* @dev Throws if called by any account other than the reserve manager.
*/
modifier onlyReserveManager() {
require(msg.sender == reserveManager, "only the reserve manager may call this function");
_;
}
constructor(address payable _admin) public {
_setAdmin(_admin);
}
/**
* @notice Get block timestamp
*/
function getBlockTimestamp() public view returns (uint256) {
return block.timestamp;
}
/**
* @notice Get cToken admin
* @param cToken The cToken address
*/
function getCTokenAdmin(address cToken) public view returns (address) {
return CToken(cToken).admin();
}
/**
* @notice Queue cToken pending admin
* @param cToken The cToken address
* @param newPendingAdmin The new pending admin
*/
function _queuePendingAdmin(address cToken, address payable newPendingAdmin) external onlyAdmin {
require(cToken != address(0) && newPendingAdmin != address(0), "invalid input");
require(adminQueue[cToken][newPendingAdmin] == 0, "already in queue");
uint256 expiration = add_(getBlockTimestamp(), timeLock);
adminQueue[cToken][newPendingAdmin] = expiration;
emit PendingAdminQueued(cToken, newPendingAdmin, expiration);
}
/**
* @notice Clear cToken pending admin
* @param cToken The cToken address
* @param newPendingAdmin The new pending admin
*/
function _clearPendingAdmin(address cToken, address payable newPendingAdmin) external onlyAdmin {
adminQueue[cToken][newPendingAdmin] = 0;
emit PendingAdminCleared(cToken, newPendingAdmin);
}
/**
* @notice Toggle cToken pending admin
* @param cToken The cToken address
* @param newPendingAdmin The new pending admin
*/
function _togglePendingAdmin(address cToken, address payable newPendingAdmin) external onlyAdmin returns (uint256) {
uint256 result = adminQueue[cToken][newPendingAdmin];
require(result != 0, "not in queue");
require(result <= getBlockTimestamp(), "queue not expired");
adminQueue[cToken][newPendingAdmin] = 0;
emit PendingAdminChanged(cToken, newPendingAdmin);
return CTokenInterface(cToken)._setPendingAdmin(newPendingAdmin);
}
/**
* @notice Accept cToken admin
* @param cToken The cToken address
*/
function _acceptAdmin(address cToken) external onlyAdmin returns (uint256) {
return CTokenInterface(cToken)._acceptAdmin();
}
/**
* @notice Set cToken comptroller
* @param cToken The cToken address
* @param newComptroller The new comptroller address
*/
function _setComptroller(address cToken, ComptrollerInterface newComptroller) external onlyAdmin returns (uint256) {
return CTokenInterface(cToken)._setComptroller(newComptroller);
}
/**
* @notice Set cToken reserve factor
* @param cToken The cToken address
* @param newReserveFactorMantissa The new reserve factor
*/
function _setReserveFactor(address cToken, uint256 newReserveFactorMantissa) external onlyAdmin returns (uint256) {
return CTokenInterface(cToken)._setReserveFactor(newReserveFactorMantissa);
}
/**
* @notice Reduce cToken reserve
* @param cToken The cToken address
* @param reduceAmount The amount of reduction
*/
function _reduceReserves(address cToken, uint256 reduceAmount) external onlyAdmin returns (uint256) {
return CTokenInterface(cToken)._reduceReserves(reduceAmount);
}
/**
* @notice Set cToken IRM
* @param cToken The cToken address
* @param newInterestRateModel The new IRM address
*/
function _setInterestRateModel(address cToken, InterestRateModel newInterestRateModel)
external
onlyAdmin
returns (uint256)
{
return CTokenInterface(cToken)._setInterestRateModel(newInterestRateModel);
}
/**
* @notice Set cToken collateral cap
* @dev It will revert if the cToken is not CCollateralCap.
* @param cToken The cToken address
* @param newCollateralCap The new collateral cap
*/
function _setCollateralCap(address cToken, uint256 newCollateralCap) external onlyAdmin {
CCollateralCapErc20Interface(cToken)._setCollateralCap(newCollateralCap);
}
/**
* @notice Queue cToken pending implementation
* @param cToken The cToken address
* @param implementation The new pending implementation
*/
function _queuePendingImplementation(address cToken, address implementation) external onlyAdmin {
require(cToken != address(0) && implementation != address(0), "invalid input");
require(implementationQueue[cToken][implementation] == 0, "already in queue");
uint256 expiration = add_(getBlockTimestamp(), timeLock);
implementationQueue[cToken][implementation] = expiration;
emit ImplementationQueued(cToken, implementation, expiration);
}
/**
* @notice Clear cToken pending implementation
* @param cToken The cToken address
* @param implementation The new pending implementation
*/
function _clearPendingImplementation(address cToken, address implementation) external onlyAdmin {
implementationQueue[cToken][implementation] = 0;
emit ImplementationCleared(cToken, implementation);
}
/**
* @notice Toggle cToken pending implementation
* @param cToken The cToken address
* @param implementation The new pending implementation
* @param allowResign Allow old implementation to resign or not
* @param becomeImplementationData The payload data
*/
function _togglePendingImplementation(
address cToken,
address implementation,
bool allowResign,
bytes calldata becomeImplementationData
) external onlyAdmin {
uint256 result = implementationQueue[cToken][implementation];
require(result != 0, "not in queue");
require(result <= getBlockTimestamp(), "queue not expired");
implementationQueue[cToken][implementation] = 0;
emit ImplementationChanged(cToken, implementation);
CDelegatorInterface(cToken)._setImplementation(implementation, allowResign, becomeImplementationData);
}
/**
* @notice Extract reserves by the reserve manager
* @param cToken The cToken address
* @param reduceAmount The amount of reduction
*/
function extractReserves(address cToken, uint256 reduceAmount) external onlyReserveManager {
require(CTokenInterface(cToken)._reduceReserves(reduceAmount) == 0, "failed to reduce reserves");
address underlying = CErc20(cToken).underlying();
_transferToken(underlying, reserveManager, reduceAmount);
}
/**
* @notice Seize the stock assets
* @param token The token address
*/
function seize(address token) external onlyAdmin {
uint256 amount = EIP20NonStandardInterface(token).balanceOf(address(this));
if (amount > 0) {
_transferToken(token, admin, amount);
}
}
/**
* @notice Set the admin
* @param newAdmin The new admin
*/
function setAdmin(address payable newAdmin) external onlyAdmin {
_setAdmin(newAdmin);
}
/**
* @notice Set the reserve manager
* @param newReserveManager The new reserve manager
*/
function setReserveManager(address payable newReserveManager) external onlyAdmin {
address oldReserveManager = reserveManager;
reserveManager = newReserveManager;
emit SetReserveManager(oldReserveManager, newReserveManager);
}
/* Internal functions */
function _setAdmin(address payable newAdmin) private {
require(newAdmin != address(0), "new admin cannot be zero address");
address oldAdmin = admin;
admin = newAdmin;
emit SetAdmin(oldAdmin, newAdmin);
}
function _transferToken(
address token,
address payable to,
uint256 amount
) private {
require(to != address(0), "receiver cannot be zero address");
EIP20NonStandardInterface(token).transfer(to, amount);
bool success;
assembly {
switch returndatasize()
case 0 {
// This is a non-standard ERC-20
success := not(0) // set success to true
}
case 32 {
// This is a complaint ERC-20
returndatacopy(0, 0, 32)
success := mload(0) // Set `success = returndata` of external call
}
default {
if lt(returndatasize(), 32) {
revert(0, 0) // This is a non-compliant ERC-20, revert.
