Contract Name:
TransferHelper
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { IERC721Receiver } from "../interfaces/IERC721Receiver.sol";
import "./TransferHelperStructs.sol";
import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
import {
ConduitControllerInterface
} from "../interfaces/ConduitControllerInterface.sol";
import { Conduit } from "../conduit/Conduit.sol";
import { ConduitTransfer } from "../conduit/lib/ConduitStructs.sol";
import {
TransferHelperInterface
} from "../interfaces/TransferHelperInterface.sol";
import { TransferHelperErrors } from "../interfaces/TransferHelperErrors.sol";
/**
* @title TransferHelper
* @author stephankmin, stuckinaboot, ryanio
* @notice TransferHelper is a utility contract for transferring
* ERC20/ERC721/ERC1155 items in bulk to specific recipients.
*/
contract TransferHelper is TransferHelperInterface, TransferHelperErrors {
// Allow for interaction with the conduit controller.
ConduitControllerInterface internal immutable _CONDUIT_CONTROLLER;
// Set conduit creation code and runtime code hashes as immutable arguments.
bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH;
bytes32 internal immutable _CONDUIT_RUNTIME_CODE_HASH;
/**
* @dev Set the supplied conduit controller and retrieve its
* conduit creation code hash.
*
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController) {
// Get the conduit creation code and runtime code hashes from the
// supplied conduit controller and set them as an immutable.
ConduitControllerInterface controller = ConduitControllerInterface(
conduitController
);
(_CONDUIT_CREATION_CODE_HASH, _CONDUIT_RUNTIME_CODE_HASH) = controller
.getConduitCodeHashes();
// Set the supplied conduit controller as an immutable.
_CONDUIT_CONTROLLER = controller;
}
/**
* @notice Transfer multiple ERC20/ERC721/ERC1155 items to
* specified recipients.
*
* @param items The items to transfer to an intended recipient.
* @param conduitKey An optional conduit key referring to a conduit through
* which the bulk transfer should occur.
*
* @return magicValue A value indicating that the transfers were successful.
*/
function bulkTransfer(
TransferHelperItemsWithRecipient[] calldata items,
bytes32 conduitKey
) external override returns (bytes4 magicValue) {
// Ensure that a conduit key has been supplied.
if (conduitKey == bytes32(0)) {
revert InvalidConduit(conduitKey, address(0));
}
// Use conduit derived from supplied conduit key to perform transfers.
_performTransfersWithConduit(items, conduitKey);
// Return a magic value indicating that the transfers were performed.
magicValue = this.bulkTransfer.selector;
}
/**
* @notice Perform multiple transfers to specified recipients via the
* conduit derived from the provided conduit key.
*
* @param transfers The items to transfer.
* @param conduitKey The conduit key referring to the conduit through
* which the bulk transfer should occur.
*/
function _performTransfersWithConduit(
TransferHelperItemsWithRecipient[] calldata transfers,
bytes32 conduitKey
) internal {
// Retrieve total number of transfers and place on stack.
uint256 numTransfers = transfers.length;
// Derive the conduit address from the deployer, conduit key
// and creation code hash.
address conduit = address(
uint160(
uint256(
keccak256(
abi.encodePacked(
bytes1(0xff),
address(_CONDUIT_CONTROLLER),
conduitKey,
_CONDUIT_CREATION_CODE_HASH
)
)
)
)
);
// Declare a variable to store the sum of all items across transfers.
uint256 sumOfItemsAcrossAllTransfers;
// Skip overflow checks: all for loops are indexed starting at zero.
unchecked {
// Iterate over each transfer.
for (uint256 i = 0; i < numTransfers; ++i) {
// Retrieve the transfer in question.
TransferHelperItemsWithRecipient calldata transfer = transfers[
i
];
// Increment totalItems by the number of items in the transfer.
sumOfItemsAcrossAllTransfers += transfer.items.length;
}
}
// Declare a new array in memory with length totalItems to populate with
// each conduit transfer.
ConduitTransfer[] memory conduitTransfers = new ConduitTransfer[](
sumOfItemsAcrossAllTransfers
);
// Declare an index for storing ConduitTransfers in conduitTransfers.
uint256 itemIndex;
// Skip overflow checks: all for loops are indexed starting at zero.
unchecked {
// Iterate over each transfer.
for (uint256 i = 0; i < numTransfers; ++i) {
// Retrieve the transfer in question.
TransferHelperItemsWithRecipient calldata transfer = transfers[
i
];
// Retrieve the items of the transfer in question.
TransferHelperItem[] calldata transferItems = transfer.items;
// Ensure recipient is not the zero address.
_checkRecipientIsNotZeroAddress(transfer.recipient);
// Create a boolean indicating whether validateERC721Receiver
// is true and recipient is a contract.
bool callERC721Receiver = transfer.validateERC721Receiver &&
transfer.recipient.code.length != 0;
// Retrieve the total number of items in the transfer and
// place on stack.
uint256 numItemsInTransfer = transferItems.length;
// Iterate over each item in the transfer to create a
// corresponding ConduitTransfer.
for (uint256 j = 0; j < numItemsInTransfer; ++j) {
// Retrieve the item from the transfer.
TransferHelperItem calldata item = transferItems[j];
if (item.itemType == ConduitItemType.ERC20) {
// Ensure that the identifier of an ERC20 token is 0.
if (item.identifier != 0) {
revert InvalidERC20Identifier();
}
}
// If the item is an ERC721 token and
// callERC721Receiver is true...
if (item.itemType == ConduitItemType.ERC721) {
if (callERC721Receiver) {
// Check if the recipient implements
// onERC721Received for the given tokenId.
_checkERC721Receiver(
conduit,
transfer.recipient,
item.identifier
);
}
}
// Create a ConduitTransfer corresponding to each
// TransferHelperItem.
conduitTransfers[itemIndex] = ConduitTransfer(
item.itemType,
item.token,
msg.sender,
transfer.recipient,
item.identifier,
item.amount
);
// Increment the index for storing ConduitTransfers.
++itemIndex;
}
}
}
// Attempt the external call to transfer tokens via the derived conduit.
try ConduitInterface(conduit).execute(conduitTransfers) returns (
bytes4 conduitMagicValue
) {
// Check if the value returned from the external call matches
// the conduit `execute` selector.
if (conduitMagicValue != ConduitInterface.execute.selector) {
// If the external call fails, revert with the conduit key
// and conduit address.
revert InvalidConduit(conduitKey, conduit);
}
} catch Error(string memory reason) {
// Catch reverts with a provided reason string and
// revert with the reason, conduit key and conduit address.
revert ConduitErrorRevertString(reason, conduitKey, conduit);
} catch (bytes memory data) {
// Conduits will throw a custom error when attempting to transfer
// native token item types or an ERC721 item amount other than 1.
// Bubble up these custom errors when encountered. Note that the
// conduit itself will bubble up revert reasons from transfers as
// well, meaning that these errors are not necessarily indicative of
// an issue with the item type or amount in cases where the same
// custom error signature is encountered during a conduit transfer.
// Set initial value of first four bytes of revert data to the mask.
bytes4 customErrorSelector = bytes4(0xffffffff);
// Utilize assembly to read first four bytes (if present) directly.
assembly {
// Combine original mask with first four bytes of revert data.
customErrorSelector := and(
mload(add(data, 0x20)), // Data begins after length offset.
customErrorSelector
)
}
// Pass through the custom error in question if the revert data is
// the correct length and matches an expected custom error selector.
if (
data.length == 4 &&
(customErrorSelector == InvalidItemType.selector ||
customErrorSelector == InvalidERC721TransferAmount.selector)
) {
// "Bubble up" the revert reason.
assembly {
revert(add(data, 0x20), 0x04)
}
}
// Catch all other reverts from the external call to the conduit and
// include the conduit's raw revert reason as a data argument to a
// new custom error.
revert ConduitErrorRevertBytes(data, conduitKey, conduit);
}
}
/**
* @notice An internal function to check if a recipient address implements
* onERC721Received for a given tokenId. Note that this check does
* not adhere to the safe transfer specification and is only meant
* to provide an additional layer of assurance that the recipient
* can receive the tokens — any hooks or post-transfer checks will
* fail and the caller will be the transfer helper rather than the
* ERC721 contract. Note that the conduit is set as the operator, as
* it will be the caller once the transfer is performed.
*
* @param conduit The conduit to provide as the operator when calling
* onERC721Received.
* @param recipient The ERC721 recipient on which to call onERC721Received.
* @param tokenId The ERC721 tokenId of the token being transferred.
*/
function _checkERC721Receiver(
address conduit,
address recipient,
uint256 tokenId
) internal {
// Check if recipient can receive ERC721 tokens.
try
IERC721Receiver(recipient).onERC721Received(
conduit,
msg.sender,
tokenId,
""
)
returns (bytes4 selector) {
// Check if onERC721Received selector is valid.
if (selector != IERC721Receiver.onERC721Received.selector) {
// Revert if recipient cannot accept
// ERC721 tokens.
revert InvalidERC721Recipient(recipient);
}
} catch (bytes memory data) {
// "Bubble up" recipient's revert reason.
revert ERC721ReceiverErrorRevertBytes(
data,
recipient,
msg.sender,
tokenId
);
} catch Error(string memory reason) {
// "Bubble up" recipient's revert reason.
revert ERC721ReceiverErrorRevertString(
reason,
recipient,
msg.sender,
tokenId
);
}
}
/**
* @notice An internal function that reverts if the passed-in recipient
* is the zero address.
*
* @param recipient The recipient on which to perform the check.
*/
function _checkRecipientIsNotZeroAddress(address recipient) internal pure {
// Revert if the recipient is the zero address.
if (recipient == address(0x0)) {
revert RecipientCannotBeZeroAddress();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
interface IERC721Receiver {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { ConduitItemType } from "../conduit/lib/ConduitEnums.sol";
/**
* @dev A TransferHelperItem specifies the itemType (ERC20/ERC721/ERC1155),
* token address, token identifier, and amount of the token to be
* transferred via the TransferHelper. For ERC20 tokens, identifier
* must be 0. For ERC721 tokens, amount must be 1.
*/
struct TransferHelperItem {
ConduitItemType itemType;
address token;
uint256 identifier;
uint256 amount;
}
/**
* @dev A TransferHelperItemsWithRecipient specifies the tokens to transfer
* via the TransferHelper, their intended recipient, and a boolean flag
* indicating whether onERC721Received should be called on a recipient
* contract.
*/
struct TransferHelperItemsWithRecipient {
TransferHelperItem[] items;
address recipient;
bool validateERC721Receiver;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import {
ConduitTransfer,
ConduitBatch1155Transfer
} from "../conduit/lib/ConduitStructs.sol";
/**
* @title ConduitInterface
* @author 0age
* @notice ConduitInterface contains all external function interfaces, events,
* and errors for conduit contracts.
*/
interface ConduitInterface {
/**
* @dev Revert with an error when attempting to execute transfers using a
* caller that does not have an open channel.
*/
error ChannelClosed(address channel);
/**
* @dev Revert with an error when attempting to update a channel to the
* current status of that channel.
*/
error ChannelStatusAlreadySet(address channel, bool isOpen);
/**
* @dev Revert with an error when attempting to execute a transfer for an
* item that does not have an ERC20/721/1155 item type.
*/
error InvalidItemType();
/**
* @dev Revert with an error when attempting to update the status of a
* channel from a caller that is not the conduit controller.
