Contract Name:
DungeonGame
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "./interfaces/IDungeonGame.sol";
import "./interfaces/IDungeonEntry.sol";
import "./interfaces/INFTStats.sol";
import "./interfaces/IPrizePool.sol";
import "./libraries/EncounterLibrary.sol";
import {IEntropy} from "@pythnetwork/entropy-sdk-solidity/IEntropy.sol";
import {IEntropyConsumer} from "@pythnetwork/entropy-sdk-solidity/IEntropyConsumer.sol";
/// @title DungeonGame
/// @notice Core game logic for dungeon runs and encounters
contract DungeonGame is IDungeonGame, IEntropyConsumer, Ownable, ReentrancyGuard {
// Events
event EntropyRequested(uint256 indexed requestId, uint256 fee);
event EntropyFulfilled(uint256 indexed requestId);
event FeesWithdrawn(address indexed owner, uint256 amount);
// Allow contract to receive native currency (for Pyth refunds)
receive() external payable {}
// Constants
uint256 private constant ROOMS = 16;
uint256 private constant BASE_XP = 100;
uint256 private constant COMPLETION_BONUS = 500;
address public constant ENTROPY_PROVIDER = 0x52DeaA1c84233F7bb8C8A45baeDE41091c616506; // ApeChain Pyth Entropy
IEntropy public immutable entropy;
// Mapping to store pending encounters
mapping(uint64 => PendingEncounter) private pendingEncounters;
// Struct to store encounter data while waiting for randomness
struct PendingEncounter {
uint256 roomNumber;
address collection;
uint256 tokenId;
bool isValid;
bytes32 randomSeed;
}
// Struct to store character state
struct Character {
uint256 currentHp;
uint256 currentAttack;
uint256 currentSpeed;
uint256 roomNumber;
uint256 entryTime;
bool isActive;
}
// Core contract references
address public immutable dungeonEntry;
address public immutable nftStats;
address public immutable prizePool;
// Room state
mapping(uint256 => RoomState) private rooms;
uint256 private currentRoom;
// Character state
mapping(address => mapping(uint256 => Character)) private characters;
mapping(uint256 => address) private roomToCharacter;
mapping(address => mapping(uint256 => uint256)) private characterToRoom;
mapping(address => mapping(uint256 => bool)) private completedRuns;
constructor(
address _dungeonEntry,
address _nftStats,
address _prizePool,
address _entropy
) {
require(_dungeonEntry != address(0), "Invalid DungeonEntry address");
require(_nftStats != address(0), "Invalid NFTStats address");
require(_prizePool != address(0), "Invalid PrizePool address");
require(_entropy != address(0), "Invalid entropy address");
dungeonEntry = _dungeonEntry;
nftStats = _nftStats;
prizePool = _prizePool;
entropy = IEntropy(_entropy);
}
/// @notice Progress all characters in the dungeon by one room
function progressAllCharacters() external returns (EncounterResult[] memory) {
// Count active characters to size our return array
uint256 activeCount = 0;
for (uint256 i = 1; i <= ROOMS; i++) {
if (rooms[i].isOccupied) activeCount++;
}
EncounterResult[] memory results = new EncounterResult[](activeCount);
uint256 resultIndex = 0;
// Process rooms from last to first to avoid overwriting
for (uint256 i = ROOMS; i >= 1; i--) {
if (!rooms[i].isOccupied) continue;
address collection = rooms[i].collection;
uint256 tokenId = rooms[i].tokenId;
// Process encounter for current room
EncounterResult memory result = _processEncounter(i, collection, tokenId);
results[resultIndex] = result;
resultIndex++;
// If character survived, move them forward
if (result.survived) {
if (i == ROOMS) {
// Character completed the dungeon
_handleDungeonCompletion(collection, tokenId);
} else {
// Move character to next room
_moveCharacter(i, i + 1, collection, tokenId);
}
} else {
// Remove failed character
_removeCharacter(i, collection, tokenId, false);
}
}
return results;
}
/// @notice Add a new character to the dungeon queue
function addCharacterToDungeon(
address collection,
uint256 tokenId
) external {
require(msg.sender == address(dungeonEntry), "Only DungeonEntry can add characters");
// Get NFT stats
INFTStats.NFTStatsData memory stats = INFTStats(nftStats).getStats(collection, tokenId);
// Push all characters forward one room, starting from the last room
for (uint256 i = ROOMS; i > 1; i--) {
if (rooms[i-1].isOccupied) {
address prevCollection = rooms[i-1].collection;
uint256 prevTokenId = rooms[i-1].tokenId;
// Process encounter for the character being moved
EncounterResult memory result = _processEncounter(i, prevCollection, prevTokenId);
// Only move if they survived the encounter
if (result.survived) {
if (i == ROOMS) {
// Character completed the dungeon
_handleDungeonCompletion(prevCollection, prevTokenId);
} else {
// Move character to next room
_moveCharacter(i-1, i, prevCollection, prevTokenId);
}
} else {
// Remove failed character
_removeCharacter(i-1, prevCollection, prevTokenId, false);
}
}
}
// Place new character in room 1
rooms[1] = RoomState({
collection: collection,
tokenId: tokenId,
entryIndex: block.timestamp,