}
returndatacopy(0, 0, 32) // Vyper compiler before 0.2.8 will not truncate RETURNDATASIZE.
success := mload(0) // See here: https://github.com/vyperlang/vyper/security/advisories/GHSA-375m-5fvv-xq23
}
}
require(success, "TOKEN_TRANSFER_OUT_FAILED");
}
}
pragma solidity ^0.5.16;
import "./ComptrollerInterface.sol";
import "./InterestRateModel.sol";
import "./ERC3156FlashBorrowerInterface.sol";
contract CTokenStorage {
/**
* @dev Guard variable for re-entrancy checks
*/
bool internal _notEntered;
/**
* @notice EIP-20 token name for this token
*/
string public name;
/**
* @notice EIP-20 token symbol for this token
*/
string public symbol;
/**
* @notice EIP-20 token decimals for this token
*/
uint8 public decimals;
/**
* @notice Maximum borrow rate that can ever be applied (.0005% / block)
*/
uint256 internal constant borrowRateMaxMantissa = 0.0005e16;
/**
* @notice Maximum fraction of interest that can be set aside for reserves
*/
uint256 internal constant reserveFactorMaxMantissa = 1e18;
/**
* @notice Administrator for this contract
*/
address payable public admin;
/**
* @notice Pending administrator for this contract
*/
address payable public pendingAdmin;
/**
* @notice Contract which oversees inter-cToken operations
*/
ComptrollerInterface public comptroller;
/**
* @notice Model which tells what the current interest rate should be
*/
InterestRateModel public interestRateModel;
/**
* @notice Initial exchange rate used when minting the first CTokens (used when totalSupply = 0)
*/
uint256 internal initialExchangeRateMantissa;
/**
* @notice Fraction of interest currently set aside for reserves
*/
uint256 public reserveFactorMantissa;
/**
* @notice Block number that interest was last accrued at
*/
uint256 public accrualBlockNumber;
/**
* @notice Accumulator of the total earned interest rate since the opening of the market
*/
uint256 public borrowIndex;
/**
* @notice Total amount of outstanding borrows of the underlying in this market
*/
uint256 public totalBorrows;
/**
* @notice Total amount of reserves of the underlying held in this market
*/
uint256 public totalReserves;
/**
* @notice Total number of tokens in circulation
*/
uint256 public totalSupply;
/**
* @notice Official record of token balances for each account
*/
mapping(address => uint256) internal accountTokens;
/**
* @notice Approved token transfer amounts on behalf of others
*/
mapping(address => mapping(address => uint256)) internal transferAllowances;
/**
* @notice Container for borrow balance information
* @member principal Total balance (with accrued interest), after applying the most recent balance-changing action
* @member interestIndex Global borrowIndex as of the most recent balance-changing action
*/
struct BorrowSnapshot {
uint256 principal;
uint256 interestIndex;
}
/**
* @notice Mapping of account addresses to outstanding borrow balances
*/
mapping(address => BorrowSnapshot) internal accountBorrows;
}
contract CErc20Storage {
/**
* @notice Underlying asset for this CToken
*/
address public underlying;
/**
* @notice Implementation address for this contract
*/
address public implementation;
}
contract CSupplyCapStorage {
/**
* @notice Internal cash counter for this CToken. Should equal underlying.balanceOf(address(this)) for CERC20.
*/
uint256 public internalCash;
}
contract CCollateralCapStorage {
/**
* @notice Total number of tokens used as collateral in circulation.
*/
uint256 public totalCollateralTokens;
/**
* @notice Record of token balances which could be treated as collateral for each account.
* If collateral cap is not set, the value should be equal to accountTokens.
*/
mapping(address => uint256) public accountCollateralTokens;
/**
* @notice Check if accountCollateralTokens have been initialized.
*/
mapping(address => bool) public isCollateralTokenInit;
/**
* @notice Collateral cap for this CToken, zero for no cap.