*/
error InvalidController();
/**
* @dev Emit an event whenever a channel is opened or closed.
*
* @param channel The channel that has been updated.
* @param open A boolean indicating whether the conduit is open or not.
*/
event ChannelUpdated(address indexed channel, bool open);
/**
* @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
* with an open channel can call this function.
*
* @param transfers The ERC20/721/1155 transfers to perform.
*
* @return magicValue A magic value indicating that the transfers were
* performed successfully.
*/
function execute(ConduitTransfer[] calldata transfers)
external
returns (bytes4 magicValue);
/**
* @notice Execute a sequence of batch 1155 transfers. Only a caller with an
* open channel can call this function.
*
* @param batch1155Transfers The 1155 batch transfers to perform.
*
* @return magicValue A magic value indicating that the transfers were
* performed successfully.
*/
function executeBatch1155(
ConduitBatch1155Transfer[] calldata batch1155Transfers
) external returns (bytes4 magicValue);
/**
* @notice Execute a sequence of transfers, both single and batch 1155. Only
* a caller with an open channel can call this function.
*
* @param standardTransfers The ERC20/721/1155 transfers to perform.
* @param batch1155Transfers The 1155 batch transfers to perform.
*
* @return magicValue A magic value indicating that the transfers were
* performed successfully.
*/
function executeWithBatch1155(
ConduitTransfer[] calldata standardTransfers,
ConduitBatch1155Transfer[] calldata batch1155Transfers
) external returns (bytes4 magicValue);
/**
* @notice Open or close a given channel. Only callable by the controller.
*
* @param channel The channel to open or close.
* @param isOpen The status of the channel (either open or closed).
*/
function updateChannel(address channel, bool isOpen) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/**
* @title ConduitControllerInterface
* @author 0age
* @notice ConduitControllerInterface contains all external function interfaces,
* structs, events, and errors for the conduit controller.
*/
interface ConduitControllerInterface {
/**
* @dev Track the conduit key, current owner, new potential owner, and open
* channels for each deployed conduit.
*/
struct ConduitProperties {
bytes32 key;
address owner;
address potentialOwner;
address[] channels;
mapping(address => uint256) channelIndexesPlusOne;
}
/**
* @dev Emit an event whenever a new conduit is created.
*
* @param conduit The newly created conduit.
* @param conduitKey The conduit key used to create the new conduit.
*/
event NewConduit(address conduit, bytes32 conduitKey);
/**
* @dev Emit an event whenever conduit ownership is transferred.
*
* @param conduit The conduit for which ownership has been
* transferred.
* @param previousOwner The previous owner of the conduit.
* @param newOwner The new owner of the conduit.
*/
event OwnershipTransferred(
address indexed conduit,
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Emit an event whenever a conduit owner registers a new potential
* owner for that conduit.
*
* @param newPotentialOwner The new potential owner of the conduit.
*/
event PotentialOwnerUpdated(address indexed newPotentialOwner);
/**
* @dev Revert with an error when attempting to create a new conduit using a
* conduit key where the first twenty bytes of the key do not match the
* address of the caller.
*/
error InvalidCreator();
/**
* @dev Revert with an error when attempting to create a new conduit when no
* initial owner address is supplied.
*/
error InvalidInitialOwner();
/**
* @dev Revert with an error when attempting to set a new potential owner
* that is already set.
*/
error NewPotentialOwnerAlreadySet(
address conduit,
address newPotentialOwner
);
/**
* @dev Revert with an error when attempting to cancel ownership transfer
* when no new potential owner is currently set.
*/
error NoPotentialOwnerCurrentlySet(address conduit);
/**
* @dev Revert with an error when attempting to interact with a conduit that
* does not yet exist.
*/
error NoConduit();
/**
* @dev Revert with an error when attempting to create a conduit that
* already exists.
*/
error ConduitAlreadyExists(address conduit);
/**
* @dev Revert with an error when attempting to update channels or transfer
* ownership of a conduit when the caller is not the owner of the
* conduit in question.
*/
error CallerIsNotOwner(address conduit);
/**
* @dev Revert with an error when attempting to register a new potential
* owner and supplying the null address.
*/
error NewPotentialOwnerIsZeroAddress(address conduit);
/**
* @dev Revert with an error when attempting to claim ownership of a conduit
* with a caller that is not the current potential owner for the
* conduit in question.
*/
error CallerIsNotNewPotentialOwner(address conduit);
/**
* @dev Revert with an error when attempting to retrieve a channel using an
* index that is out of range.
*/
error ChannelOutOfRange(address conduit);
/**
* @notice Deploy a new conduit using a supplied conduit key and assigning
* an initial owner for the deployed conduit. Note that the first
* twenty bytes of the supplied conduit key must match the caller
* and that a new conduit cannot be created if one has already been
* deployed using the same conduit key.
*
* @param conduitKey The conduit key used to deploy the conduit. Note that
* the first twenty bytes of the conduit key must match
* the caller of this contract.
* @param initialOwner The initial owner to set for the new conduit.
*
* @return conduit The address of the newly deployed conduit.
*/
function createConduit(bytes32 conduitKey, address initialOwner)
external
returns (address conduit);
/**
* @notice Open or close a channel on a given conduit, thereby allowing the
* specified account to execute transfers against that conduit.
* Extreme care must be taken when updating channels, as malicious
* or vulnerable channels can transfer any ERC20, ERC721 and ERC1155
* tokens where the token holder has granted the conduit approval.
* Only the owner of the conduit in question may call this function.
*
* @param conduit The conduit for which to open or close the channel.
* @param channel The channel to open or close on the conduit.
* @param isOpen A boolean indicating whether to open or close the channel.
*/
function updateChannel(
address conduit,
address channel,
bool isOpen
) external;
/**
* @notice Initiate conduit ownership transfer by assigning a new potential
* owner for the given conduit. Once set, the new potential owner
* may call `acceptOwnership` to claim ownership of the conduit.
* Only the owner of the conduit in question may call this function.
*
* @param conduit The conduit for which to initiate ownership transfer.
* @param newPotentialOwner The new potential owner of the conduit.
*/
function transferOwnership(address conduit, address newPotentialOwner)
external;
/**
* @notice Clear the currently set potential owner, if any, from a conduit.
* Only the owner of the conduit in question may call this function.
*
* @param conduit The conduit for which to cancel ownership transfer.
*/
function cancelOwnershipTransfer(address conduit) external;
/**
* @notice Accept ownership of a supplied conduit. Only accounts that the
* current owner has set as the new potential owner may call this
* function.
*
* @param conduit The conduit for which to accept ownership.
*/
function acceptOwnership(address conduit) external;
/**
* @notice Retrieve the current owner of a deployed conduit.
*
* @param conduit The conduit for which to retrieve the associated owner.
*
* @return owner The owner of the supplied conduit.
*/
function ownerOf(address conduit) external view returns (address owner);
/**
* @notice Retrieve the conduit key for a deployed conduit via reverse
* lookup.
*
* @param conduit The conduit for which to retrieve the associated conduit
* key.
*
* @return conduitKey The conduit key used to deploy the supplied conduit.
*/
function getKey(address conduit) external view returns (bytes32 conduitKey);
/**
* @notice Derive the conduit associated with a given conduit key and
* determine whether that conduit exists (i.e. whether it has been
* deployed).
*
* @param conduitKey The conduit key used to derive the conduit.
*
* @return conduit The derived address of the conduit.
* @return exists A boolean indicating whether the derived conduit has been
* deployed or not.
*/
function getConduit(bytes32 conduitKey)
external
view
returns (address conduit, bool exists);
/**
* @notice Retrieve the potential owner, if any, for a given conduit. The
* current owner may set a new potential owner via
* `transferOwnership` and that owner may then accept ownership of
* the conduit in question via `acceptOwnership`.
*
* @param conduit The conduit for which to retrieve the potential owner.
*
* @return potentialOwner The potential owner, if any, for the conduit.
*/
function getPotentialOwner(address conduit)
external
view
returns (address potentialOwner);
/**
* @notice Retrieve the status (either open or closed) of a given channel on
* a conduit.
*
* @param conduit The conduit for which to retrieve the channel status.
* @param channel The channel for which to retrieve the status.
*
* @return isOpen The status of the channel on the given conduit.
*/
function getChannelStatus(address conduit, address channel)
external
view
returns (bool isOpen);
/**
* @notice Retrieve the total number of open channels for a given conduit.
*
* @param conduit The conduit for which to retrieve the total channel count.
*
* @return totalChannels The total number of open channels for the conduit.
*/
function getTotalChannels(address conduit)
external
view
returns (uint256 totalChannels);
/**
* @notice Retrieve an open channel at a specific index for a given conduit.
* Note that the index of a channel can change as a result of other
* channels being closed on the conduit.
*
* @param conduit The conduit for which to retrieve the open channel.
* @param channelIndex The index of the channel in question.
*
* @return channel The open channel, if any, at the specified channel index.
*/
function getChannel(address conduit, uint256 channelIndex)
external
view
returns (address channel);
/**
* @notice Retrieve all open channels for a given conduit. Note that calling
* this function for a conduit with many channels will revert with
* an out-of-gas error.
*
* @param conduit The conduit for which to retrieve open channels.
*
* @return channels An array of open channels on the given conduit.
*/
function getChannels(address conduit)
external
view
returns (address[] memory channels);
/**
* @dev Retrieve the conduit creation code and runtime code hashes.
*/
function getConduitCodeHashes()
external
view
returns (bytes32 creationCodeHash, bytes32 runtimeCodeHash);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
import { ConduitItemType } from "./lib/ConduitEnums.sol";
import { TokenTransferrer } from "../lib/TokenTransferrer.sol";
import {
ConduitTransfer,
ConduitBatch1155Transfer
} from "./lib/ConduitStructs.sol";
import "./lib/ConduitConstants.sol";
/**
* @title Conduit
* @author 0age
* @notice This contract serves as an originator for "proxied" transfers. Each
* conduit is deployed and controlled by a "conduit controller" that can
* add and remove "channels" or contracts that can instruct the conduit
* to transfer approved ERC20/721/1155 tokens. *IMPORTANT NOTE: each
* conduit has an owner that can arbitrarily add or remove channels, and
* a malicious or negligent owner can add a channel that allows for any
* approved ERC20/721/1155 tokens to be taken immediately — be extremely
* cautious with what conduits you give token approvals to!*
*/
contract Conduit is ConduitInterface, TokenTransferrer {
// Set deployer as an immutable controller that can update channel statuses.
address private immutable _controller;
// Track the status of each channel.
mapping(address => bool) private _channels;
/**
* @notice Ensure that the caller is currently registered as an open channel
* on the conduit.
*/
modifier onlyOpenChannel() {
// Utilize assembly to access channel storage mapping directly.
assembly {
// Write the caller to scratch space.
mstore(ChannelKey_channel_ptr, caller())
// Write the storage slot for _channels to scratch space.
mstore(ChannelKey_slot_ptr, _channels.slot)
// Derive the position in storage of _channels[msg.sender]
// and check if the stored value is zero.
if iszero(
sload(keccak256(ChannelKey_channel_ptr, ChannelKey_length))
) {
// The caller is not an open channel; revert with
// ChannelClosed(caller). First, set error signature in memory.
mstore(ChannelClosed_error_ptr, ChannelClosed_error_signature)
// Next, set the caller as the argument.
mstore(ChannelClosed_channel_ptr, caller())
// Finally, revert, returning full custom error with argument.
revert(ChannelClosed_error_ptr, ChannelClosed_error_length)
}
}
// Continue with function execution.
