APE Price: $1.31 (-16.33%)

Contract Diff Checker

Contract Name:
TripleSlopeRateModel

Contract Source Code:

pragma solidity ^0.5.16;

/**
 * @title Compound's InterestRateModel Interface
 * @author Compound
 */
contract InterestRateModel {
    /// @notice Indicator that this is an InterestRateModel contract (for inspection)
    bool public constant isInterestRateModel = true;

    /**
     * @notice Calculates the current borrow interest rate per block
     * @param cash The total amount of cash the market has
     * @param borrows The total amount of borrows the market has outstanding
     * @param reserves The total amount of reserves the market has
     * @return The borrow rate per block (as a percentage, and scaled by 1e18)
     */
    function getBorrowRate(
        uint256 cash,
        uint256 borrows,
        uint256 reserves
    ) external view returns (uint256);

    /**
     * @notice Calculates the current supply interest rate per block
     * @param cash The total amount of cash the market has
     * @param borrows The total amount of borrows the market has outstanding
     * @param reserves The total amount of reserves the market has
     * @param reserveFactorMantissa The current reserve factor the market has
     * @return The supply rate per block (as a percentage, and scaled by 1e18)
     */
    function getSupplyRate(
        uint256 cash,
        uint256 borrows,
        uint256 reserves,
        uint256 reserveFactorMantissa
    ) external view returns (uint256);
}

pragma solidity ^0.5.16;

// From https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol
// Subject to the MIT license.

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting with custom message on overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     * - Addition cannot overflow.
     */
    function add(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, errorMessage);

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on underflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot underflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction underflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on underflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot underflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     * - Multiplication cannot overflow.
     */
    function mul(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, errorMessage);

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers.
     * Reverts on division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers.
     * Reverts with custom message on division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        // Solidity only automatically asserts when dividing by 0
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

pragma solidity ^0.5.16;

import "./InterestRateModel.sol";
import "./SafeMath.sol";

/**
 * @title Zeno Lend's TripleSlopeRateModel Contract
 * @author Zeno Lend
 */
contract TripleSlopeRateModel is InterestRateModel {
    using SafeMath for uint256;

    event NewInterestParams(
        uint256 baseRatePerBlock,
        uint256 multiplierPerBlock,
        uint256 jumpMultiplierPerBlock,
        uint256 kink1,
        uint256 kink2,
        uint256 roof
    );

    /**
     * @notice The approximate number of blocks per year that is assumed by the interest rate model
     */
    uint256 public constant blocksPerYear = 31536000;

    /**
     * @notice The minimum roof value used for calculating borrow rate.
     */
    uint256 internal constant minRoofValue = 1e18;

    /**
     * @notice The multiplier of utilization rate that gives the slope of the interest rate
     */
    uint256 public multiplierPerBlock;

    /**
     * @notice The base interest rate which is the y-intercept when utilization rate is 0
     */
    uint256 public baseRatePerBlock;

    /**
     * @notice The multiplierPerBlock after hitting a specified utilization point
     */
    uint256 public jumpMultiplierPerBlock;

    /**
     * @notice The utilization point at which the interest rate is fixed
     */
    uint256 public kink1;

    /**
     * @notice The utilization point at which the jump multiplier is applied
     */
    uint256 public kink2;

    /**
     * @notice The utilization point at which the rate is fixed
     */
    uint256 public roof;

    /**
     * @notice Construct an interest rate model
     * @param baseRatePerYear The approximate target base APR, as a mantissa (scaled by 1e18)
     * @param multiplierPerYear The rate of increase in interest rate wrt utilization (scaled by 1e18)
     * @param jumpMultiplierPerYear The multiplierPerBlock after hitting a specified utilization point
     * @param kink1_ The utilization point at which the interest rate is fixed
     * @param kink2_ The utilization point at which the jump multiplier is applied
     * @param roof_ The utilization point at which the borrow rate is fixed
     */
    constructor(
        uint256 baseRatePerYear,
        uint256 multiplierPerYear,
        uint256 jumpMultiplierPerYear,
        uint256 kink1_,
        uint256 kink2_,
        uint256 roof_
    ) public {
        updateTripleRateModelInternal(baseRatePerYear, multiplierPerYear, jumpMultiplierPerYear, kink1_, kink2_, roof_);
    }