*/
uint256 public collateralCap;
}
/*** Interface ***/
contract CTokenInterface is CTokenStorage {
/**
* @notice Indicator that this is a CToken contract (for inspection)
*/
bool public constant isCToken = true;
/*** Market Events ***/
/**
* @notice Event emitted when interest is accrued
*/
event AccrueInterest(uint256 cashPrior, uint256 interestAccumulated, uint256 borrowIndex, uint256 totalBorrows);
/**
* @notice Event emitted when tokens are minted
*/
event Mint(address minter, uint256 mintAmount, uint256 mintTokens);
/**
* @notice Event emitted when tokens are redeemed
*/
event Redeem(address redeemer, uint256 redeemAmount, uint256 redeemTokens);
/**
* @notice Event emitted when underlying is borrowed
*/
event Borrow(address borrower, uint256 borrowAmount, uint256 accountBorrows, uint256 totalBorrows);
/**
* @notice Event emitted when a borrow is repaid
*/
event RepayBorrow(
address payer,
address borrower,
uint256 repayAmount,
uint256 accountBorrows,
uint256 totalBorrows
);
/**
* @notice Event emitted when a borrow is liquidated
*/
event LiquidateBorrow(
address liquidator,
address borrower,
uint256 repayAmount,
address cTokenCollateral,
uint256 seizeTokens
);
/*** Admin Events ***/
/**
* @notice Event emitted when pendingAdmin is changed
*/
event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);
/**
* @notice Event emitted when pendingAdmin is accepted, which means admin is updated
*/
event NewAdmin(address oldAdmin, address newAdmin);
/**
* @notice Event emitted when comptroller is changed
*/
event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller);
/**
* @notice Event emitted when interestRateModel is changed
*/
event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel);
/**
* @notice Event emitted when the reserve factor is changed
*/
event NewReserveFactor(uint256 oldReserveFactorMantissa, uint256 newReserveFactorMantissa);
/**
* @notice Event emitted when the reserves are added
*/
event ReservesAdded(address benefactor, uint256 addAmount, uint256 newTotalReserves);
/**
* @notice Event emitted when the reserves are reduced
*/
event ReservesReduced(address admin, uint256 reduceAmount, uint256 newTotalReserves);
/**
* @notice EIP20 Transfer event
*/
event Transfer(address indexed from, address indexed to, uint256 amount);
/**
* @notice EIP20 Approval event
*/
event Approval(address indexed owner, address indexed spender, uint256 amount);
/**
* @notice Failure event
*/
event Failure(uint256 error, uint256 info, uint256 detail);
/*** User Interface ***/
function transfer(address dst, uint256 amount) external returns (bool);
function transferFrom(
address src,
address dst,
uint256 amount
) external returns (bool);
function approve(address spender, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function balanceOfUnderlying(address owner) external returns (uint256);
function getAccountSnapshot(address account)
external
view
returns (
uint256,
uint256,
uint256,
uint256
);
function borrowRatePerBlock() external view returns (uint256);
function supplyRatePerBlock() external view returns (uint256);
function totalBorrowsCurrent() external returns (uint256);
function borrowBalanceCurrent(address account) external returns (uint256);
function borrowBalanceStored(address account) public view returns (uint256);
function exchangeRateCurrent() public returns (uint256);
function exchangeRateStored() public view returns (uint256);
function getCash() external view returns (uint256);
function accrueInterest() public returns (uint256);
function seize(
address liquidator,
address borrower,
uint256 seizeTokens
) external returns (uint256);
/*** Admin Functions ***/
function _setPendingAdmin(address payable newPendingAdmin) external returns (uint256);
function _acceptAdmin() external returns (uint256);
function _setComptroller(ComptrollerInterface newComptroller) public returns (uint256);
function _setReserveFactor(uint256 newReserveFactorMantissa) external returns (uint256);
function _reduceReserves(uint256 reduceAmount) external returns (uint256);
function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint256);
}
contract CErc20Interface is CErc20Storage {
/*** User Interface ***/
function mint(uint256 mintAmount) external returns (uint256);
function redeem(uint256 redeemTokens) external returns (uint256);
function redeemUnderlying(uint256 redeemAmount) external returns (uint256);
function borrow(uint256 borrowAmount) external returns (uint256);
function repayBorrow(uint256 repayAmount) external returns (uint256);
function repayBorrowBehalf(address borrower, uint256 repayAmount) external returns (uint256);
function liquidateBorrow(
address borrower,
uint256 repayAmount,
CTokenInterface cTokenCollateral
) external returns (uint256);
function _addReserves(uint256 addAmount) external returns (uint256);
}
contract CCapableErc20Interface is CErc20Interface, CSupplyCapStorage {
/**
* @notice Flash loan fee ratio
*/
uint256 public constant flashFeeBips = 9;
/*** Market Events ***/
/**
* @notice Event emitted when a flashloan occurred
*/
event Flashloan(address indexed receiver, uint256 amount, uint256 totalFee, uint256 reservesFee);
/*** User Interface ***/
function gulp() external;
}
contract CWrappedNativeInterface is CCapableErc20Interface {
/*** User Interface ***/
function mintNative() external payable returns (uint256);
function redeemNative(uint256 redeemTokens) external returns (uint256);
function redeemUnderlyingNative(uint256 redeemAmount) external returns (uint256);
function borrowNative(uint256 borrowAmount) external returns (uint256);
function repayBorrowNative() external payable returns (uint256);
function repayBorrowBehalfNative(address borrower) external payable returns (uint256);
function liquidateBorrowNative(address borrower, CTokenInterface cTokenCollateral)
external
payable
returns (uint256);
function flashLoan(
ERC3156FlashBorrowerInterface receiver,
address initiator,
uint256 amount,
bytes calldata data
) external returns (bool);
function _addReservesNative() external payable returns (uint256);
function collateralCap() external view returns (uint256);
function totalCollateralTokens() external view returns (uint256);
}
contract CCollateralCapErc20Interface is CCapableErc20Interface, CCollateralCapStorage {
/*** Admin Events ***/
/**
* @notice Event emitted when collateral cap is set
*/
event NewCollateralCap(address token, uint256 newCap);
/**
* @notice Event emitted when user collateral is changed
*/
event UserCollateralChanged(address account, uint256 newCollateralTokens);
/*** User Interface ***/
function registerCollateral(address account) external returns (uint256);
function unregisterCollateral(address account) external;
function flashLoan(
ERC3156FlashBorrowerInterface receiver,
address initiator,
uint256 amount,
bytes calldata data
) external returns (bool);
/*** Admin Functions ***/
function _setCollateralCap(uint256 newCollateralCap) external;
}
contract CDelegatorInterface {
/**
* @notice Emitted when implementation is changed
*/
event NewImplementation(address oldImplementation, address newImplementation);
/**
* @notice Called by the admin to update the implementation of the delegator
* @param implementation_ The address of the new implementation for delegation
* @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation
* @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation
*/
function _setImplementation(
address implementation_,
bool allowResign,
bytes memory becomeImplementationData
) public;
}
contract CDelegateInterface {
/**
* @notice Called by the delegator on a delegate to initialize it for duty
* @dev Should revert if any issues arise which make it unfit for delegation
* @param data The encoded bytes data for any initialization
*/
function _becomeImplementation(bytes memory data) public;
/**
* @notice Called by the delegator on a delegate to forfeit its responsibility
*/
function _resignImplementation() public;
}
/*** External interface ***/
/**
* @title Flash loan receiver interface
*/
interface IFlashloanReceiver {
function executeOperation(
address sender,
address underlying,
uint256 amount,
uint256 fee,
bytes calldata params
) external;
}
pragma solidity ^0.5.16;
/**
* @title Careful Math
* @author Compound
* @notice Derived from OpenZeppelin's SafeMath library
* https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
*/
contract CarefulMath {
/**
* @dev Possible error codes that we can return
*/
enum MathError {
NO_ERROR,
DIVISION_BY_ZERO,
INTEGER_OVERFLOW,
INTEGER_UNDERFLOW
}
/**
* @dev Multiplies two numbers, returns an error on overflow.