currentHp: stats.hp,
currentAttack: stats.attack,
currentSpeed: stats.speed,
isOccupied: true
});
characterToRoom[collection][tokenId] = 1;
}
/// @notice Claim rewards for a successful dungeon run
function claimRewards(address collection, uint256 tokenId) external {
require(completedRuns[collection][tokenId], "No completed run found");
require(msg.sender == IERC721(collection).ownerOf(tokenId), "Not token owner");
// Reset completion status and let prize pool handle the reward
completedRuns[collection][tokenId] = false;
IPrizePool(prizePool).claimPrize(collection, tokenId);
}
/// @notice Get the state of a specific room
function getRoomState(uint256 roomNumber) external view returns (RoomState memory) {
require(roomNumber > 0 && roomNumber <= ROOMS, "Invalid room number");
return rooms[roomNumber];
}
/// @notice Get all active room states
function getAllRoomStates() external view returns (RoomState[] memory) {
RoomState[] memory allRooms = new RoomState[](ROOMS);
for (uint256 i = 1; i <= ROOMS; i++) {
allRooms[i-1] = rooms[i];
}
return allRooms;
}
/// @notice Get the room number where a character is located
function getCharacterRoom(
address collection,
uint256 tokenId
) external view returns (uint256) {
return characterToRoom[collection][tokenId];
}
/// @notice Get the total number of rooms in the dungeon
function getTotalRooms() external pure returns (uint256) {
return ROOMS;
}
/// @notice Check if a character has completed the dungeon
function isDungeonCompleted(
address collection,
uint256 tokenId
) external view returns (bool) {
return completedRuns[collection][tokenId];
}
// Internal helper functions
function _processEncounter(
uint256 roomNumber,
address collection,
uint256 tokenId
) internal returns (EncounterResult memory) {
// Generate user seed from encounter data
bytes32 userSeed = keccak256(abi.encodePacked(roomNumber, collection, tokenId, block.timestamp));
// Get fee from entropy provider
uint256 fee = entropy.getFee(ENTROPY_PROVIDER);
// Request entropy with callback
uint64 sequenceNumber = entropy.requestWithCallback{value: fee}(
ENTROPY_PROVIDER,
userSeed
);
// Store pending encounter
pendingEncounters[sequenceNumber] = PendingEncounter({
roomNumber: roomNumber,
collection: collection,
tokenId: tokenId,
isValid: true,
randomSeed: userSeed
});
emit EntropyRequested(sequenceNumber, fee);
// Return placeholder result while waiting for entropy
return EncounterResult({
roomNumber: roomNumber,
survived: true,
hpChange: 0,
attackChange: 0,
speedChange: 0,
xpGained: 0,
encounterDescription: ""
});
}
/// @notice Callback function for Pyth entropy
function entropyCallback(
uint64 sequenceNumber,
address provider,
bytes32 randomNumber
) internal override {
require(msg.sender == address(entropy), "Only entropy contract");
require(provider == ENTROPY_PROVIDER, "Invalid provider");
PendingEncounter memory pending = pendingEncounters[sequenceNumber];
require(pending.isValid, "Invalid sequence number");
// Process encounter with received entropy
_processEncounterWithEntropy(
pending.roomNumber,
pending.collection,
pending.tokenId,
randomNumber
);
// Clean up
delete pendingEncounters[sequenceNumber];
emit EntropyFulfilled(sequenceNumber);
}
/// @notice Process encounter with received entropy
function _processEncounterWithEntropy(
uint256 roomNumber,
address collection,
uint256 tokenId,
bytes32 randomNumber
) internal returns (EncounterResult memory) {
RoomState storage room = rooms[roomNumber];
require(room.isOccupied, "Room not occupied");
require(room.collection == collection && room.tokenId == tokenId, "Character mismatch");
// Generate encounter using entropy
EncounterLibrary.Encounter memory encounter = EncounterLibrary.generateEncounter(
roomNumber,
uint256(randomNumber)
);
// Process encounter
IDungeonGame.RoomState memory characterStats = IDungeonGame.RoomState({
collection: collection,
tokenId: tokenId,
entryIndex: room.entryIndex,
currentHp: room.currentHp,
currentAttack: room.currentAttack,
currentSpeed: room.currentSpeed,
isOccupied: true
});
EncounterResult memory result = EncounterLibrary.processEncounter(
encounter,
characterStats
);
// Update character stats
if (result.survived) {
room.currentHp = uint256(int256(room.currentHp) + result.hpChange);
room.currentAttack = uint256(int256(room.currentAttack) + result.attackChange);
room.currentSpeed = uint256(int256(room.currentSpeed) + result.speedChange);
INFTStats(nftStats).awardXP(collection, tokenId, result.xpGained, 1); // 1 room cleared
}
return result;
}
/// @notice Required interface implementation
function getEntropy() internal view override returns (address) {
return address(entropy);
}
function _moveCharacter(
uint256 fromRoom,
uint256 toRoom,
address collection,
uint256 tokenId
) internal {
require(toRoom <= ROOMS, "Invalid room number");
require(!rooms[toRoom].isOccupied, "Destination room occupied");
// Copy character state to new room