_;
}
/**
* @notice In the constructor, set the deployer as the controller.
*/
constructor() {
// Set the deployer as the controller.
_controller = msg.sender;
}
/**
* @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
* with an open channel can call this function. Note that channels
* are expected to implement reentrancy protection if desired, and
* that cross-channel reentrancy may be possible if the conduit has
* multiple open channels at once. Also note that channels are
* expected to implement checks against transferring any zero-amount
* items if that constraint is desired.
*
* @param transfers The ERC20/721/1155 transfers to perform.
*
* @return magicValue A magic value indicating that the transfers were
* performed successfully.
*/
function execute(ConduitTransfer[] calldata transfers)
external
override
onlyOpenChannel
returns (bytes4 magicValue)
{
// Retrieve the total number of transfers and place on the stack.
uint256 totalStandardTransfers = transfers.length;
// Iterate over each transfer.
for (uint256 i = 0; i < totalStandardTransfers; ) {
// Retrieve the transfer in question and perform the transfer.
_transfer(transfers[i]);
// Skip overflow check as for loop is indexed starting at zero.
unchecked {
++i;
}
}
// Return a magic value indicating that the transfers were performed.
magicValue = this.execute.selector;
}
/**
* @notice Execute a sequence of batch 1155 item transfers. Only a caller
* with an open channel can call this function. Note that channels
* are expected to implement reentrancy protection if desired, and
* that cross-channel reentrancy may be possible if the conduit has
* multiple open channels at once. Also note that channels are
* expected to implement checks against transferring any zero-amount
* items if that constraint is desired.
*
* @param batchTransfers The 1155 batch item transfers to perform.
*
* @return magicValue A magic value indicating that the item transfers were
* performed successfully.
*/
function executeBatch1155(
ConduitBatch1155Transfer[] calldata batchTransfers
) external override onlyOpenChannel returns (bytes4 magicValue) {
// Perform 1155 batch transfers. Note that memory should be considered
// entirely corrupted from this point forward.
_performERC1155BatchTransfers(batchTransfers);
// Return a magic value indicating that the transfers were performed.
magicValue = this.executeBatch1155.selector;
}
/**
* @notice Execute a sequence of transfers, both single ERC20/721/1155 item
* transfers as well as batch 1155 item transfers. Only a caller
* with an open channel can call this function. Note that channels
* are expected to implement reentrancy protection if desired, and
* that cross-channel reentrancy may be possible if the conduit has
* multiple open channels at once. Also note that channels are
* expected to implement checks against transferring any zero-amount
* items if that constraint is desired.
*
* @param standardTransfers The ERC20/721/1155 item transfers to perform.
* @param batchTransfers The 1155 batch item transfers to perform.
*
* @return magicValue A magic value indicating that the item transfers were
* performed successfully.
*/
function executeWithBatch1155(
ConduitTransfer[] calldata standardTransfers,
ConduitBatch1155Transfer[] calldata batchTransfers
) external override onlyOpenChannel returns (bytes4 magicValue) {
// Retrieve the total number of transfers and place on the stack.
uint256 totalStandardTransfers = standardTransfers.length;
// Iterate over each standard transfer.
for (uint256 i = 0; i < totalStandardTransfers; ) {
// Retrieve the transfer in question and perform the transfer.
_transfer(standardTransfers[i]);
// Skip overflow check as for loop is indexed starting at zero.
unchecked {
++i;
}
}
// Perform 1155 batch transfers. Note that memory should be considered
// entirely corrupted from this point forward aside from the free memory
// pointer having the default value.
_performERC1155BatchTransfers(batchTransfers);
// Return a magic value indicating that the transfers were performed.
magicValue = this.executeWithBatch1155.selector;
}
/**
* @notice Open or close a given channel. Only callable by the controller.
*
* @param channel The channel to open or close.
* @param isOpen The status of the channel (either open or closed).
*/
function updateChannel(address channel, bool isOpen) external override {
// Ensure that the caller is the controller of this contract.
if (msg.sender != _controller) {
revert InvalidController();
}
// Ensure that the channel does not already have the indicated status.
if (_channels[channel] == isOpen) {
revert ChannelStatusAlreadySet(channel, isOpen);
}
// Update the status of the channel.
_channels[channel] = isOpen;
// Emit a corresponding event.
emit ChannelUpdated(channel, isOpen);
}
/**
* @dev Internal function to transfer a given ERC20/721/1155 item. Note that
* channels are expected to implement checks against transferring any
* zero-amount items if that constraint is desired.
*
* @param item The ERC20/721/1155 item to transfer.
*/
function _transfer(ConduitTransfer calldata item) internal {
// Determine the transfer method based on the respective item type.
if (item.itemType == ConduitItemType.ERC20) {
// Transfer ERC20 token. Note that item.identifier is ignored and
// therefore ERC20 transfer items are potentially malleable — this
// check should be performed by the calling channel if a constraint
// on item malleability is desired.
_performERC20Transfer(item.token, item.from, item.to, item.amount);
} else if (item.itemType == ConduitItemType.ERC721) {
// Ensure that exactly one 721 item is being transferred.
if (item.amount != 1) {
revert InvalidERC721TransferAmount();
}
// Transfer ERC721 token.
_performERC721Transfer(
item.token,
item.from,
item.to,
item.identifier
);
} else if (item.itemType == ConduitItemType.ERC1155) {
// Transfer ERC1155 token.
_performERC1155Transfer(
item.token,
item.from,
item.to,
item.identifier,
item.amount
);
} else {
// Throw with an error.
revert InvalidItemType();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { ConduitItemType } from "./ConduitEnums.sol";
struct ConduitTransfer {
ConduitItemType itemType;
address token;
address from;
address to;
uint256 identifier;
uint256 amount;
}
struct ConduitBatch1155Transfer {
address token;
address from;
address to;
uint256[] ids;
uint256[] amounts;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import {
TransferHelperItem,
TransferHelperItemsWithRecipient
} from "../helpers/TransferHelperStructs.sol";
interface TransferHelperInterface {
/**
* @notice Transfer multiple items to a single recipient.
*
* @param items The items to transfer.
* @param conduitKey The key of the conduit performing the bulk transfer.
*/
function bulkTransfer(
TransferHelperItemsWithRecipient[] calldata items,
bytes32 conduitKey
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/**
* @title TransferHelperErrors
*/
interface TransferHelperErrors {
/**
* @dev Revert with an error when attempting to execute transfers with a
* NATIVE itemType.
*/
error InvalidItemType();
/**
* @dev Revert with an error when an ERC721 transfer with amount other than
* one is attempted.
*/
error InvalidERC721TransferAmount();
/**
* @dev Revert with an error when attempting to execute an ERC721 transfer
* to an invalid recipient.
*/
error InvalidERC721Recipient(address recipient);
/**
* @dev Revert with an error when a call to a ERC721 receiver reverts with
* bytes data.
*/
error ERC721ReceiverErrorRevertBytes(
bytes reason,
address receiver,
address sender,
uint256 identifier
);
/**
* @dev Revert with an error when a call to a ERC721 receiver reverts with
* string reason.
*/
error ERC721ReceiverErrorRevertString(
string reason,
address receiver,
address sender,
uint256 identifier
);
/**
* @dev Revert with an error when an ERC20 token has an invalid identifier.
*/
error InvalidERC20Identifier();
/**
* @dev Revert with an error if the recipient is the zero address.
*/
error RecipientCannotBeZeroAddress();
/**
* @dev Revert with an error when attempting to fill an order referencing an
* invalid conduit (i.e. one that has not been deployed).
*/
error InvalidConduit(bytes32 conduitKey, address conduit);
/**
* @dev Revert with an error when a call to a conduit reverts with a
* reason string.
*/
error ConduitErrorRevertString(
string reason,
bytes32 conduitKey,
address conduit
);
/**
* @dev Revert with an error when a call to a conduit reverts with bytes
* data.
*/
error ConduitErrorRevertBytes(
bytes reason,
bytes32 conduitKey,
address conduit
);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
enum ConduitItemType {
NATIVE, // unused
ERC20,
ERC721,
ERC1155
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import "./TokenTransferrerConstants.sol";
import {
TokenTransferrerErrors
} from "../interfaces/TokenTransferrerErrors.sol";
import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol";
/**
* @title TokenTransferrer
* @author 0age
* @custom:coauthor d1ll0n
* @custom:coauthor transmissions11
* @notice TokenTransferrer is a library for performing optimized ERC20, ERC721,
* ERC1155, and batch ERC1155 transfers, used by both Seaport as well as
* by conduits deployed by the ConduitController. Use great caution when
* considering these functions for use in other codebases, as there are
* significant side effects and edge cases that need to be thoroughly
* understood and carefully addressed.
*/
contract TokenTransferrer is TokenTransferrerErrors {
/**
* @dev Internal function to transfer ERC20 tokens from a given originator
* to a given recipient. Sufficient approvals must be set on the
* contract performing the transfer.
*
* @param token The ERC20 token to transfer.
* @param from The originator of the transfer.
* @param to The recipient of the transfer.
* @param amount The amount to transfer.
*/
function _performERC20Transfer(
address token,
address from,
address to,
uint256 amount
) internal {
// Utilize assembly to perform an optimized ERC20 token transfer.
assembly {
// The free memory pointer memory slot will be used when populating
// call data for the transfer; read the value and restore it later.
let memPointer := mload(FreeMemoryPointerSlot)
// Write call data into memory, starting with function selector.
mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature)
mstore(ERC20_transferFrom_from_ptr, from)
mstore(ERC20_transferFrom_to_ptr, to)
mstore(ERC20_transferFrom_amount_ptr, amount)
// Make call & copy up to 32 bytes of return data to scratch space.
// Scratch space does not need to be cleared ahead of time, as the
// subsequent check will ensure that either at least a full word of
// return data is received (in which case it will be overwritten) or
// that no data is received (in which case scratch space will be
// ignored) on a successful call to the given token.
let callStatus := call(
gas(),
token,
0,
ERC20_transferFrom_sig_ptr,
ERC20_transferFrom_length,
0,
OneWord
)
// Determine whether transfer was successful using status & result.
let success := and(
// Set success to whether the call reverted, if not check it
// either returned exactly 1 (can't just be non-zero data), or
// had no return data.
or(
and(eq(mload(0), 1), gt(returndatasize(), 31)),
iszero(returndatasize())
),
callStatus
)
// Handle cases where either the transfer failed or no data was
// returned. Group these, as most transfers will succeed with data.