*/
function mulUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) {
if (a == 0) {
return (MathError.NO_ERROR, 0);
}
uint256 c = a * b;
if (c / a != b) {
return (MathError.INTEGER_OVERFLOW, 0);
} else {
return (MathError.NO_ERROR, c);
}
}
/**
* @dev Integer division of two numbers, truncating the quotient.
*/
function divUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) {
if (b == 0) {
return (MathError.DIVISION_BY_ZERO, 0);
}
return (MathError.NO_ERROR, a / b);
}
/**
* @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend).
*/
function subUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) {
if (b <= a) {
return (MathError.NO_ERROR, a - b);
} else {
return (MathError.INTEGER_UNDERFLOW, 0);
}
}
/**
* @dev Adds two numbers, returns an error on overflow.
*/
function addUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) {
uint256 c = a + b;
if (c >= a) {
return (MathError.NO_ERROR, c);
} else {
return (MathError.INTEGER_OVERFLOW, 0);
}
}
/**
* @dev add a and b and then subtract c
*/
function addThenSubUInt(
uint256 a,
uint256 b,
uint256 c
) internal pure returns (MathError, uint256) {
(MathError err0, uint256 sum) = addUInt(a, b);
if (err0 != MathError.NO_ERROR) {
return (err0, 0);
}
return subUInt(sum, c);
}
}
pragma solidity ^0.5.16;
import "./CToken.sol";
import "./ComptrollerStorage.sol";
contract ComptrollerInterface {
/// @notice Indicator that this is a Comptroller contract (for inspection)
bool public constant isComptroller = true;
/*** Assets You Are In ***/
function enterMarkets(address[] calldata cTokens) external returns (uint256[] memory);
function exitMarket(address cToken) external returns (uint256);
/*** Policy Hooks ***/
function mintAllowed(
address cToken,
address minter,
uint256 mintAmount
) external returns (uint256);
function mintVerify(
address cToken,
address minter,
uint256 mintAmount,
uint256 mintTokens
) external;
function redeemAllowed(
address cToken,
address redeemer,
uint256 redeemTokens
) external returns (uint256);
function redeemVerify(
address cToken,
address redeemer,
uint256 redeemAmount,
uint256 redeemTokens
) external;
function borrowAllowed(
address cToken,
address borrower,
uint256 borrowAmount
) external returns (uint256);
function borrowVerify(
address cToken,
address borrower,
uint256 borrowAmount
) external;
function repayBorrowAllowed(
address cToken,
address payer,
address borrower,
uint256 repayAmount
) external returns (uint256);
function repayBorrowVerify(
address cToken,
address payer,
address borrower,
uint256 repayAmount,
uint256 borrowerIndex
) external;
function liquidateBorrowAllowed(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint256 repayAmount
) external returns (uint256);
function liquidateBorrowVerify(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint256 repayAmount,
uint256 seizeTokens
) external;
function seizeAllowed(
address cTokenCollateral,
address cTokenBorrowed,
address liquidator,
address borrower,
uint256 seizeTokens
) external returns (uint256);
function seizeVerify(
address cTokenCollateral,
address cTokenBorrowed,
address liquidator,
address borrower,
uint256 seizeTokens
) external;
function transferAllowed(
address cToken,
address src,
address dst,
uint256 transferTokens
) external returns (uint256);
function transferVerify(
address cToken,
address src,
address dst,
uint256 transferTokens
) external;
/*** Liquidity/Liquidation Calculations ***/
function liquidateCalculateSeizeTokens(
address cTokenBorrowed,
address cTokenCollateral,
uint256 repayAmount
) external view returns (uint256, uint256);
}
interface ComptrollerInterfaceExtension {
function checkMembership(address account, CToken cToken) external view returns (bool);
function updateCTokenVersion(address cToken, ComptrollerV1Storage.Version version) external;
function flashloanAllowed(
address cToken,
address receiver,
uint256 amount,
bytes calldata params
) external view returns (bool);
function getAccountLiquidity(address account)
external
view
returns (
uint256,
uint256,
uint256
);
function supplyCaps(address market) external view returns (uint256);
}
pragma solidity ^0.5.16;
import "./CToken.sol";
import "./PriceOracle/PriceOracle.sol";
contract UnitrollerAdminStorage {
/**
* @notice Administrator for this contract
*/
address public admin;
/**
* @notice Pending administrator for this contract
*/
address public pendingAdmin;
/**
* @notice Active brains of Unitroller
*/
address public comptrollerImplementation;
/**
* @notice Pending brains of Unitroller
*/
address public pendingComptrollerImplementation;
}
contract ComptrollerV1Storage is UnitrollerAdminStorage {
/**
* @notice Oracle which gives the price of any given asset
*/
PriceOracle public oracle;
/**
* @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow
*/
uint256 public closeFactorMantissa;
/**
* @notice Multiplier representing the discount on collateral that a liquidator receives
*/
uint256 public liquidationIncentiveMantissa;
/**
* @notice Per-account mapping of "assets you are in"
*/
mapping(address => CToken[]) public accountAssets;
enum Version {
VANILLA,
COLLATERALCAP,
WRAPPEDNATIVE
}
struct Market {
/// @notice Whether or not this market is listed
bool isListed;
/**
* @notice Multiplier representing the most one can borrow against their collateral in this market.
* For instance, 0.9 to allow borrowing 90% of collateral value.
* Must be between 0 and 1, and stored as a mantissa.
*/
uint256 collateralFactorMantissa;
/// @notice Per-market mapping of "accounts in this asset"
mapping(address => bool) accountMembership;
/// @notice CToken version
Version version;
}
/**
* @notice Official mapping of cTokens -> Market metadata
* @dev Used e.g. to determine if a market is supported
*/
mapping(address => Market) public markets;
/**
* @notice The Guardian can pause certain actions as a safety mechanism.
* Actions which allow users to remove their own assets cannot be paused.
* Liquidation / seizing / transfer can only be paused globally, not by market.