rooms[toRoom] = rooms[fromRoom];
rooms[toRoom].entryIndex = block.timestamp;
// Clear old room
delete rooms[fromRoom];
// Update character location
characterToRoom[collection][tokenId] = toRoom;
}
function _removeCharacter(
uint256 roomNumber,
address collection,
uint256 tokenId,
bool success
) internal {
// Clear room state
delete rooms[roomNumber];
// Clear character location
delete characterToRoom[collection][tokenId];
// End the run in DungeonEntry
IDungeonEntry(dungeonEntry).endDungeonRun(collection, tokenId, success);
}
function _handleDungeonCompletion(address collection, uint256 tokenId) internal {
// Award completion bonus XP
INFTStats(nftStats).awardXP(collection, tokenId, COMPLETION_BONUS, ROOMS);
// Mark run as completed for reward claiming
completedRuns[collection][tokenId] = true;
// Remove character from dungeon
_removeCharacter(ROOMS, collection, tokenId, true);
// Calculate total XP gained (completion bonus only, room XP already awarded)
emit DungeonCompleted(
collection,
tokenId,
true,
ROOMS,
COMPLETION_BONUS,
0 // Actual reward amount will be determined by PrizePool
);
}
/// @notice Withdraw accumulated fees from Pyth refunds
/// @dev Only callable by contract owner
function withdrawFees() external onlyOwner {
uint256 balance = address(this).balance;
require(balance > 0, "No fees to withdraw");
(bool success, ) = msg.sender.call{value: balance}("");
require(success, "Withdrawal failed");
emit FeesWithdrawn(msg.sender, balance);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
/// @title IDungeonGame
/// @notice Interface for core dungeon game mechanics and progression
interface IDungeonGame {
/// @notice Structure for dungeon room state
struct RoomState {
address collection;
uint256 tokenId;
uint256 entryIndex; // Used for ordering characters
uint256 currentHp;
uint256 currentAttack;
uint256 currentSpeed;
bool isOccupied;
}
/// @notice Structure for encounter results
struct EncounterResult {
int256 hpChange;
int256 attackChange;
int256 speedChange;
uint256 xpGained;
bool survived;
string encounterDescription;
uint256 roomNumber;
}
/// @notice Event emitted when an encounter is completed
event EncounterCompleted(
address indexed collection,
uint256 indexed tokenId,
uint256 roomNumber,
uint256 xpGained,
bool survived,
string encounterDescription
);
/// @notice Event emitted when a dungeon run is completed
event DungeonCompleted(
address indexed collection,
uint256 indexed tokenId,
bool success,
uint256 roomsCleared,
uint256 totalXpGained,
uint256 reward
);
/// @notice Progress all characters in the dungeon by one room
/// @return EncounterResult[] Array of encounter results for each character that moved
function progressAllCharacters() external returns (EncounterResult[] memory);
/// @notice Add a new character to the dungeon queue
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
function addCharacterToDungeon(address collection, uint256 tokenId) external;
/// @notice Claim rewards for a successful dungeon run
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
function claimRewards(address collection, uint256 tokenId) external;
/// @notice Get the state of a specific room
/// @param roomNumber Room number to query
/// @return RoomState Current state of the room
function getRoomState(uint256 roomNumber) external view returns (RoomState memory);
/// @notice Get all active room states
/// @return RoomState[] Array of all room states
function getAllRoomStates() external view returns (RoomState[] memory);
/// @notice Get the room number where a character is located
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @return uint256 Room number, 0 if not in dungeon
function getCharacterRoom(address collection, uint256 tokenId) external view returns (uint256);
/// @notice Get the total number of rooms in the dungeon
/// @return uint256 Number of rooms (16)
function getTotalRooms() external pure returns (uint256);
/// @notice Check if a character has completed the dungeon
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @return bool True if character has completed all rooms
function isDungeonCompleted(address collection, uint256 tokenId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
/// @title IDungeonEntry
/// @notice Interface for managing dungeon entry and run initialization
interface IDungeonEntry {
/// @notice Structure for active dungeon run state
struct DungeonRun {
uint256 currentHp;
uint256 currentAttack;
uint256 currentSpeed;
uint256 currentRoom;
uint256 startTime;
bool isActive;
}
/// @notice Event emitted when a dungeon run is started
event DungeonRunStarted(
address indexed collection,
uint256 indexed tokenId,
address indexed player,
uint256 entryFee
);
/// @notice Event emitted when a dungeon run is ended
event DungeonRunEnded(
address indexed collection,
uint256 indexed tokenId,
bool success
);
/// @notice Start a new dungeon run for an NFT