// Equivalent to `or(iszero(success), iszero(returndatasize()))`
// but after it's inverted for JUMPI this expression is cheaper.
if iszero(and(success, iszero(iszero(returndatasize())))) {
// If the token has no code or the transfer failed: Equivalent
// to `or(iszero(success), iszero(extcodesize(token)))` but
// after it's inverted for JUMPI this expression is cheaper.
if iszero(and(iszero(iszero(extcodesize(token))), success)) {
// If the transfer failed:
if iszero(success) {
// If it was due to a revert:
if iszero(callStatus) {
// If it returned a message, bubble it up as long as
// sufficient gas remains to do so:
if returndatasize() {
// Ensure that sufficient gas is available to
// copy returndata while expanding memory where
// necessary. Start by computing the word size
// of returndata and allocated memory. Round up
// to the nearest full word.
let returnDataWords := div(
add(returndatasize(), AlmostOneWord),
OneWord
)
// Note: use the free memory pointer in place of
// msize() to work around a Yul warning that
// prevents accessing msize directly when the IR
// pipeline is activated.
let msizeWords := div(memPointer, OneWord)
// Next, compute the cost of the returndatacopy.
let cost := mul(CostPerWord, returnDataWords)
// Then, compute cost of new memory allocation.
if gt(returnDataWords, msizeWords) {
cost := add(
cost,
add(
mul(
sub(
returnDataWords,
msizeWords
),
CostPerWord
),
div(
sub(
mul(
returnDataWords,
returnDataWords
),
mul(msizeWords, msizeWords)
),
MemoryExpansionCoefficient
)
)
)
}
// Finally, add a small constant and compare to
// gas remaining; bubble up the revert data if
// enough gas is still available.
if lt(add(cost, ExtraGasBuffer), gas()) {
// Copy returndata to memory; overwrite
// existing memory.
returndatacopy(0, 0, returndatasize())
// Revert, specifying memory region with
// copied returndata.
revert(0, returndatasize())
}
}
// Otherwise revert with a generic error message.
mstore(
TokenTransferGenericFailure_error_sig_ptr,
TokenTransferGenericFailure_error_signature
)
mstore(
TokenTransferGenericFailure_error_token_ptr,
token
)
mstore(
TokenTransferGenericFailure_error_from_ptr,
from
)
mstore(TokenTransferGenericFailure_error_to_ptr, to)
mstore(TokenTransferGenericFailure_error_id_ptr, 0)
mstore(
TokenTransferGenericFailure_error_amount_ptr,
amount
)
revert(
TokenTransferGenericFailure_error_sig_ptr,
TokenTransferGenericFailure_error_length
)
}
// Otherwise revert with a message about the token
// returning false or non-compliant return values.
mstore(
BadReturnValueFromERC20OnTransfer_error_sig_ptr,
BadReturnValueFromERC20OnTransfer_error_signature
)
mstore(
BadReturnValueFromERC20OnTransfer_error_token_ptr,
token
)
mstore(
BadReturnValueFromERC20OnTransfer_error_from_ptr,
from
)
mstore(
BadReturnValueFromERC20OnTransfer_error_to_ptr,
to
)
mstore(
BadReturnValueFromERC20OnTransfer_error_amount_ptr,
amount
)
revert(
BadReturnValueFromERC20OnTransfer_error_sig_ptr,
BadReturnValueFromERC20OnTransfer_error_length
)
}
// Otherwise, revert with error about token not having code:
mstore(NoContract_error_sig_ptr, NoContract_error_signature)
mstore(NoContract_error_token_ptr, token)
revert(NoContract_error_sig_ptr, NoContract_error_length)
}
// Otherwise, the token just returned no data despite the call
// having succeeded; no need to optimize for this as it's not
// technically ERC20 compliant.
}
// Restore the original free memory pointer.
mstore(FreeMemoryPointerSlot, memPointer)
// Restore the zero slot to zero.
mstore(ZeroSlot, 0)
}
}
/**
* @dev Internal function to transfer an ERC721 token from a given
* originator to a given recipient. Sufficient approvals must be set on
* the contract performing the transfer. Note that this function does
* not check whether the receiver can accept the ERC721 token (i.e. it
* does not use `safeTransferFrom`).
*
* @param token The ERC721 token to transfer.
* @param from The originator of the transfer.
* @param to The recipient of the transfer.
* @param identifier The tokenId to transfer.
*/
function _performERC721Transfer(
address token,
address from,
address to,
uint256 identifier
) internal {
// Utilize assembly to perform an optimized ERC721 token transfer.
assembly {
// If the token has no code, revert.
if iszero(extcodesize(token)) {
mstore(NoContract_error_sig_ptr, NoContract_error_signature)
mstore(NoContract_error_token_ptr, token)
revert(NoContract_error_sig_ptr, NoContract_error_length)
}
// The free memory pointer memory slot will be used when populating
// call data for the transfer; read the value and restore it later.
let memPointer := mload(FreeMemoryPointerSlot)
// Write call data to memory starting with function selector.
mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature)
mstore(ERC721_transferFrom_from_ptr, from)
mstore(ERC721_transferFrom_to_ptr, to)
mstore(ERC721_transferFrom_id_ptr, identifier)
// Perform the call, ignoring return data.
let success := call(
gas(),
token,
0,
ERC721_transferFrom_sig_ptr,
ERC721_transferFrom_length,
0,
0
)
// If the transfer reverted:
if iszero(success) {
// If it returned a message, bubble it up as long as sufficient
// gas remains to do so:
if returndatasize() {
// Ensure that sufficient gas is available to copy
// returndata while expanding memory where necessary. Start
// by computing word size of returndata & allocated memory.
// Round up to the nearest full word.
let returnDataWords := div(
add(returndatasize(), AlmostOneWord),
OneWord
)
// Note: use the free memory pointer in place of msize() to
// work around a Yul warning that prevents accessing msize
// directly when the IR pipeline is activated.
let msizeWords := div(memPointer, OneWord)
// Next, compute the cost of the returndatacopy.
let cost := mul(CostPerWord, returnDataWords)
// Then, compute cost of new memory allocation.
if gt(returnDataWords, msizeWords) {
cost := add(
cost,
add(
mul(
sub(returnDataWords, msizeWords),
CostPerWord
),
div(
sub(
mul(returnDataWords, returnDataWords),
mul(msizeWords, msizeWords)
),
MemoryExpansionCoefficient
)
)
)
}
// Finally, add a small constant and compare to gas
// remaining; bubble up the revert data if enough gas is
// still available.
if lt(add(cost, ExtraGasBuffer), gas()) {
// Copy returndata to memory; overwrite existing memory.
returndatacopy(0, 0, returndatasize())
// Revert, giving memory region with copied returndata.
revert(0, returndatasize())
}
}
// Otherwise revert with a generic error message.
mstore(
TokenTransferGenericFailure_error_sig_ptr,
TokenTransferGenericFailure_error_signature
)
mstore(TokenTransferGenericFailure_error_token_ptr, token)
mstore(TokenTransferGenericFailure_error_from_ptr, from)
mstore(TokenTransferGenericFailure_error_to_ptr, to)
mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
mstore(TokenTransferGenericFailure_error_amount_ptr, 1)
revert(
TokenTransferGenericFailure_error_sig_ptr,
TokenTransferGenericFailure_error_length
)
}
// Restore the original free memory pointer.
mstore(FreeMemoryPointerSlot, memPointer)
// Restore the zero slot to zero.
mstore(ZeroSlot, 0)
}
}
/**
* @dev Internal function to transfer ERC1155 tokens from a given
* originator to a given recipient. Sufficient approvals must be set on
* the contract performing the transfer and contract recipients must
* implement the ERC1155TokenReceiver interface to indicate that they
* are willing to accept the transfer.
*
* @param token The ERC1155 token to transfer.
* @param from The originator of the transfer.
* @param to The recipient of the transfer.
* @param identifier The id to transfer.
* @param amount The amount to transfer.
*/
function _performERC1155Transfer(
address token,
address from,
address to,
uint256 identifier,
uint256 amount
) internal {
// Utilize assembly to perform an optimized ERC1155 token transfer.
assembly {
// If the token has no code, revert.
if iszero(extcodesize(token)) {
mstore(NoContract_error_sig_ptr, NoContract_error_signature)
mstore(NoContract_error_token_ptr, token)
revert(NoContract_error_sig_ptr, NoContract_error_length)
}
// The following memory slots will be used when populating call data
// for the transfer; read the values and restore them later.
let memPointer := mload(FreeMemoryPointerSlot)
let slot0x80 := mload(Slot0x80)
let slot0xA0 := mload(Slot0xA0)
let slot0xC0 := mload(Slot0xC0)
// Write call data into memory, beginning with function selector.
mstore(
ERC1155_safeTransferFrom_sig_ptr,
ERC1155_safeTransferFrom_signature
)
mstore(ERC1155_safeTransferFrom_from_ptr, from)
mstore(ERC1155_safeTransferFrom_to_ptr, to)
mstore(ERC1155_safeTransferFrom_id_ptr, identifier)
mstore(ERC1155_safeTransferFrom_amount_ptr, amount)
mstore(
ERC1155_safeTransferFrom_data_offset_ptr,
ERC1155_safeTransferFrom_data_length_offset
)
mstore(ERC1155_safeTransferFrom_data_length_ptr, 0)
// Perform the call, ignoring return data.
let success := call(
gas(),
token,
0,
ERC1155_safeTransferFrom_sig_ptr,
ERC1155_safeTransferFrom_length,
0,
0
)
// If the transfer reverted:
if iszero(success) {
// If it returned a message, bubble it up as long as sufficient
// gas remains to do so:
if returndatasize() {
// Ensure that sufficient gas is available to copy
// returndata while expanding memory where necessary. Start
// by computing word size of returndata & allocated memory.
// Round up to the nearest full word.
let returnDataWords := div(
add(returndatasize(), AlmostOneWord),
OneWord
)
// Note: use the free memory pointer in place of msize() to
// work around a Yul warning that prevents accessing msize
// directly when the IR pipeline is activated.
let msizeWords := div(memPointer, OneWord)
// Next, compute the cost of the returndatacopy.
let cost := mul(CostPerWord, returnDataWords)
// Then, compute cost of new memory allocation.
if gt(returnDataWords, msizeWords) {
cost := add(
cost,
add(
mul(
sub(returnDataWords, msizeWords),
CostPerWord
),
div(
sub(
mul(returnDataWords, returnDataWords),
mul(msizeWords, msizeWords)
),
MemoryExpansionCoefficient
)
)
)
}
// Finally, add a small constant and compare to gas
// remaining; bubble up the revert data if enough gas is
// still available.
if lt(add(cost, ExtraGasBuffer), gas()) {
// Copy returndata to memory; overwrite existing memory.
returndatacopy(0, 0, returndatasize())
// Revert, giving memory region with copied returndata.
revert(0, returndatasize())
}
}
// Otherwise revert with a generic error message.
mstore(
TokenTransferGenericFailure_error_sig_ptr,
TokenTransferGenericFailure_error_signature
)
mstore(TokenTransferGenericFailure_error_token_ptr, token)
mstore(TokenTransferGenericFailure_error_from_ptr, from)
mstore(TokenTransferGenericFailure_error_to_ptr, to)
mstore(TokenTransferGenericFailure_error_id_ptr, identifier)
mstore(TokenTransferGenericFailure_error_amount_ptr, amount)
revert(
TokenTransferGenericFailure_error_sig_ptr,
TokenTransferGenericFailure_error_length
)
}
mstore(Slot0x80, slot0x80) // Restore slot 0x80.
mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0.
mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0.
// Restore the original free memory pointer.
mstore(FreeMemoryPointerSlot, memPointer)
// Restore the zero slot to zero.
mstore(ZeroSlot, 0)
}
}
/**
* @dev Internal function to transfer ERC1155 tokens from a given
* originator to a given recipient. Sufficient approvals must be set on
* the contract performing the transfer and contract recipients must
* implement the ERC1155TokenReceiver interface to indicate that they
* are willing to accept the transfer. NOTE: this function is not
* memory-safe; it will overwrite existing memory, restore the free
* memory pointer to the default value, and overwrite the zero slot.