*/
address public guardian;
bool public _mintGuardianPaused;
bool public _borrowGuardianPaused;
bool public transferGuardianPaused;
bool public seizeGuardianPaused;
mapping(address => bool) public mintGuardianPaused;
mapping(address => bool) public borrowGuardianPaused;
mapping(address => bool) public flashloanGuardianPaused;
/// @notice A list of all markets
CToken[] public allMarkets;
/// @notice The borrowCapGuardian can set borrowCaps to any number for any market. Lowering the borrow cap could disable borrowing on the given market.
/// @dev This storage is deprecated.
address public borrowCapGuardian;
/// @notice Borrow caps enforced by borrowAllowed for each cToken address. Defaults to zero which corresponds to unlimited borrowing.
mapping(address => uint256) public borrowCaps;
/// @notice The supplyCapGuardian can set supplyCaps to any number for any market. Lowering the supply cap could disable supplying to the given market.
/// @dev This storage is deprecated.
address public supplyCapGuardian;
/// @notice Supply caps enforced by mintAllowed for each cToken address. Defaults to zero which corresponds to unlimited supplying.
mapping(address => uint256) public supplyCaps;
/// @notice creditLimits allowed specific protocols to borrow and repay specific markets without collateral.
mapping(address => mapping(address => uint256)) public creditLimits;
/// @notice liquidityMining the liquidity mining module that handles the LM rewards distribution.
address public liquidityMining;
/// @notice isMarketSoftDelisted records the market which has been soft delisted by us.
mapping(address => bool) public isMarketSoftDelisted;
/// @notice creditLimitManager is the role who is in charge of increasing the credit limit.
address public creditLimitManager;
/// @notice A list of all soft delisted markets
address[] public softDelistedMarkets;
}
pragma solidity ^0.5.16;
/**
* @title ERC 20 Token Standard Interface
* https://eips.ethereum.org/EIPS/eip-20
*/
interface EIP20Interface {
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
/**
* @notice Get the total number of tokens in circulation
* @return The supply of tokens
*/
function totalSupply() external view returns (uint256);
/**
* @notice Gets the balance of the specified address
* @param owner The address from which the balance will be retrieved
* @return The balance
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @notice Transfer `amount` tokens from `msg.sender` to `dst`
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transfer(address dst, uint256 amount) external returns (bool success);
/**
* @notice Transfer `amount` tokens from `src` to `dst`
* @param src The address of the source account
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
* @return Whether or not the transfer succeeded
*/
function transferFrom(
address src,
address dst,
uint256 amount
) external returns (bool success);
/**
* @notice Approve `spender` to transfer up to `amount` from `src`
* @dev This will overwrite the approval amount for `spender`
* and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
* @param spender The address of the account which may transfer tokens
* @param amount The number of tokens that are approved (-1 means infinite)
* @return Whether or not the approval succeeded
*/
function approve(address spender, uint256 amount) external returns (bool success);
/**
* @notice Get the current allowance from `owner` for `spender`
* @param owner The address of the account which owns the tokens to be spent
* @param spender The address of the account which may transfer tokens
* @return The number of tokens allowed to be spent (-1 means infinite)
*/
function allowance(address owner, address spender) external view returns (uint256 remaining);
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
}
pragma solidity ^0.5.16;
/**
* @title EIP20NonStandardInterface
* @dev Version of ERC20 with no return values for `transfer` and `transferFrom`
* See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
*/
interface EIP20NonStandardInterface {
/**
* @notice Get the total number of tokens in circulation
* @return The supply of tokens
*/
function totalSupply() external view returns (uint256);
/**
* @notice Gets the balance of the specified address
* @param owner The address from which the balance will be retrieved
* @return The balance
*/
function balanceOf(address owner) external view returns (uint256 balance);
///
/// !!!!!!!!!!!!!!
/// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification
/// !!!!!!!!!!!!!!
///
/**
* @notice Transfer `amount` tokens from `msg.sender` to `dst`
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
*/
function transfer(address dst, uint256 amount) external;
///
/// !!!!!!!!!!!!!!
/// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification
/// !!!!!!!!!!!!!!
///
/**
* @notice Transfer `amount` tokens from `src` to `dst`
* @param src The address of the source account
* @param dst The address of the destination account
* @param amount The number of tokens to transfer
*/
function transferFrom(
address src,
address dst,
uint256 amount
) external;
/**
* @notice Approve `spender` to transfer up to `amount` from `src`
* @dev This will overwrite the approval amount for `spender`
* and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
* @param spender The address of the account which may transfer tokens
* @param amount The number of tokens that are approved
* @return Whether or not the approval succeeded
*/
function approve(address spender, uint256 amount) external returns (bool success);
/**
* @notice Get the current allowance from `owner` for `spender`
* @param owner The address of the account which owns the tokens to be spent
* @param spender The address of the account which may transfer tokens
* @return The number of tokens allowed to be spent
*/
function allowance(address owner, address spender) external view returns (uint256 remaining);
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
}
pragma solidity ^0.5.16;
interface ERC3156FlashBorrowerInterface {
/**
* @dev Receive a flash loan.
* @param initiator The initiator of the loan.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @param fee The additional amount of tokens to repay.
* @param data Arbitrary data structure, intended to contain user-defined parameters.
* @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
*/
function onFlashLoan(
address initiator,
address token,
uint256 amount,
uint256 fee,
bytes calldata data
) external returns (bytes32);
}
pragma solidity ^0.5.16;
contract ComptrollerErrorReporter {
enum Error {
NO_ERROR,
UNAUTHORIZED,
COMPTROLLER_MISMATCH,
INSUFFICIENT_SHORTFALL,
INSUFFICIENT_LIQUIDITY,
INVALID_CLOSE_FACTOR,
INVALID_COLLATERAL_FACTOR,
INVALID_LIQUIDATION_INCENTIVE,
MARKET_NOT_ENTERED, // no longer possible
MARKET_NOT_LISTED,
MARKET_ALREADY_LISTED,
MATH_ERROR,
NONZERO_BORROW_BALANCE,
PRICE_ERROR,
REJECTION,
SNAPSHOT_ERROR,
TOO_MANY_ASSETS,
TOO_MUCH_REPAY
}
enum FailureInfo {
ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK,
EXIT_MARKET_BALANCE_OWED,
EXIT_MARKET_REJECTION,
SET_CLOSE_FACTOR_OWNER_CHECK,
SET_CLOSE_FACTOR_VALIDATION,
SET_COLLATERAL_FACTOR_OWNER_CHECK,
SET_COLLATERAL_FACTOR_NO_EXISTS,
SET_COLLATERAL_FACTOR_VALIDATION,
SET_COLLATERAL_FACTOR_WITHOUT_PRICE,
SET_IMPLEMENTATION_OWNER_CHECK,
SET_LIQUIDATION_INCENTIVE_OWNER_CHECK,
SET_LIQUIDATION_INCENTIVE_VALIDATION,
SET_MAX_ASSETS_OWNER_CHECK,
SET_PENDING_ADMIN_OWNER_CHECK,
SET_PENDING_IMPLEMENTATION_OWNER_CHECK,
SET_PRICE_ORACLE_OWNER_CHECK,
SUPPORT_MARKET_EXISTS,
SUPPORT_MARKET_OWNER_CHECK,
SET_PAUSE_GUARDIAN_OWNER_CHECK
}
/**
* @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
* contract-specific code that enables us to report opaque error codes from upgradeable contracts.