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
function startDungeonRun(address collection, uint256 tokenId) external payable;
/// @notice End an active dungeon run (called by DungeonGame)
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @param success Whether the run was successful
function endDungeonRun(address collection, uint256 tokenId, bool success) external;
/// @notice Get the current dungeon run state for an NFT
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @return DungeonRun struct containing current run state
function getCurrentRun(address collection, uint256 tokenId) external view returns (DungeonRun memory);
/// @notice Check if an NFT has an active dungeon run
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @return bool True if NFT has an active run
function hasActiveRun(address collection, uint256 tokenId) external view returns (bool);
/// @notice Get the current entry fee for dungeon runs
/// @return uint256 Current entry fee in wei
function getEntryFee() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
/// @title INFTStats
/// @notice Interface for managing individual NFT stats and progression
interface INFTStats {
/// @notice Structure for NFT permanent stats
struct NFTStatsData {
uint256 hp;
uint256 attack;
uint256 speed;
uint256 level;
uint256 currentXP;
uint256 xpToNextLevel;
uint256 dungeonRuns;
uint256 successfulRuns;
uint256 roomsCleared;
bool initialized;
}
/// @notice Event emitted when an NFT's stats are initialized
event StatsInitialized(address indexed collection, uint256 indexed tokenId, uint256 hp, uint256 attack, uint256 speed);
/// @notice Event emitted when an NFT's stats are boosted
event StatsBoosted(address indexed collection, uint256 indexed tokenId, uint256 newHp, uint256 newAttack, uint256 newSpeed);
/// @notice Event emitted when XP is gained
event XPGained(address indexed collection, uint256 indexed tokenId, uint256 xpGained, uint256 newTotalXP);
/// @notice Event emitted when a level up occurs
event LevelUp(address indexed collection, uint256 indexed tokenId, uint256 newLevel, uint256 newHp, uint256 newAttack, uint256 newSpeed);
/// @notice Event emitted when a run is recorded
event RunRecorded(address indexed collection, uint256 indexed tokenId, bool success, uint256 roomsCleared, uint256 xpGained);
/// @notice Initialize stats for an NFT based on its collection's base stats
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
function initializeStats(address collection, uint256 tokenId) external;
/// @notice Award XP for dungeon progress
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @param xpAmount Amount of XP to award
/// @param roomsCleared Number of rooms cleared in this run
function awardXP(
address collection,
uint256 tokenId,
uint256 xpAmount,
uint256 roomsCleared
) external;
/// @notice Calculate XP required for next level
/// @param currentLevel Current level of the NFT
/// @return uint256 XP required for next level
function getXPForNextLevel(uint256 currentLevel) external pure returns (uint256);
/// @notice Get the stat increases for a level up
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @return hpIncrease Amount HP increases
/// @return attackIncrease Amount Attack increases
/// @return speedIncrease Amount Speed increases
function getLevelUpStats(
address collection,
uint256 tokenId
) external view returns (
uint256 hpIncrease,
uint256 attackIncrease,
uint256 speedIncrease
);
/// @notice Record a dungeon run attempt
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @param success Whether the run was successful
function recordRun(address collection, uint256 tokenId, bool success) external;
/// @notice Get current stats for an NFT
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @return NFTStatsData struct containing current stats
function getStats(address collection, uint256 tokenId) external view returns (NFTStatsData memory);
/// @notice Check if an NFT has been initialized
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @return bool True if NFT has been initialized
function isInitialized(address collection, uint256 tokenId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
/// @title IPrizePool
/// @notice Interface for managing dungeon rewards and prize distribution
interface IPrizePool {
/// @notice Event emitted when entry fee is deposited
event EntryFeeDeposited(address indexed collection, uint256 indexed tokenId, uint256 amount);
/// @notice Event emitted when reward is claimed
event RewardClaimed(address indexed collection, uint256 indexed tokenId, address indexed recipient, uint256 amount);
/// @notice Event emitted when prize pool parameters are updated
event PrizePoolParametersUpdated(uint256 entryFee, uint256 winnerShare);
/// @notice Deposit entry fee for a dungeon run
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
function depositEntryFee(address collection, uint256 tokenId) external payable;