* This function should only be called once memory is no longer
* required and when uninitialized arrays are not utilized, and memory
* should be considered fully corrupted (aside from the existence of a
* default-value free memory pointer) after calling this function.
*
* @param batchTransfers The group of 1155 batch transfers to perform.
*/
function _performERC1155BatchTransfers(
ConduitBatch1155Transfer[] calldata batchTransfers
) internal {
// Utilize assembly to perform optimized batch 1155 transfers.
assembly {
let len := batchTransfers.length
// Pointer to first head in the array, which is offset to the struct
// at each index. This gets incremented after each loop to avoid
// multiplying by 32 to get the offset for each element.
let nextElementHeadPtr := batchTransfers.offset
// Pointer to beginning of the head of the array. This is the
// reference position each offset references. It's held static to
// let each loop calculate the data position for an element.
let arrayHeadPtr := nextElementHeadPtr
// Write the function selector, which will be reused for each call:
// safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
mstore(
ConduitBatch1155Transfer_from_offset,
ERC1155_safeBatchTransferFrom_signature
)
// Iterate over each batch transfer.
for {
let i := 0
} lt(i, len) {
i := add(i, 1)
} {
// Read the offset to the beginning of the element and add
// it to pointer to the beginning of the array head to get
// the absolute position of the element in calldata.
let elementPtr := add(
arrayHeadPtr,
calldataload(nextElementHeadPtr)
)
// Retrieve the token from calldata.
let token := calldataload(elementPtr)
// If the token has no code, revert.
if iszero(extcodesize(token)) {
mstore(NoContract_error_sig_ptr, NoContract_error_signature)
mstore(NoContract_error_token_ptr, token)
revert(NoContract_error_sig_ptr, NoContract_error_length)
}
// Get the total number of supplied ids.
let idsLength := calldataload(
add(elementPtr, ConduitBatch1155Transfer_ids_length_offset)
)
// Determine the expected offset for the amounts array.
let expectedAmountsOffset := add(
ConduitBatch1155Transfer_amounts_length_baseOffset,
mul(idsLength, OneWord)
)
// Validate struct encoding.
let invalidEncoding := iszero(
and(
// ids.length == amounts.length
eq(
idsLength,
calldataload(add(elementPtr, expectedAmountsOffset))
),
and(
// ids_offset == 0xa0
eq(
calldataload(
add(
elementPtr,
ConduitBatch1155Transfer_ids_head_offset
)
),
ConduitBatch1155Transfer_ids_length_offset
),
// amounts_offset == 0xc0 + ids.length*32
eq(
calldataload(
add(
elementPtr,
ConduitBatchTransfer_amounts_head_offset
)
),
expectedAmountsOffset
)
)
)
)
// Revert with an error if the encoding is not valid.
if invalidEncoding {
mstore(
Invalid1155BatchTransferEncoding_ptr,
Invalid1155BatchTransferEncoding_selector
)
revert(
Invalid1155BatchTransferEncoding_ptr,
Invalid1155BatchTransferEncoding_length
)
}
// Update the offset position for the next loop
nextElementHeadPtr := add(nextElementHeadPtr, OneWord)
// Copy the first section of calldata (before dynamic values).
calldatacopy(
BatchTransfer1155Params_ptr,
add(elementPtr, ConduitBatch1155Transfer_from_offset),
ConduitBatch1155Transfer_usable_head_size
)
// Determine size of calldata required for ids and amounts. Note
// that the size includes both lengths as well as the data.
let idsAndAmountsSize := add(TwoWords, mul(idsLength, TwoWords))
// Update the offset for the data array in memory.
mstore(
BatchTransfer1155Params_data_head_ptr,
add(
BatchTransfer1155Params_ids_length_offset,
idsAndAmountsSize
)
)
// Set the length of the data array in memory to zero.
mstore(
add(
BatchTransfer1155Params_data_length_basePtr,
idsAndAmountsSize
),
0
)
// Determine the total calldata size for the call to transfer.
let transferDataSize := add(
BatchTransfer1155Params_calldata_baseSize,
idsAndAmountsSize
)
// Copy second section of calldata (including dynamic values).
calldatacopy(
BatchTransfer1155Params_ids_length_ptr,
add(elementPtr, ConduitBatch1155Transfer_ids_length_offset),
idsAndAmountsSize
)
// Perform the call to transfer 1155 tokens.
let success := call(
gas(),
token,
0,
ConduitBatch1155Transfer_from_offset, // Data portion start.
transferDataSize, // Location of the length of callData.
0,
0
)
// If the transfer reverted:
if iszero(success) {
// If it returned a message, bubble it up as long as
// sufficient gas remains to do so:
if returndatasize() {
// Ensure that sufficient gas is available to copy
// returndata while expanding memory where necessary.
// Start by computing word size of returndata and
// allocated memory. Round up to the nearest full word.
let returnDataWords := div(
add(returndatasize(), AlmostOneWord),
OneWord
)
// Note: use transferDataSize in place of msize() to
// work around a Yul warning that prevents accessing
// msize directly when the IR pipeline is activated.
// The free memory pointer is not used here because
// this function does almost all memory management
// manually and does not update it, and transferDataSize
// should be the largest memory value used (unless a
// previous batch was larger).
let msizeWords := div(transferDataSize, OneWord)
// Next, compute the cost of the returndatacopy.
let cost := mul(CostPerWord, returnDataWords)
// Then, compute cost of new memory allocation.
if gt(returnDataWords, msizeWords) {
cost := add(
cost,
add(
mul(
sub(returnDataWords, msizeWords),
CostPerWord
),
div(
sub(
mul(
returnDataWords,
returnDataWords
),
mul(msizeWords, msizeWords)
),
MemoryExpansionCoefficient
)
)
)
}
// Finally, add a small constant and compare to gas
// remaining; bubble up the revert data if enough gas is
// still available.
if lt(add(cost, ExtraGasBuffer), gas()) {
// Copy returndata to memory; overwrite existing.
returndatacopy(0, 0, returndatasize())
// Revert with memory region containing returndata.
revert(0, returndatasize())
}
}
// Set the error signature.
mstore(
0,
ERC1155BatchTransferGenericFailure_error_signature
)
// Write the token.
mstore(ERC1155BatchTransferGenericFailure_token_ptr, token)
// Increase the offset to ids by 32.
mstore(
BatchTransfer1155Params_ids_head_ptr,
ERC1155BatchTransferGenericFailure_ids_offset
)
// Increase the offset to amounts by 32.
mstore(
BatchTransfer1155Params_amounts_head_ptr,
add(
OneWord,
mload(BatchTransfer1155Params_amounts_head_ptr)
)
)
// Return modified region. The total size stays the same as
// `token` uses the same number of bytes as `data.length`.
revert(0, transferDataSize)
}
}
// Reset the free memory pointer to the default value; memory must
// be assumed to be dirtied and not reused from this point forward.
// Also note that the zero slot is not reset to zero, meaning empty
// arrays cannot be safely created or utilized until it is restored.
mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
// error ChannelClosed(address channel)
uint256 constant ChannelClosed_error_signature = (
0x93daadf200000000000000000000000000000000000000000000000000000000
);
uint256 constant ChannelClosed_error_ptr = 0x00;
uint256 constant ChannelClosed_channel_ptr = 0x4;
uint256 constant ChannelClosed_error_length = 0x24;
// For the mapping:
// mapping(address => bool) channels
// The position in storage for a particular account is:
// keccak256(abi.encode(account, channels.slot))
uint256 constant ChannelKey_channel_ptr = 0x00;
uint256 constant ChannelKey_slot_ptr = 0x20;
uint256 constant ChannelKey_length = 0x40;
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/*
* -------------------------- Disambiguation & Other Notes ---------------------
* - The term "head" is used as it is in the documentation for ABI encoding,
* but only in reference to dynamic types, i.e. it always refers to the
* offset or pointer to the body of a dynamic type. In calldata, the head
* is always an offset (relative to the parent object), while in memory,
* the head is always the pointer to the body. More information found here:
* https://docs.soliditylang.org/en/v0.8.14/abi-spec.html#argument-encoding
* - Note that the length of an array is separate from and precedes the
* head of the array.
*
* - The term "body" is used in place of the term "head" used in the ABI
* documentation. It refers to the start of the data for a dynamic type,
* e.g. the first word of a struct or the first word of the first element
* in an array.
*
* - The term "pointer" is used to describe the absolute position of a value
* and never an offset relative to another value.
* - The suffix "_ptr" refers to a memory pointer.
* - The suffix "_cdPtr" refers to a calldata pointer.
*
* - The term "offset" is used to describe the position of a value relative
* to some parent value. For example, OrderParameters_conduit_offset is the
* offset to the "conduit" value in the OrderParameters struct relative to
* the start of the body.
* - Note: Offsets are used to derive pointers.
*
* - Some structs have pointers defined for all of their fields in this file.
* Lines which are commented out are fields that are not used in the
* codebase but have been left in for readability.
*/
uint256 constant AlmostOneWord = 0x1f;
uint256 constant OneWord = 0x20;
uint256 constant TwoWords = 0x40;
uint256 constant ThreeWords = 0x60;
uint256 constant FreeMemoryPointerSlot = 0x40;
uint256 constant ZeroSlot = 0x60;
uint256 constant DefaultFreeMemoryPointer = 0x80;
uint256 constant Slot0x80 = 0x80;
uint256 constant Slot0xA0 = 0xa0;
uint256 constant Slot0xC0 = 0xc0;
// abi.encodeWithSignature("transferFrom(address,address,uint256)")
uint256 constant ERC20_transferFrom_signature = (
0x23b872dd00000000000000000000000000000000000000000000000000000000
);
uint256 constant ERC20_transferFrom_sig_ptr = 0x0;
uint256 constant ERC20_transferFrom_from_ptr = 0x04;
uint256 constant ERC20_transferFrom_to_ptr = 0x24;
uint256 constant ERC20_transferFrom_amount_ptr = 0x44;
uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
// abi.encodeWithSignature(
// "safeTransferFrom(address,address,uint256,uint256,bytes)"
// )
uint256 constant ERC1155_safeTransferFrom_signature = (
0xf242432a00000000000000000000000000000000000000000000000000000000
);
uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0;
uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04;
uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24;
uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44;
uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64;
uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84;
uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4;
uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196
uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0;
// abi.encodeWithSignature(
// "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)"
// )
uint256 constant ERC1155_safeBatchTransferFrom_signature = (
0x2eb2c2d600000000000000000000000000000000000000000000000000000000
);
bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4(
bytes32(ERC1155_safeBatchTransferFrom_signature)
);
uint256 constant ERC721_transferFrom_signature = ERC20_transferFrom_signature;
uint256 constant ERC721_transferFrom_sig_ptr = 0x0;
uint256 constant ERC721_transferFrom_from_ptr = 0x04;
uint256 constant ERC721_transferFrom_to_ptr = 0x24;
uint256 constant ERC721_transferFrom_id_ptr = 0x44;
uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100
// abi.encodeWithSignature("NoContract(address)")
uint256 constant NoContract_error_signature = (
0x5f15d67200000000000000000000000000000000000000000000000000000000
);
uint256 constant NoContract_error_sig_ptr = 0x0;
uint256 constant NoContract_error_token_ptr = 0x4;
uint256 constant NoContract_error_length = 0x24; // 4 + 32 == 36
// abi.encodeWithSignature(
// "TokenTransferGenericFailure(address,address,address,uint256,uint256)"
// )
uint256 constant TokenTransferGenericFailure_error_signature = (
0xf486bc8700000000000000000000000000000000000000000000000000000000
);
uint256 constant TokenTransferGenericFailure_error_sig_ptr = 0x0;
uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x4;
uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x24;
uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x44;
uint256 constant TokenTransferGenericFailure_error_id_ptr = 0x64;
uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0x84;
// 4 + 32 * 5 == 164
uint256 constant TokenTransferGenericFailure_error_length = 0xa4;
// abi.encodeWithSignature(
// "BadReturnValueFromERC20OnTransfer(address,address,address,uint256)"
// )
uint256 constant BadReturnValueFromERC20OnTransfer_error_signature = (
0x9889192300000000000000000000000000000000000000000000000000000000
);
uint256 constant BadReturnValueFromERC20OnTransfer_error_sig_ptr = 0x0;
uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x4;
uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x24;
uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x44;
uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x64;
// 4 + 32 * 4 == 132
uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;
uint256 constant ExtraGasBuffer = 0x20;
uint256 constant CostPerWord = 3;
uint256 constant MemoryExpansionCoefficient = 0x200;
// Values are offset by 32 bytes in order to write the token to the beginning
// in the event of a revert
uint256 constant BatchTransfer1155Params_ptr = 0x24;
uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64;
uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84;
uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4;
uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4;
uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4;
uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4;
uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0;
uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0;
uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0;
uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80;
uint256 constant ConduitBatch1155Transfer_from_offset = 0x20;
uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60;
uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80;
uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0;
uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0;
uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0;
// Note: abbreviated version of above constant to adhere to line length limit.
uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80;
uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00;
uint256 constant Invalid1155BatchTransferEncoding_length = 0x04;
uint256 constant Invalid1155BatchTransferEncoding_selector = (
0xeba2084c00000000000000000000000000000000000000000000000000000000
);
uint256 constant ERC1155BatchTransferGenericFailure_error_signature = (
0xafc445e200000000000000000000000000000000000000000000000000000000
);
uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04;
uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0;
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/**
* @title TokenTransferrerErrors
*/
interface TokenTransferrerErrors {
/**
* @dev Revert with an error when an ERC721 transfer with amount other than
* one is attempted.
*/
error InvalidERC721TransferAmount();
/**
* @dev Revert with an error when attempting to fulfill an order where an
* item has an amount of zero.
*/
error MissingItemAmount();
/**
* @dev Revert with an error when attempting to fulfill an order where an
* item has unused parameters. This includes both the token and the
* identifier parameters for native transfers as well as the identifier
* parameter for ERC20 transfers. Note that the conduit does not
* perform this check, leaving it up to the calling channel to enforce
* when desired.
*/
error UnusedItemParameters();
/**
* @dev Revert with an error when an ERC20, ERC721, or ERC1155 token
* transfer reverts.
*
* @param token The token for which the transfer was attempted.
* @param from The source of the attempted transfer.
* @param to The recipient of the attempted transfer.
* @param identifier The identifier for the attempted transfer.
* @param amount The amount for the attempted transfer.
*/
error TokenTransferGenericFailure(
address token,
address from,
address to,
uint256 identifier,
uint256 amount
);
/**
* @dev Revert with an error when a batch ERC1155 token transfer reverts.
*
* @param token The token for which the transfer was attempted.
* @param from The source of the attempted transfer.
* @param to The recipient of the attempted transfer.
* @param identifiers The identifiers for the attempted transfer.
* @param amounts The amounts for the attempted transfer.
*/
error ERC1155BatchTransferGenericFailure(
address token,
address from,
address to,
uint256[] identifiers,
uint256[] amounts
);
/**
* @dev Revert with an error when an ERC20 token transfer returns a falsey
* value.
*
* @param token The token for which the ERC20 transfer was attempted.
* @param from The source of the attempted ERC20 transfer.
* @param to The recipient of the attempted ERC20 transfer.
* @param amount The amount for the attempted ERC20 transfer.
*/
error BadReturnValueFromERC20OnTransfer(
address token,
address from,
address to,
uint256 amount
);
/**
* @dev Revert with an error when an account being called as an assumed
* contract does not have code and returns no data.
*
* @param account The account that should contain code.
*/
error NoContract(address account);
/**
* @dev Revert with an error when attempting to execute an 1155 batch
* transfer using calldata not produced by default ABI encoding or with
* different lengths for ids and amounts arrays.
*/
error Invalid1155BatchTransferEncoding();
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
import { ConduitItemType } from "../conduit/lib/ConduitEnums.sol";
import { ItemType } from "./ConsiderationEnums.sol";
import { ReceivedItem } from "./ConsiderationStructs.sol";
import { Verifiers } from "./Verifiers.sol";
import { TokenTransferrer } from "./TokenTransferrer.sol";
import "./ConsiderationConstants.sol";
/**
* @title Executor
* @author 0age
* @notice Executor contains functions related to processing executions (i.e.
* transferring items, either directly or via conduits).
*/
contract Executor is Verifiers, TokenTransferrer {
/**
* @dev Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController) Verifiers(conduitController) {}
/**
* @dev Internal function to transfer a given item, either directly or via
* a corresponding conduit.
*
* @param item The item to transfer, including an amount and a
* recipient.
* @param from The account supplying the item.
* @param conduitKey A bytes32 value indicating what corresponding conduit,
* if any, to source token approvals from. The zero hash
* signifies that no conduit should be used, with direct
* approvals set on this contract.
* @param accumulator An open-ended array that collects transfers to execute
* against a given conduit in a single call.
*/
function _transfer(
ReceivedItem memory item,
address from,
bytes32 conduitKey,
bytes memory accumulator
) internal {
// If the item type indicates Ether or a native token...
if (item.itemType == ItemType.NATIVE) {
// Ensure neither the token nor the identifier parameters are set.
if ((uint160(item.token) | item.identifier) != 0) {
revert UnusedItemParameters();
}
// transfer the native tokens to the recipient.
_transferEth(item.recipient, item.amount);
} else if (item.itemType == ItemType.ERC20) {
// Ensure that no identifier is supplied.
if (item.identifier != 0) {
revert UnusedItemParameters();
}
// Transfer ERC20 tokens from the source to the recipient.
_transferERC20(
item.token,
from,
item.recipient,
item.amount,
conduitKey,
accumulator
);
} else if (item.itemType == ItemType.ERC721) {
// Transfer ERC721 token from the source to the recipient.
_transferERC721(
item.token,
from,
item.recipient,
item.identifier,
item.amount,
conduitKey,
accumulator
);
} else {
// Transfer ERC1155 token from the source to the recipient.
_transferERC1155(
item.token,
from,
item.recipient,
item.identifier,
item.amount,
conduitKey,
accumulator
);
}
}
/**
* @dev Internal function to transfer an individual ERC721 or ERC1155 item
* from a given originator to a given recipient. The accumulator will
* be bypassed, meaning that this function should be utilized in cases
* where multiple item transfers can be accumulated into a single
* conduit call. Sufficient approvals must be set, either on the
* respective conduit or on this contract itself.
*
* @param itemType The type of item to transfer, either ERC721 or ERC1155.
* @param token The token to transfer.
* @param from The originator of the transfer.
* @param to The recipient of the transfer.
* @param identifier The tokenId to transfer.
* @param amount The amount to transfer.
* @param conduitKey A bytes32 value indicating what corresponding conduit,
* if any, to source token approvals from. The zero hash
* signifies that no conduit should be used, with direct
* approvals set on this contract.
*/
function _transferIndividual721Or1155Item(
ItemType itemType,
address token,
address from,
address to,
uint256 identifier,
uint256 amount,
bytes32 conduitKey
) internal {
// Determine if the transfer is to be performed via a conduit.
if (conduitKey != bytes32(0)) {
// Use free memory pointer as calldata offset for the conduit call.
uint256 callDataOffset;
// Utilize assembly to place each argument in free memory.
assembly {
// Retrieve the free memory pointer and use it as the offset.
callDataOffset := mload(FreeMemoryPointerSlot)
// Write ConduitInterface.execute.selector to memory.
mstore(callDataOffset, Conduit_execute_signature)
// Write the offset to the ConduitTransfer array in memory.
mstore(
add(
callDataOffset,
Conduit_execute_ConduitTransfer_offset_ptr
),
Conduit_execute_ConduitTransfer_ptr
)
// Write the length of the ConduitTransfer array to memory.
mstore(
add(
callDataOffset,
Conduit_execute_ConduitTransfer_length_ptr
),
Conduit_execute_ConduitTransfer_length
)
// Write the item type to memory.
mstore(
add(callDataOffset, Conduit_execute_transferItemType_ptr),
itemType
)
// Write the token to memory.
mstore(
add(callDataOffset, Conduit_execute_transferToken_ptr),
token
)
// Write the transfer source to memory.
mstore(
add(callDataOffset, Conduit_execute_transferFrom_ptr),
from
)
// Write the transfer recipient to memory.
mstore(add(callDataOffset, Conduit_execute_transferTo_ptr), to)
// Write the token identifier to memory.
mstore(
add(callDataOffset, Conduit_execute_transferIdentifier_ptr),
identifier
)
// Write the transfer amount to memory.
mstore(
add(callDataOffset, Conduit_execute_transferAmount_ptr),
amount
)
}
// Perform the call to the conduit.
_callConduitUsingOffsets(
conduitKey,
callDataOffset,
OneConduitExecute_size
);
} else {
// Otherwise, determine whether it is an ERC721 or ERC1155 item.
if (itemType == ItemType.ERC721) {
// Ensure that exactly one 721 item is being transferred.
if (amount != 1) {
revert InvalidERC721TransferAmount();
}
// Perform transfer via the token contract directly.
_performERC721Transfer(token, from, to, identifier);
} else {
// Perform transfer via the token contract directly.
_performERC1155Transfer(token, from, to, identifier, amount);
}
}
}
/**
* @dev Internal function to transfer Ether or other native tokens to a
* given recipient.
*
* @param to The recipient of the transfer.
* @param amount The amount to transfer.
*/
function _transferEth(address payable to, uint256 amount) internal {
// Ensure that the supplied amount is non-zero.
_assertNonZeroAmount(amount);
// Declare a variable indicating whether the call was successful or not.
bool success;
assembly {
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
// If the call fails...
if (!success) {
// Revert and pass the revert reason along if one was returned.
_revertWithReasonIfOneIsReturned();
// Otherwise, revert with a generic error message.
revert EtherTransferGenericFailure(to, amount);
}
}
/**
* @dev Internal function to transfer ERC20 tokens from a given originator
* to a given recipient using a given conduit if applicable. Sufficient
* approvals must be set on this contract or on a respective conduit.
*
* @param token The ERC20 token to transfer.
* @param from The originator of the transfer.
* @param to The recipient of the transfer.
* @param amount The amount to transfer.
* @param conduitKey A bytes32 value indicating what corresponding conduit,
* if any, to source token approvals from. The zero hash
* signifies that no conduit should be used, with direct
* approvals set on this contract.
* @param accumulator An open-ended array that collects transfers to execute
* against a given conduit in a single call.
*/
function _transferERC20(
address token,
address from,
address to,
uint256 amount,
bytes32 conduitKey,
bytes memory accumulator
) internal {
// Ensure that the supplied amount is non-zero.