**/
event Failure(uint256 error, uint256 info, uint256 detail);
/**
* @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
*/
function fail(Error err, FailureInfo info) internal returns (uint256) {
emit Failure(uint256(err), uint256(info), 0);
return uint256(err);
}
/**
* @dev use this when reporting an opaque error from an upgradeable collaborator contract
*/
function failOpaque(
Error err,
FailureInfo info,
uint256 opaqueError
) internal returns (uint256) {
emit Failure(uint256(err), uint256(info), opaqueError);
return uint256(err);
}
}
contract TokenErrorReporter {
enum Error {
NO_ERROR,
UNAUTHORIZED,
BAD_INPUT,
COMPTROLLER_REJECTION,
COMPTROLLER_CALCULATION_ERROR,
INTEREST_RATE_MODEL_ERROR,
INVALID_ACCOUNT_PAIR,
INVALID_CLOSE_AMOUNT_REQUESTED,
INVALID_COLLATERAL_FACTOR,
MATH_ERROR,
MARKET_NOT_FRESH,
MARKET_NOT_LISTED,
TOKEN_INSUFFICIENT_ALLOWANCE,
TOKEN_INSUFFICIENT_BALANCE,
TOKEN_INSUFFICIENT_CASH,
TOKEN_TRANSFER_IN_FAILED,
TOKEN_TRANSFER_OUT_FAILED
}
/*
* Note: FailureInfo (but not Error) is kept in alphabetical order
* This is because FailureInfo grows significantly faster, and
* the order of Error has some meaning, while the order of FailureInfo
* is entirely arbitrary.
*/
enum FailureInfo {
ACCEPT_ADMIN_PENDING_ADMIN_CHECK,
ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED,
BORROW_ACCRUE_INTEREST_FAILED,
BORROW_CASH_NOT_AVAILABLE,
BORROW_FRESHNESS_CHECK,
BORROW_MARKET_NOT_LISTED,
BORROW_COMPTROLLER_REJECTION,
LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED,
LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED,
LIQUIDATE_COLLATERAL_FRESHNESS_CHECK,
LIQUIDATE_COMPTROLLER_REJECTION,
LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED,
LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX,
LIQUIDATE_CLOSE_AMOUNT_IS_ZERO,
LIQUIDATE_FRESHNESS_CHECK,
LIQUIDATE_LIQUIDATOR_IS_BORROWER,
LIQUIDATE_REPAY_BORROW_FRESH_FAILED,
LIQUIDATE_SEIZE_COMPTROLLER_REJECTION,
LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER,
LIQUIDATE_SEIZE_TOO_MUCH,
MINT_ACCRUE_INTEREST_FAILED,
MINT_COMPTROLLER_REJECTION,
MINT_FRESHNESS_CHECK,
MINT_TRANSFER_IN_FAILED,
MINT_TRANSFER_IN_NOT_POSSIBLE,
REDEEM_ACCRUE_INTEREST_FAILED,
REDEEM_COMPTROLLER_REJECTION,
REDEEM_FRESHNESS_CHECK,
REDEEM_TRANSFER_OUT_NOT_POSSIBLE,
REDUCE_RESERVES_ACCRUE_INTEREST_FAILED,
REDUCE_RESERVES_ADMIN_CHECK,
REDUCE_RESERVES_CASH_NOT_AVAILABLE,
REDUCE_RESERVES_FRESH_CHECK,
REDUCE_RESERVES_VALIDATION,
REPAY_BEHALF_ACCRUE_INTEREST_FAILED,
REPAY_BORROW_ACCRUE_INTEREST_FAILED,
REPAY_BORROW_COMPTROLLER_REJECTION,
REPAY_BORROW_FRESHNESS_CHECK,
REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE,
SET_COLLATERAL_FACTOR_OWNER_CHECK,
SET_COLLATERAL_FACTOR_VALIDATION,
SET_COMPTROLLER_OWNER_CHECK,
SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED,
SET_INTEREST_RATE_MODEL_FRESH_CHECK,
SET_INTEREST_RATE_MODEL_OWNER_CHECK,
SET_MAX_ASSETS_OWNER_CHECK,
SET_ORACLE_MARKET_NOT_LISTED,
SET_PENDING_ADMIN_OWNER_CHECK,
SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED,
SET_RESERVE_FACTOR_ADMIN_CHECK,
SET_RESERVE_FACTOR_FRESH_CHECK,
SET_RESERVE_FACTOR_BOUNDS_CHECK,
TRANSFER_COMPTROLLER_REJECTION,
TRANSFER_NOT_ALLOWED,
ADD_RESERVES_ACCRUE_INTEREST_FAILED,
ADD_RESERVES_FRESH_CHECK,
ADD_RESERVES_TRANSFER_IN_NOT_POSSIBLE
}
/**
* @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary
* contract-specific code that enables us to report opaque error codes from upgradeable contracts.
**/
event Failure(uint256 error, uint256 info, uint256 detail);
/**
* @dev use this when reporting a known error from the money market or a non-upgradeable collaborator
*/
function fail(Error err, FailureInfo info) internal returns (uint256) {
emit Failure(uint256(err), uint256(info), 0);
return uint256(err);
}
/**
* @dev use this when reporting an opaque error from an upgradeable collaborator contract
*/
function failOpaque(
Error err,
FailureInfo info,
uint256 opaqueError
) internal returns (uint256) {
emit Failure(uint256(err), uint256(info), opaqueError);
return uint256(err);
}
}
pragma solidity ^0.5.16;
import "./CarefulMath.sol";
/**
* @title Exponential module for storing fixed-precision decimals
* @author Compound
* @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places.
* Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is:
* `Exp({mantissa: 5100000000000000000})`.
*/
contract Exponential is CarefulMath {
uint256 constant expScale = 1e18;
uint256 constant doubleScale = 1e36;
uint256 constant halfExpScale = expScale / 2;
uint256 constant mantissaOne = expScale;
struct Exp {
uint256 mantissa;
}
struct Double {
uint256 mantissa;
}
/**
* @dev Creates an exponential from numerator and denominator values.
* Note: Returns an error if (`num` * 10e18) > MAX_INT,
* or if `denom` is zero.
*/
function getExp(uint256 num, uint256 denom) internal pure returns (MathError, Exp memory) {
(MathError err0, uint256 scaledNumerator) = mulUInt(num, expScale);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
(MathError err1, uint256 rational) = divUInt(scaledNumerator, denom);
if (err1 != MathError.NO_ERROR) {
return (err1, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: rational}));
}
/**
* @dev Adds two exponentials, returning a new exponential.
*/
function addExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
(MathError error, uint256 result) = addUInt(a.mantissa, b.mantissa);
return (error, Exp({mantissa: result}));
}
/**
* @dev Subtracts two exponentials, returning a new exponential.
*/
function subExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
(MathError error, uint256 result) = subUInt(a.mantissa, b.mantissa);
return (error, Exp({mantissa: result}));
}
/**
* @dev Multiply an Exp by a scalar, returning a new Exp.
*/
function mulScalar(Exp memory a, uint256 scalar) internal pure returns (MathError, Exp memory) {
(MathError err0, uint256 scaledMantissa) = mulUInt(a.mantissa, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa}));
}
/**
* @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
*/
function mulScalarTruncate(Exp memory a, uint256 scalar) internal pure returns (MathError, uint256) {
(MathError err, Exp memory product) = mulScalar(a, scalar);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return (MathError.NO_ERROR, truncate(product));
}
/**
* @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
*/
function mulScalarTruncateAddUInt(
Exp memory a,
uint256 scalar,
uint256 addend
) internal pure returns (MathError, uint256) {
(MathError err, Exp memory product) = mulScalar(a, scalar);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return addUInt(truncate(product), addend);
}
/**
* @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer.
*/
function mul_ScalarTruncate(Exp memory a, uint256 scalar) internal pure returns (uint256) {
Exp memory product = mul_(a, scalar);
return truncate(product);
}
/**
* @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer.
*/
function mul_ScalarTruncateAddUInt(
Exp memory a,
uint256 scalar,
uint256 addend
) internal pure returns (uint256) {
Exp memory product = mul_(a, scalar);
return add_(truncate(product), addend);
}
/**
* @dev Divide an Exp by a scalar, returning a new Exp.
*/
function divScalar(Exp memory a, uint256 scalar) internal pure returns (MathError, Exp memory) {
(MathError err0, uint256 descaledMantissa) = divUInt(a.mantissa, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa}));
}
/**
* @dev Divide a scalar by an Exp, returning a new Exp.
*/
function divScalarByExp(uint256 scalar, Exp memory divisor) internal pure returns (MathError, Exp memory) {
/*
We are doing this as:
getExp(mulUInt(expScale, scalar), divisor.mantissa)
How it works:
Exp = a / b;
Scalar = s;
`s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`
*/
(MathError err0, uint256 numerator) = mulUInt(expScale, scalar);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
return getExp(numerator, divisor.mantissa);
}
/**
* @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.
*/
function divScalarByExpTruncate(uint256 scalar, Exp memory divisor) internal pure returns (MathError, uint256) {
(MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor);
if (err != MathError.NO_ERROR) {
return (err, 0);
}
return (MathError.NO_ERROR, truncate(fraction));
}
/**
* @dev Divide a scalar by an Exp, returning a new Exp.
*/
function div_ScalarByExp(uint256 scalar, Exp memory divisor) internal pure returns (Exp memory) {
/*
We are doing this as:
getExp(mulUInt(expScale, scalar), divisor.mantissa)
How it works:
Exp = a / b;
Scalar = s;
`s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale`
*/
uint256 numerator = mul_(expScale, scalar);
return Exp({mantissa: div_(numerator, divisor)});
}
/**
* @dev Divide a scalar by an Exp, then truncate to return an unsigned integer.
*/
function div_ScalarByExpTruncate(uint256 scalar, Exp memory divisor) internal pure returns (uint256) {
Exp memory fraction = div_ScalarByExp(scalar, divisor);
return truncate(fraction);
}
/**
* @dev Multiplies two exponentials, returning a new exponential.
*/
function mulExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
(MathError err0, uint256 doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa);
if (err0 != MathError.NO_ERROR) {
return (err0, Exp({mantissa: 0}));
}
// We add half the scale before dividing so that we get rounding instead of truncation.
// See "Listing 6" and text above it at https://accu.org/index.php/journals/1717
// Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18.
(MathError err1, uint256 doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct);
if (err1 != MathError.NO_ERROR) {
return (err1, Exp({mantissa: 0}));
}
(MathError err2, uint256 product) = divUInt(doubleScaledProductWithHalfScale, expScale);
// The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero.
assert(err2 == MathError.NO_ERROR);
return (MathError.NO_ERROR, Exp({mantissa: product}));
}
/**
* @dev Multiplies two exponentials given their mantissas, returning a new exponential.
*/
function mulExp(uint256 a, uint256 b) internal pure returns (MathError, Exp memory) {
return mulExp(Exp({mantissa: a}), Exp({mantissa: b}));
}
/**
* @dev Multiplies three exponentials, returning a new exponential.
*/
function mulExp3(
Exp memory a,
Exp memory b,
Exp memory c
) internal pure returns (MathError, Exp memory) {
(MathError err, Exp memory ab) = mulExp(a, b);
if (err != MathError.NO_ERROR) {
return (err, ab);
}
return mulExp(ab, c);
}
/**
* @dev Divides two exponentials, returning a new exponential.
* (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b,
* which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa)
*/
function divExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) {
return getExp(a.mantissa, b.mantissa);
}
/**
* @dev Truncates the given exp to a whole number value.