/// @notice Register a winner for prize claiming
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @param amount Amount to be claimed
function registerWinner(address collection, uint256 tokenId, uint256 amount) external;
/// @notice Claim prize for a winning NFT
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
function claimPrize(address collection, uint256 tokenId) external;
/// @notice Get claimable prize amount for a winning NFT
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @return uint256 Claimable amount
function getClaimablePrize(address collection, uint256 tokenId) external view returns (uint256);
/// @notice Get current prize pool balance
/// @return uint256 Current balance
function getCurrentPrizePool() external view returns (uint256);
/// @notice Check if an NFT has an unclaimed prize
/// @param collection Address of the NFT collection
/// @param tokenId Token ID of the NFT
/// @return bool True if NFT has unclaimed prize
function hasUnclaimedPrize(address collection, uint256 tokenId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import "../interfaces/IDungeonGame.sol";
/// @title EncounterLibrary
/// @notice Library for generating and processing dungeon encounters
library EncounterLibrary {
// Encounter types
enum EncounterType {
Combat, // Standard combat encounter
Trap, // Environmental hazard
Blessing, // Positive encounter
Elite, // Stronger combat encounter
Boss // Room 16 boss encounter
}
// Encounter definition
struct Encounter {
EncounterType encounterType;
uint256 difficulty; // 1-100 scale
int256 baseHpChange; // Base HP modification
int256 baseAttackMod; // Temporary attack modification
int256 baseSpeedMod; // Temporary speed modification
uint256 baseXp; // Base XP reward
string description; // Encounter description
}
// Constants for encounter generation
uint256 private constant BASE_DIFFICULTY_PER_ROOM = 6; // ~100 difficulty by room 16
uint256 private constant ELITE_CHANCE = 15; // 15% chance for elite encounter
uint256 private constant BLESSING_CHANCE = 10; // 10% chance for blessing
uint256 private constant TRAP_CHANCE = 20; // 20% chance for trap
// Constants for encounter effects
uint256 private constant BASE_DAMAGE = 20;
uint256 private constant ELITE_DAMAGE_MULTIPLIER = 2;
uint256 private constant BOSS_DAMAGE_MULTIPLIER = 3;
int256 private constant MAX_STAT_MODIFICATION = 50; // Maximum temporary stat change
/// @notice Generate an encounter for a specific room
/// @param roomNumber Current room number (1-16)
/// @param randomness Random number for encounter generation
/// @return Encounter struct with encounter details
function generateEncounter(
uint256 roomNumber,
uint256 randomness
) internal pure returns (Encounter memory) {
require(roomNumber > 0 && roomNumber <= 16, "Invalid room number");
// Room 16 is always a boss encounter
if (roomNumber == 16) {
return _generateBossEncounter();
}
// Use randomness to determine encounter type
uint256 encounterRoll = randomness % 100;
// Scale difficulty with room number
uint256 difficulty = BASE_DIFFICULTY_PER_ROOM * roomNumber;
// Select encounter type based on roll
if (encounterRoll < BLESSING_CHANCE) {
return _generateBlessing(roomNumber, difficulty);
} else if (encounterRoll < BLESSING_CHANCE + TRAP_CHANCE) {
return _generateTrap(roomNumber, difficulty);
} else if (encounterRoll < BLESSING_CHANCE + TRAP_CHANCE + ELITE_CHANCE) {
return _generateEliteEncounter(roomNumber, difficulty);
} else {
return _generateCombatEncounter(roomNumber, difficulty);
}
}
/// @notice Process an encounter for a character
/// @param encounter The encounter to process
/// @param characterStats Current character stats
/// @return IDungeonGame.EncounterResult Result of the encounter
function processEncounter(
Encounter memory encounter,
IDungeonGame.RoomState memory characterStats
) internal pure returns (IDungeonGame.EncounterResult memory) {
// Calculate final HP change based on character stats
int256 hpChange = _calculateHpChange(encounter, characterStats);
// Determine if character survived
bool survived = (int256(characterStats.currentHp) + hpChange) > 0;
// Calculate XP (partial XP if failed)
uint256 xpGained = survived ? encounter.baseXp : encounter.baseXp / 2;
return IDungeonGame.EncounterResult({
hpChange: hpChange,
attackChange: encounter.baseAttackMod,
speedChange: encounter.baseSpeedMod,
xpGained: xpGained,
survived: survived,
encounterDescription: encounter.description,
roomNumber: 0 // Set by DungeonGame
});
}
// Internal encounter generation functions
function _generateCombatEncounter(
uint256 roomNumber,
uint256 difficulty
) private pure returns (Encounter memory) {
int256 damage = -int256(BASE_DAMAGE + (difficulty / 2));
return Encounter({
encounterType: EncounterType.Combat,
difficulty: difficulty,
baseHpChange: damage,
baseAttackMod: 0,
baseSpeedMod: 0,
baseXp: 100 + (roomNumber * 10),
description: "A hostile enemy appears!"