_assertNonZeroAmount(amount);
// Trigger accumulated transfers if the conduits differ.
_triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
// If no conduit has been specified...
if (conduitKey == bytes32(0)) {
// Perform the token transfer directly.
_performERC20Transfer(token, from, to, amount);
} else {
// Insert the call to the conduit into the accumulator.
_insert(
conduitKey,
accumulator,
ConduitItemType.ERC20,
token,
from,
to,
uint256(0),
amount
);
}
}
/**
* @dev Internal function to transfer a single ERC721 token from a given
* originator to a given recipient. Sufficient approvals must be set,
* either on the respective conduit or on this contract itself.
*
* @param token The ERC721 token to transfer.
* @param from The originator of the transfer.
* @param to The recipient of the transfer.
* @param identifier The tokenId to transfer (must be 1 for ERC721).
* @param amount The amount to transfer.
* @param conduitKey A bytes32 value indicating what corresponding conduit,
* if any, to source token approvals from. The zero hash
* signifies that no conduit should be used, with direct
* approvals set on this contract.
* @param accumulator An open-ended array that collects transfers to execute
* against a given conduit in a single call.
*/
function _transferERC721(
address token,
address from,
address to,
uint256 identifier,
uint256 amount,
bytes32 conduitKey,
bytes memory accumulator
) internal {
// Trigger accumulated transfers if the conduits differ.
_triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
// If no conduit has been specified...
if (conduitKey == bytes32(0)) {
// Ensure that exactly one 721 item is being transferred.
if (amount != 1) {
revert InvalidERC721TransferAmount();
}
// Perform transfer via the token contract directly.
_performERC721Transfer(token, from, to, identifier);
} else {
// Insert the call to the conduit into the accumulator.
_insert(
conduitKey,
accumulator,
ConduitItemType.ERC721,
token,
from,
to,
identifier,
amount
);
}
}
/**
* @dev Internal function to transfer ERC1155 tokens from a given originator
* to a given recipient. Sufficient approvals must be set, either on
* the respective conduit or on this contract itself.
*
* @param token The ERC1155 token to transfer.
* @param from The originator of the transfer.
* @param to The recipient of the transfer.
* @param identifier The id to transfer.
* @param amount The amount to transfer.
* @param conduitKey A bytes32 value indicating what corresponding conduit,
* if any, to source token approvals from. The zero hash
* signifies that no conduit should be used, with direct
* approvals set on this contract.
* @param accumulator An open-ended array that collects transfers to execute
* against a given conduit in a single call.
*/
function _transferERC1155(
address token,
address from,
address to,
uint256 identifier,
uint256 amount,
bytes32 conduitKey,
bytes memory accumulator
) internal {
// Ensure that the supplied amount is non-zero.
_assertNonZeroAmount(amount);
// Trigger accumulated transfers if the conduits differ.
_triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);
// If no conduit has been specified...
if (conduitKey == bytes32(0)) {
// Perform transfer via the token contract directly.
_performERC1155Transfer(token, from, to, identifier, amount);
} else {
// Insert the call to the conduit into the accumulator.
_insert(
conduitKey,
accumulator,
ConduitItemType.ERC1155,
token,
from,
to,
identifier,
amount
);
}
}
/**
* @dev Internal function to trigger a call to the conduit currently held by
* the accumulator if the accumulator contains item transfers (i.e. it
* is "armed") and the supplied conduit key does not match the key held
* by the accumulator.
*
* @param accumulator An open-ended array that collects transfers to execute
* against a given conduit in a single call.
* @param conduitKey A bytes32 value indicating what corresponding conduit,
* if any, to source token approvals from. The zero hash
* signifies that no conduit should be used, with direct
* approvals set on this contract.
*/
function _triggerIfArmedAndNotAccumulatable(
bytes memory accumulator,
bytes32 conduitKey
) internal {
// Retrieve the current conduit key from the accumulator.
bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator);
// Perform conduit call if the set key does not match the supplied key.
if (accumulatorConduitKey != conduitKey) {
_triggerIfArmed(accumulator);
}
}
/**
* @dev Internal function to trigger a call to the conduit currently held by
* the accumulator if the accumulator contains item transfers (i.e. it
* is "armed").
*
* @param accumulator An open-ended array that collects transfers to execute
* against a given conduit in a single call.
*/
function _triggerIfArmed(bytes memory accumulator) internal {
// Exit if the accumulator is not "armed".
if (accumulator.length != AccumulatorArmed) {
return;
}
// Retrieve the current conduit key from the accumulator.
bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator);
// Perform conduit call.
_trigger(accumulatorConduitKey, accumulator);
}
/**
* @dev Internal function to trigger a call to the conduit corresponding to
* a given conduit key, supplying all accumulated item transfers. The
* accumulator will be "disarmed" and reset in the process.
*
* @param conduitKey A bytes32 value indicating what corresponding conduit,
* if any, to source token approvals from. The zero hash
* signifies that no conduit should be used, with direct
* approvals set on this contract.
* @param accumulator An open-ended array that collects transfers to execute
* against a given conduit in a single call.
*/
function _trigger(bytes32 conduitKey, bytes memory accumulator) internal {
// Declare variables for offset in memory & size of calldata to conduit.
uint256 callDataOffset;
uint256 callDataSize;
// Call the conduit with all the accumulated transfers.
assembly {
// Call begins at third word; the first is length or "armed" status,
// and the second is the current conduit key.
callDataOffset := add(accumulator, TwoWords)
// 68 + items * 192
callDataSize := add(
Accumulator_array_offset_ptr,
mul(
mload(add(accumulator, Accumulator_array_length_ptr)),
Conduit_transferItem_size
)
)
}
// Call conduit derived from conduit key & supply accumulated transfers.
_callConduitUsingOffsets(conduitKey, callDataOffset, callDataSize);
// Reset accumulator length to signal that it is now "disarmed".
assembly {
mstore(accumulator, AccumulatorDisarmed)
}
}
/**
* @dev Internal function to perform a call to the conduit corresponding to
* a given conduit key based on the offset and size of the calldata in
* question in memory.
*
* @param conduitKey A bytes32 value indicating what corresponding
* conduit, if any, to source token approvals from.
* The zero hash signifies that no conduit should be
* used, with direct approvals set on this contract.
* @param callDataOffset The memory pointer where calldata is contained.
* @param callDataSize The size of calldata in memory.
*/
function _callConduitUsingOffsets(
bytes32 conduitKey,
uint256 callDataOffset,
uint256 callDataSize
) internal {
// Derive the address of the conduit using the conduit key.
address conduit = _deriveConduit(conduitKey);
bool success;
bytes4 result;
// call the conduit.
assembly {
// Ensure first word of scratch space is empty.
mstore(0, 0)
// Perform call, placing first word of return data in scratch space.
success := call(
gas(),
conduit,
0,
callDataOffset,
callDataSize,
0,
OneWord
)
// Take value from scratch space and place it on the stack.
result := mload(0)
}
// If the call failed...
if (!success) {
// Pass along whatever revert reason was given by the conduit.
_revertWithReasonIfOneIsReturned();
// Otherwise, revert with a generic error.
revert InvalidCallToConduit(conduit);
}
// Ensure result was extracted and matches EIP-1271 magic value.
if (result != ConduitInterface.execute.selector) {
revert InvalidConduit(conduitKey, conduit);
}
}
/**
* @dev Internal pure function to retrieve the current conduit key set for
* the accumulator.
*
* @param accumulator An open-ended array that collects transfers to execute
* against a given conduit in a single call.
*
* @return accumulatorConduitKey The conduit key currently set for the
* accumulator.
*/
function _getAccumulatorConduitKey(bytes memory accumulator)
internal
pure
returns (bytes32 accumulatorConduitKey)
{
// Retrieve the current conduit key from the accumulator.
assembly {
accumulatorConduitKey := mload(
add(accumulator, Accumulator_conduitKey_ptr)
)
}
}
/**
* @dev Internal pure function to place an item transfer into an accumulator
* that collects a series of transfers to execute against a given
* conduit in a single call.
*
* @param conduitKey A bytes32 value indicating what corresponding conduit,
* if any, to source token approvals from. The zero hash
* signifies that no conduit should be used, with direct
* approvals set on this contract.
* @param accumulator An open-ended array that collects transfers to execute
* against a given conduit in a single call.
* @param itemType The type of the item to transfer.
* @param token The token to transfer.
* @param from The originator of the transfer.
* @param to The recipient of the transfer.
* @param identifier The tokenId to transfer.
* @param amount The amount to transfer.
*/
function _insert(
bytes32 conduitKey,
bytes memory accumulator,
ConduitItemType itemType,
address token,
address from,
address to,
uint256 identifier,
uint256 amount
) internal pure {
uint256 elements;
// "Arm" and prime accumulator if it's not already armed. The sentinel
// value is held in the length of the accumulator array.
if (accumulator.length == AccumulatorDisarmed) {
elements = 1;
bytes4 selector = ConduitInterface.execute.selector;
assembly {
mstore(accumulator, AccumulatorArmed) // "arm" the accumulator.
mstore(add(accumulator, Accumulator_conduitKey_ptr), conduitKey)
mstore(add(accumulator, Accumulator_selector_ptr), selector)
mstore(
add(accumulator, Accumulator_array_offset_ptr),
Accumulator_array_offset
)
mstore(add(accumulator, Accumulator_array_length_ptr), elements)
}
} else {
// Otherwise, increase the number of elements by one.
assembly {
elements := add(
mload(add(accumulator, Accumulator_array_length_ptr)),
1
)
mstore(add(accumulator, Accumulator_array_length_ptr), elements)
}
}
// Insert the item.