* For example, truncate(Exp{mantissa: 15 * expScale}) = 15
*/
function truncate(Exp memory exp) internal pure returns (uint256) {
// Note: We are not using careful math here as we're performing a division that cannot fail
return exp.mantissa / expScale;
}
/**
* @dev Checks if first Exp is less than second Exp.
*/
function lessThanExp(Exp memory left, Exp memory right) internal pure returns (bool) {
return left.mantissa < right.mantissa;
}
/**
* @dev Checks if left Exp <= right Exp.
*/
function lessThanOrEqualExp(Exp memory left, Exp memory right) internal pure returns (bool) {
return left.mantissa <= right.mantissa;
}
/**
* @dev returns true if Exp is exactly zero
*/
function isZeroExp(Exp memory value) internal pure returns (bool) {
return value.mantissa == 0;
}
function safe224(uint256 n, string memory errorMessage) internal pure returns (uint224) {
require(n < 2**224, errorMessage);
return uint224(n);
}
function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) {
require(n < 2**32, errorMessage);
return uint32(n);
}
function add_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
return Exp({mantissa: add_(a.mantissa, b.mantissa)});
}
function add_(Double memory a, Double memory b) internal pure returns (Double memory) {
return Double({mantissa: add_(a.mantissa, b.mantissa)});
}
function add_(uint256 a, uint256 b) internal pure returns (uint256) {
return add_(a, b, "addition overflow");
}
function add_(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, errorMessage);
return c;
}
function sub_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
return Exp({mantissa: sub_(a.mantissa, b.mantissa)});
}
function sub_(Double memory a, Double memory b) internal pure returns (Double memory) {
return Double({mantissa: sub_(a.mantissa, b.mantissa)});
}
function sub_(uint256 a, uint256 b) internal pure returns (uint256) {
return sub_(a, b, "subtraction underflow");
}
function sub_(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
function mul_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale});
}
function mul_(Exp memory a, uint256 b) internal pure returns (Exp memory) {
return Exp({mantissa: mul_(a.mantissa, b)});
}
function mul_(uint256 a, Exp memory b) internal pure returns (uint256) {
return mul_(a, b.mantissa) / expScale;
}
function mul_(Double memory a, Double memory b) internal pure returns (Double memory) {
return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale});
}
function mul_(Double memory a, uint256 b) internal pure returns (Double memory) {
return Double({mantissa: mul_(a.mantissa, b)});
}
function mul_(uint256 a, Double memory b) internal pure returns (uint256) {
return mul_(a, b.mantissa) / doubleScale;
}
function mul_(uint256 a, uint256 b) internal pure returns (uint256) {
return mul_(a, b, "multiplication overflow");
}
function mul_(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
if (a == 0 || b == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, errorMessage);
return c;
}
function div_(Exp memory a, Exp memory b) internal pure returns (Exp memory) {
return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)});
}
function div_(Exp memory a, uint256 b) internal pure returns (Exp memory) {
return Exp({mantissa: div_(a.mantissa, b)});
}
function div_(uint256 a, Exp memory b) internal pure returns (uint256) {
return div_(mul_(a, expScale), b.mantissa);
}
function div_(Double memory a, Double memory b) internal pure returns (Double memory) {
return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)});
}
function div_(Double memory a, uint256 b) internal pure returns (Double memory) {
return Double({mantissa: div_(a.mantissa, b)});
}
function div_(uint256 a, Double memory b) internal pure returns (uint256) {
return div_(mul_(a, doubleScale), b.mantissa);
}
function div_(uint256 a, uint256 b) internal pure returns (uint256) {
return div_(a, b, "divide by zero");
}
function div_(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
function fraction(uint256 a, uint256 b) internal pure returns (Double memory) {
return Double({mantissa: div_(mul_(a, doubleScale), b)});
}
// implementation from https://github.com/Uniswap/uniswap-lib/commit/99f3f28770640ba1bb1ff460ac7c5292fb8291a0
// original implementation: https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMath64x64.sol#L687
function sqrt(uint256 x) internal pure returns (uint256) {
if (x == 0) return 0;
uint256 xx = x;
uint256 r = 1;
if (xx >= 0x100000000000000000000000000000000) {
xx >>= 128;
r <<= 64;
}
if (xx >= 0x10000000000000000) {
xx >>= 64;
r <<= 32;
}
if (xx >= 0x100000000) {
xx >>= 32;
r <<= 16;
}
if (xx >= 0x10000) {
xx >>= 16;
r <<= 8;
}
if (xx >= 0x100) {
xx >>= 8;
r <<= 4;
}
if (xx >= 0x10) {
xx >>= 4;
r <<= 2;
}
if (xx >= 0x8) {
r <<= 1;
}
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1; // Seven iterations should be enough
uint256 r1 = x / r;
return (r < r1 ? r : r1);
}
}
pragma solidity ^0.5.16;
/**
* @title Compound's InterestRateModel Interface
* @author Compound
*/
contract InterestRateModel {
/// @notice Indicator that this is an InterestRateModel contract (for inspection)
bool public constant isInterestRateModel = true;
/**
* @notice Calculates the current borrow interest rate per block
* @param cash The total amount of cash the market has
* @param borrows The total amount of borrows the market has outstanding
* @param reserves The total amount of reserves the market has
* @return The borrow rate per block (as a percentage, and scaled by 1e18)
*/
function getBorrowRate(
uint256 cash,
uint256 borrows,
uint256 reserves
) external view returns (uint256);
/**
* @notice Calculates the current supply interest rate per block
* @param cash The total amount of cash the market has
* @param borrows The total amount of borrows the market has outstanding
* @param reserves The total amount of reserves the market has
* @param reserveFactorMantissa The current reserve factor the market has
* @return The supply rate per block (as a percentage, and scaled by 1e18)
*/
function getSupplyRate(
uint256 cash,
uint256 borrows,
uint256 reserves,
uint256 reserveFactorMantissa
) external view returns (uint256);
}
pragma solidity ^0.5.16;
import "../CToken.sol";
contract PriceOracle {
/**
* @notice Get the underlying price of a cToken asset
* @param cToken The cToken to get the underlying price of
* @return The underlying asset price mantissa (scaled by 1e18).
* Zero means the price is unavailable.
*/
function getUnderlyingPrice(CToken cToken) external view returns (uint256);
}