});
}
function _generateEliteEncounter(
uint256 roomNumber,
uint256 difficulty
) private pure returns (Encounter memory) {
int256 damage = -int256((BASE_DAMAGE + (difficulty / 2)) * ELITE_DAMAGE_MULTIPLIER);
return Encounter({
encounterType: EncounterType.Elite,
difficulty: difficulty,
baseHpChange: damage,
baseAttackMod: int256(MAX_STAT_MODIFICATION / 2),
baseSpeedMod: -int256(MAX_STAT_MODIFICATION / 4),
baseXp: (150 + (roomNumber * 15)),
description: "An elite enemy blocks your path!"
});
}
function _generateBossEncounter() private pure returns (Encounter memory) {
return Encounter({
encounterType: EncounterType.Boss,
difficulty: 100,
baseHpChange: -int256(BASE_DAMAGE * BOSS_DAMAGE_MULTIPLIER),
baseAttackMod: -int256(MAX_STAT_MODIFICATION),
baseSpeedMod: -int256(MAX_STAT_MODIFICATION / 2),
baseXp: 1000,
description: "The dungeon boss emerges!"
});
}
function _generateBlessing(
uint256 roomNumber,
uint256 difficulty
) private pure returns (Encounter memory) {
return Encounter({
encounterType: EncounterType.Blessing,
difficulty: difficulty,
baseHpChange: int256(BASE_DAMAGE),
baseAttackMod: int256(MAX_STAT_MODIFICATION / 2),
baseSpeedMod: int256(MAX_STAT_MODIFICATION / 2),
baseXp: 50 + (roomNumber * 5),
description: "You discover a magical blessing!"
});
}
function _generateTrap(
uint256 roomNumber,
uint256 difficulty
) private pure returns (Encounter memory) {
return Encounter({
encounterType: EncounterType.Trap,
difficulty: difficulty,
baseHpChange: -int256(BASE_DAMAGE / 2),
baseAttackMod: -int256(MAX_STAT_MODIFICATION / 4),
baseSpeedMod: -int256(MAX_STAT_MODIFICATION / 4),
baseXp: 75 + (roomNumber * 7),
description: "You triggered a trap!"
});
}
// Internal helper functions
function _calculateHpChange(
Encounter memory encounter,
IDungeonGame.RoomState memory characterStats
) private pure returns (int256) {
// Base damage
int256 hpChange = encounter.baseHpChange;
// Modify based on character stats
if (encounter.encounterType == EncounterType.Combat ||
encounter.encounterType == EncounterType.Elite ||
encounter.encounterType == EncounterType.Boss) {
// Higher attack reduces damage taken
uint256 attackMitigation = characterStats.currentAttack / 10;
// Higher speed increases chance to dodge
uint256 speedMitigation = characterStats.currentSpeed / 20;
hpChange += int256(attackMitigation + speedMitigation);
}
return hpChange;
}
}
// SPDX-License-Identifier: Apache 2
pragma solidity ^0.8.0;
import "./EntropyEvents.sol";
interface IEntropy is EntropyEvents {
// Register msg.sender as a randomness provider. The arguments are the provider's configuration parameters
// and initial commitment. Re-registering the same provider rotates the provider's commitment (and updates
// the feeInWei).
//
// chainLength is the number of values in the hash chain *including* the commitment, that is, chainLength >= 1.
function register(
uint128 feeInWei,
bytes32 commitment,
bytes calldata commitmentMetadata,
uint64 chainLength,
bytes calldata uri
) external;
// Withdraw a portion of the accumulated fees for the provider msg.sender.