    /**
     * @notice Calculates the utilization rate of the market: `borrows / (cash + borrows - reserves)`
     * @param cash The amount of cash in the market
     * @param borrows The amount of borrows in the market
     * @param reserves The amount of reserves in the market (currently unused)
     * @return The utilization rate as a mantissa between [0, 1e18]
     */
    function utilizationRate(
        uint256 cash,
        uint256 borrows,
        uint256 reserves
    ) public view returns (uint256) {
        // Utilization rate is 0 when there are no borrows
        if (borrows == 0) {
            return 0;
        }

        uint256 util = borrows.mul(1e18).div(cash.add(borrows).sub(reserves));
        // If the utilization is above the roof, cap it.
        if (util > roof) {
            util = roof;
        }
        return util;
    }

    /**
     * @notice Calculates the current borrow rate per block, with the error code expected by the market
     * @param cash The amount of cash in the market
     * @param borrows The amount of borrows in the market
     * @param reserves The amount of reserves in the market
     * @return The borrow rate percentage per block as a mantissa (scaled by 1e18)
     */
    function getBorrowRate(
        uint256 cash,
        uint256 borrows,
        uint256 reserves
    ) public view returns (uint256) {
        uint256 util = utilizationRate(cash, borrows, reserves);

        if (util <= kink1) {
            return util.mul(multiplierPerBlock).div(1e18).add(baseRatePerBlock);
        } else if (util <= kink2) {
            return kink1.mul(multiplierPerBlock).div(1e18).add(baseRatePerBlock);
        } else {
            uint256 normalRate = kink1.mul(multiplierPerBlock).div(1e18).add(baseRatePerBlock);
            uint256 excessUtil = util.sub(kink2);
            return excessUtil.mul(jumpMultiplierPerBlock).div(1e18).add(normalRate);
        }
    }

    /**
     * @notice Calculates the current supply rate per block
     * @param cash The amount of cash in the market
     * @param borrows The amount of borrows in the market
     * @param reserves The amount of reserves in the market
     * @param reserveFactorMantissa The current reserve factor for the market
     * @return The supply rate percentage per block as a mantissa (scaled by 1e18)
     */
    function getSupplyRate(
        uint256 cash,
        uint256 borrows,
        uint256 reserves,
        uint256 reserveFactorMantissa
    ) public view returns (uint256) {
        uint256 oneMinusReserveFactor = uint256(1e18).sub(reserveFactorMantissa);
        uint256 borrowRate = getBorrowRate(cash, borrows, reserves);
        uint256 rateToPool = borrowRate.mul(oneMinusReserveFactor).div(1e18);
        return utilizationRate(cash, borrows, reserves).mul(rateToPool).div(1e18);
    }

    /**
     * @notice Internal function to update the parameters of the interest rate model
     * @param baseRatePerYear The approximate target base APR, as a mantissa (scaled by 1e18)
     * @param multiplierPerYear The rate of increase in interest rate wrt utilization (scaled by 1e18)
     * @param jumpMultiplierPerYear The multiplierPerBlock after hitting a specified utilization point
     * @param kink1_ The utilization point at which the interest rate is fixed
     * @param kink2_ The utilization point at which the jump multiplier is applied
     * @param roof_ The utilization point at which the borrow rate is fixed
     */
    function updateTripleRateModelInternal(
        uint256 baseRatePerYear,
        uint256 multiplierPerYear,
        uint256 jumpMultiplierPerYear,
        uint256 kink1_,
        uint256 kink2_,
        uint256 roof_
    ) internal {
        require(kink1_ <= kink2_, "kink1 must less than or equal to kink2");
        require(roof_ >= minRoofValue, "invalid roof value");

        baseRatePerBlock = baseRatePerYear.div(blocksPerYear);
        multiplierPerBlock = (multiplierPerYear.mul(1e18)).div(blocksPerYear.mul(kink1_));
        jumpMultiplierPerBlock = jumpMultiplierPerYear.div(blocksPerYear);
        kink1 = kink1_;
        kink2 = kink2_;
        roof = roof_;

        emit NewInterestParams(baseRatePerBlock, multiplierPerBlock, jumpMultiplierPerBlock, kink1, kink2, roof);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):