// Calling this function will transfer `amount` wei to the caller (provided that they have accrued a sufficient
// balance of fees in the contract).
function withdraw(uint128 amount) external;
// Withdraw a portion of the accumulated fees for provider. The msg.sender must be the fee manager for this provider.
// Calling this function will transfer `amount` wei to the caller (provided that they have accrued a sufficient
// balance of fees in the contract).
function withdrawAsFeeManager(address provider, uint128 amount) external;
// As a user, request a random number from `provider`. Prior to calling this method, the user should
// generate a random number x and keep it secret. The user should then compute hash(x) and pass that
// as the userCommitment argument. (You may call the constructUserCommitment method to compute the hash.)
//
// This method returns a sequence number. The user should pass this sequence number to
// their chosen provider (the exact method for doing so will depend on the provider) to retrieve the provider's
// number. The user should then call fulfillRequest to construct the final random number.
//
// This method will revert unless the caller provides a sufficient fee (at least getFee(provider)) as msg.value.
// Note that excess value is *not* refunded to the caller.
function request(
address provider,
bytes32 userCommitment,
bool useBlockHash
) external payable returns (uint64 assignedSequenceNumber);
// Request a random number. The method expects the provider address and a secret random number
// in the arguments. It returns a sequence number.
//
// The address calling this function should be a contract that inherits from the IEntropyConsumer interface.
// The `entropyCallback` method on that interface will receive a callback with the generated random number.
//
// This method will revert unless the caller provides a sufficient fee (at least getFee(provider)) as msg.value.
// Note that excess value is *not* refunded to the caller.
function requestWithCallback(
address provider,
bytes32 userRandomNumber
) external payable returns (uint64 assignedSequenceNumber);
// Fulfill a request for a random number. This method validates the provided userRandomness and provider's proof
// against the corresponding commitments in the in-flight request. If both values are validated, this function returns
// the corresponding random number.
//
// Note that this function can only be called once per in-flight request. Calling this function deletes the stored
// request information (so that the contract doesn't use a linear amount of storage in the number of requests).
// If you need to use the returned random number more than once, you are responsible for storing it.
function reveal(
address provider,
uint64 sequenceNumber,
bytes32 userRevelation,
bytes32 providerRevelation
) external returns (bytes32 randomNumber);
// Fulfill a request for a random number. This method validates the provided userRandomness
// and provider's revelation against the corresponding commitment in the in-flight request. If both values are validated
// and the requestor address is a contract address, this function calls the requester's entropyCallback method with the
// sequence number, provider address and the random number as arguments. Else if the requestor is an EOA, it won't call it.
//
// Note that this function can only be called once per in-flight request. Calling this function deletes the stored
// request information (so that the contract doesn't use a linear amount of storage in the number of requests).
// If you need to use the returned random number more than once, you are responsible for storing it.
//
// Anyone can call this method to fulfill a request, but the callback will only be made to the original requester.
function revealWithCallback(
address provider,
uint64 sequenceNumber,
bytes32 userRandomNumber,
bytes32 providerRevelation
) external;
function getProviderInfo(
address provider
) external view returns (EntropyStructs.ProviderInfo memory info);
function getDefaultProvider() external view returns (address provider);
function getRequest(
address provider,
uint64 sequenceNumber
) external view returns (EntropyStructs.Request memory req);
function getFee(address provider) external view returns (uint128 feeAmount);
function getAccruedPythFees()
external
view
returns (uint128 accruedPythFeesInWei);
function setProviderFee(uint128 newFeeInWei) external;
function setProviderFeeAsFeeManager(
address provider,
uint128 newFeeInWei
) external;
function setProviderUri(bytes calldata newUri) external;
// Set manager as the fee manager for the provider msg.sender.
// After calling this function, manager will be able to set the provider's fees and withdraw them.
// Only one address can be the fee manager for a provider at a time -- calling this function again with a new value
// will override the previous value. Call this function with the all-zero address to disable the fee manager role.
function setFeeManager(address manager) external;
function constructUserCommitment(
bytes32 userRandomness
) external pure returns (bytes32 userCommitment);
function combineRandomValues(
bytes32 userRandomness,
bytes32 providerRandomness,
bytes32 blockHash
) external pure returns (bytes32 combinedRandomness);
}
// SPDX-License-Identifier: Apache 2
pragma solidity ^0.8.0;
abstract contract IEntropyConsumer {
// This method is called by Entropy to provide the random number to the consumer.
// It asserts that the msg.sender is the Entropy contract. It is not meant to be
// override by the consumer.
function _entropyCallback(
uint64 sequence,
address provider,
bytes32 randomNumber
) external {
address entropy = getEntropy();
require(entropy != address(0), "Entropy address not set");
require(msg.sender == entropy, "Only Entropy can call this function");
entropyCallback(sequence, provider, randomNumber);
}
// getEntropy returns Entropy contract address. The method is being used to check that the
// callback is indeed from Entropy contract. The consumer is expected to implement this method.
// Entropy address can be found here - https://docs.pyth.network/entropy/contract-addresses
function getEntropy() internal view virtual returns (address);
// This method is expected to be implemented by the consumer to handle the random number.
// It will be called by _entropyCallback after _entropyCallback ensures that the call is
// indeed from Entropy contract.
function entropyCallback(
uint64 sequence,
address provider,
bytes32 randomNumber
) internal virtual;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.0;
import "./EntropyStructs.sol";
interface EntropyEvents {
event Registered(EntropyStructs.ProviderInfo provider);
event Requested(EntropyStructs.Request request);
event RequestedWithCallback(
address indexed provider,
address indexed requestor,
uint64 indexed sequenceNumber,
bytes32 userRandomNumber,
EntropyStructs.Request request
);
event Revealed(
EntropyStructs.Request request,
bytes32 userRevelation,
bytes32 providerRevelation,
bytes32 blockHash,
bytes32 randomNumber
);
event RevealedWithCallback(
EntropyStructs.Request request,
bytes32 userRandomNumber,
bytes32 providerRevelation,
bytes32 randomNumber
);
event ProviderFeeUpdated(address provider, uint128 oldFee, uint128 newFee);
event ProviderUriUpdated(address provider, bytes oldUri, bytes newUri);
event ProviderFeeManagerUpdated(
address provider,
address oldFeeManager,
address newFeeManager
);
event Withdrawal(
address provider,
address recipient,
uint128 withdrawnAmount
);
}
// SPDX-License-Identifier: Apache 2
pragma solidity ^0.8.0;
contract EntropyStructs {
struct ProviderInfo {
uint128 feeInWei;
uint128 accruedFeesInWei;
// The commitment that the provider posted to the blockchain, and the sequence number
// where they committed to this. This value is not advanced after the provider commits,
// and instead is stored to help providers track where they are in the hash chain.
bytes32 originalCommitment;
uint64 originalCommitmentSequenceNumber;
// Metadata for the current commitment. Providers may optionally use this field to help
// manage rotations (i.e., to pick the sequence number from the correct hash chain).
bytes commitmentMetadata;
// Optional URI where clients can retrieve revelations for the provider.
// Client SDKs can use this field to automatically determine how to retrieve random values for each provider.
// TODO: specify the API that must be implemented at this URI
bytes uri;
// The first sequence number that is *not* included in the current commitment (i.e., an exclusive end index).
// The contract maintains the invariant that sequenceNumber <= endSequenceNumber.
// If sequenceNumber == endSequenceNumber, the provider must rotate their commitment to add additional random values.
uint64 endSequenceNumber;
// The sequence number that will be assigned to the next inbound user request.
uint64 sequenceNumber;
// The current commitment represents an index/value in the provider's hash chain.
// These values are used to verify requests for future sequence numbers. Note that
// currentCommitmentSequenceNumber < sequenceNumber.
//
// The currentCommitment advances forward through the provider's hash chain as values
// are revealed on-chain.
bytes32 currentCommitment;
uint64 currentCommitmentSequenceNumber;
// An address that is authorized to set / withdraw fees on behalf of this provider.
address feeManager;
}
struct Request {
// Storage slot 1 //
address provider;
uint64 sequenceNumber;
// The number of hashes required to verify the provider revelation.
uint32 numHashes;
// Storage slot 2 //
// The commitment is keccak256(userCommitment, providerCommitment). Storing the hash instead of both saves 20k gas by
// eliminating 1 store.
bytes32 commitment;
// Storage slot 3 //
// The number of the block where this request was created.
// Note that we're using a uint64 such that we have an additional space for an address and other fields in
// this storage slot. Although block.number returns a uint256, 64 bits should be plenty to index all of the
// blocks ever generated.
uint64 blockNumber;
// The address that requested this random number.
address requester;
// If true, incorporate the blockhash of blockNumber into the generated random value.
bool useBlockhash;
// If true, the requester will be called back with the generated random value.
bool isRequestWithCallback;
// There are 2 remaining bytes of free space in this slot.
}
}