assembly {
let itemPointer := sub(
add(accumulator, mul(elements, Conduit_transferItem_size)),
Accumulator_itemSizeOffsetDifference
)
mstore(itemPointer, itemType)
mstore(add(itemPointer, Conduit_transferItem_token_ptr), token)
mstore(add(itemPointer, Conduit_transferItem_from_ptr), from)
mstore(add(itemPointer, Conduit_transferItem_to_ptr), to)
mstore(
add(itemPointer, Conduit_transferItem_identifier_ptr),
identifier
)
mstore(add(itemPointer, Conduit_transferItem_amount_ptr), amount)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
// prettier-ignore
enum OrderType {
// 0: no partial fills, anyone can execute
FULL_OPEN,
// 1: partial fills supported, anyone can execute
PARTIAL_OPEN,
// 2: no partial fills, only offerer or zone can execute
FULL_RESTRICTED,
// 3: partial fills supported, only offerer or zone can execute
PARTIAL_RESTRICTED
}
// prettier-ignore
enum BasicOrderType {
// 0: no partial fills, anyone can execute
ETH_TO_ERC721_FULL_OPEN,
// 1: partial fills supported, anyone can execute
ETH_TO_ERC721_PARTIAL_OPEN,
// 2: no partial fills, only offerer or zone can execute
ETH_TO_ERC721_FULL_RESTRICTED,
// 3: partial fills supported, only offerer or zone can execute
ETH_TO_ERC721_PARTIAL_RESTRICTED,
// 4: no partial fills, anyone can execute
ETH_TO_ERC1155_FULL_OPEN,
// 5: partial fills supported, anyone can execute
ETH_TO_ERC1155_PARTIAL_OPEN,
// 6: no partial fills, only offerer or zone can execute
ETH_TO_ERC1155_FULL_RESTRICTED,
// 7: partial fills supported, only offerer or zone can execute
ETH_TO_ERC1155_PARTIAL_RESTRICTED,
// 8: no partial fills, anyone can execute
ERC20_TO_ERC721_FULL_OPEN,
// 9: partial fills supported, anyone can execute
ERC20_TO_ERC721_PARTIAL_OPEN,
// 10: no partial fills, only offerer or zone can execute
ERC20_TO_ERC721_FULL_RESTRICTED,
// 11: partial fills supported, only offerer or zone can execute
ERC20_TO_ERC721_PARTIAL_RESTRICTED,
// 12: no partial fills, anyone can execute
ERC20_TO_ERC1155_FULL_OPEN,
// 13: partial fills supported, anyone can execute
ERC20_TO_ERC1155_PARTIAL_OPEN,
// 14: no partial fills, only offerer or zone can execute
ERC20_TO_ERC1155_FULL_RESTRICTED,
// 15: partial fills supported, only offerer or zone can execute
ERC20_TO_ERC1155_PARTIAL_RESTRICTED,
// 16: no partial fills, anyone can execute
ERC721_TO_ERC20_FULL_OPEN,
// 17: partial fills supported, anyone can execute
ERC721_TO_ERC20_PARTIAL_OPEN,
// 18: no partial fills, only offerer or zone can execute
ERC721_TO_ERC20_FULL_RESTRICTED,
// 19: partial fills supported, only offerer or zone can execute
ERC721_TO_ERC20_PARTIAL_RESTRICTED,
// 20: no partial fills, anyone can execute
ERC1155_TO_ERC20_FULL_OPEN,
// 21: partial fills supported, anyone can execute
ERC1155_TO_ERC20_PARTIAL_OPEN,
// 22: no partial fills, only offerer or zone can execute
ERC1155_TO_ERC20_FULL_RESTRICTED,
// 23: partial fills supported, only offerer or zone can execute
ERC1155_TO_ERC20_PARTIAL_RESTRICTED
}
// prettier-ignore
enum BasicOrderRouteType {
// 0: provide Ether (or other native token) to receive offered ERC721 item.
ETH_TO_ERC721,
// 1: provide Ether (or other native token) to receive offered ERC1155 item.
ETH_TO_ERC1155,
// 2: provide ERC20 item to receive offered ERC721 item.
ERC20_TO_ERC721,
// 3: provide ERC20 item to receive offered ERC1155 item.
ERC20_TO_ERC1155,
// 4: provide ERC721 item to receive offered ERC20 item.
ERC721_TO_ERC20,
// 5: provide ERC1155 item to receive offered ERC20 item.
ERC1155_TO_ERC20
}
// prettier-ignore
enum ItemType {
// 0: ETH on mainnet, MATIC on polygon, etc.
NATIVE,
// 1: ERC20 items (ERC777 and ERC20 analogues could also technically work)
ERC20,
// 2: ERC721 items
ERC721,
// 3: ERC1155 items
ERC1155,
// 4: ERC721 items where a number of tokenIds are supported
ERC721_WITH_CRITERIA,
// 5: ERC1155 items where a number of ids are supported
ERC1155_WITH_CRITERIA
}
// prettier-ignore
enum Side {
// 0: Items that can be spent
OFFER,
// 1: Items that must be received
CONSIDERATION
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import {
OrderType,
BasicOrderType,
ItemType,
Side
} from "./ConsiderationEnums.sol";
/**
* @dev An order contains eleven components: an offerer, a zone (or account that
* can cancel the order or restrict who can fulfill the order depending on
* the type), the order type (specifying partial fill support as well as
* restricted order status), the start and end time, a hash that will be
* provided to the zone when validating restricted orders, a salt, a key
* corresponding to a given conduit, a counter, and an arbitrary number of
* offer items that can be spent along with consideration items that must
* be received by their respective recipient.
*/
struct OrderComponents {
address offerer;
address zone;
OfferItem[] offer;
ConsiderationItem[] consideration;
OrderType orderType;
uint256 startTime;
uint256 endTime;
bytes32 zoneHash;
uint256 salt;
bytes32 conduitKey;
uint256 counter;
}
/**
* @dev An offer item has five components: an item type (ETH or other native
* tokens, ERC20, ERC721, and ERC1155, as well as criteria-based ERC721 and
* ERC1155), a token address, a dual-purpose "identifierOrCriteria"
* component that will either represent a tokenId or a merkle root
* depending on the item type, and a start and end amount that support
* increasing or decreasing amounts over the duration of the respective
* order.
*/
struct OfferItem {
ItemType itemType;
address token;
uint256 identifierOrCriteria;
uint256 startAmount;
uint256 endAmount;
}
/**
* @dev A consideration item has the same five components as an offer item and
* an additional sixth component designating the required recipient of the
* item.
*/
struct ConsiderationItem {
ItemType itemType;
address token;
uint256 identifierOrCriteria;
uint256 startAmount;
uint256 endAmount;
address payable recipient;
}
/**
* @dev A spent item is translated from a utilized offer item and has four
* components: an item type (ETH or other native tokens, ERC20, ERC721, and
* ERC1155), a token address, a tokenId, and an amount.
*/
struct SpentItem {
ItemType itemType;
address token;
uint256 identifier;
uint256 amount;
}
/**
* @dev A received item is translated from a utilized consideration item and has
* the same four components as a spent item, as well as an additional fifth
* component designating the required recipient of the item.
*/
struct ReceivedItem {
ItemType itemType;
address token;
uint256 identifier;
uint256 amount;
address payable recipient;
}
/**
* @dev For basic orders involving ETH / native / ERC20 <=> ERC721 / ERC1155
* matching, a group of six functions may be called that only requires a
* subset of the usual order arguments. Note the use of a "basicOrderType"
* enum; this represents both the usual order type as well as the "route"
* of the basic order (a simple derivation function for the basic order
* type is `basicOrderType = orderType + (4 * basicOrderRoute)`.)
*/
struct BasicOrderParameters {
// calldata offset
address considerationToken; // 0x24
uint256 considerationIdentifier; // 0x44
uint256 considerationAmount; // 0x64
address payable offerer; // 0x84
address zone; // 0xa4
address offerToken; // 0xc4
uint256 offerIdentifier; // 0xe4
uint256 offerAmount; // 0x104
BasicOrderType basicOrderType; // 0x124
uint256 startTime; // 0x144
uint256 endTime; // 0x164
bytes32 zoneHash; // 0x184
uint256 salt; // 0x1a4
bytes32 offererConduitKey; // 0x1c4
bytes32 fulfillerConduitKey; // 0x1e4
uint256 totalOriginalAdditionalRecipients; // 0x204
AdditionalRecipient[] additionalRecipients; // 0x224
bytes signature; // 0x244
// Total length, excluding dynamic array data: 0x264 (580)
}
/**
* @dev Basic orders can supply any number of additional recipients, with the
* implied assumption that they are supplied from the offered ETH (or other
* native token) or ERC20 token for the order.
*/
struct AdditionalRecipient {
uint256 amount;
address payable recipient;
}
/**
* @dev The full set of order components, with the exception of the counter,
* must be supplied when fulfilling more sophisticated orders or groups of
* orders. The total number of original consideration items must also be
* supplied, as the caller may specify additional consideration items.
*/
struct OrderParameters {
address offerer; // 0x00
address zone; // 0x20
OfferItem[] offer; // 0x40
ConsiderationItem[] consideration; // 0x60
OrderType orderType; // 0x80
uint256 startTime; // 0xa0
uint256 endTime; // 0xc0
bytes32 zoneHash; // 0xe0
uint256 salt; // 0x100
bytes32 conduitKey; // 0x120
uint256 totalOriginalConsiderationItems; // 0x140
// offer.length // 0x160
}
/**
* @dev Orders require a signature in addition to the other order parameters.
*/
struct Order {
OrderParameters parameters;
bytes signature;
}
/**
* @dev Advanced orders include a numerator (i.e. a fraction to attempt to fill)
* and a denominator (the total size of the order) in addition to the
* signature and other order parameters. It also supports an optional field
* for supplying extra data; this data will be included in a staticcall to
* `isValidOrderIncludingExtraData` on the zone for the order if the order
* type is restricted and the offerer or zone are not the caller.
*/
struct AdvancedOrder {
OrderParameters parameters;
uint120 numerator;
uint120 denominator;
bytes signature;
bytes extraData;
}
/**
* @dev Orders can be validated (either explicitly via `validate`, or as a
* consequence of a full or partial fill), specifically cancelled (they can
* also be cancelled in bulk via incrementing a per-zone counter), and
* partially or fully filled (with the fraction filled represented by a
* numerator and denominator).
*/
struct OrderStatus {
bool isValidated;
bool isCancelled;
uint120 numerator;
uint120 denominator;
}
/**
* @dev A criteria resolver specifies an order, side (offer vs. consideration),
* and item index. It then provides a chosen identifier (i.e. tokenId)
* alongside a merkle proof demonstrating the identifier meets the required
* criteria.
*/
struct CriteriaResolver {
uint256 orderIndex;
Side side;
uint256 index;
uint256 identifier;
bytes32[] criteriaProof;
}
/**
* @dev A fulfillment is applied to a group of orders. It decrements a series of
* offer and consideration items, then generates a single execution
* element. A given fulfillment can be applied to as many offer and
* consideration items as desired, but must contain at least one offer and
* at least one consideration that match. The fulfillment must also remain
* consistent on all key parameters across all offer items (same offerer,
* token, type, tokenId, and conduit preference) as well as across all
* consideration items (token, type, tokenId, and recipient).
*/
struct Fulfillment {
FulfillmentComponent[] offerComponents;
FulfillmentComponent[] considerationComponents;
}
/**
* @dev Each fulfillment component contains one index referencing a specific
* order and another referencing a specific offer or consideration item.
*/
struct FulfillmentComponent {
uint256 orderIndex;
uint256 itemIndex;
}
/**
* @dev An execution is triggered once all consideration items have been zeroed
* out. It sends the item in question from the offerer to the item's
* recipient, optionally sourcing approvals from either this contract
* directly or from the offerer's chosen conduit if one is specified. An
* execution is not provided as an argument, but rather is derived via
* orders, criteria resolvers, and fulfillments (where the total number of
* executions will be less than or equal to the total number of indicated
* fulfillments) and returned as part of `matchOrders`.
*/
struct Execution {
ReceivedItem item;
address offerer;
bytes32 conduitKey;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { OrderStatus } from "./ConsiderationStructs.sol";
import { Assertions } from "./Assertions.sol";
import { SignatureVerification } from "./SignatureVerification.sol";
/**
* @title Verifiers
* @author 0age
* @notice Verifiers contains functions for performing verifications.
*/
contract Verifiers is Assertions, SignatureVerification {
/**
* @dev Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController) Assertions(conduitController) {}
/**
* @dev Internal view function to ensure that the current time falls within
* an order's valid timespan.
*
* @param startTime The time at which the order becomes active.
* @param endTime The time at which the order becomes inactive.
* @param revertOnInvalid A boolean indicating whether to revert if the
* order is not active.
*
* @return valid A boolean indicating whether the order is active.
*/
function _verifyTime(
uint256 startTime,
uint256 endTime,
bool revertOnInvalid
) internal view returns (bool valid) {
// Revert if order's timespan hasn't started yet or has already ended.
if (startTime > block.timestamp || endTime <= block.timestamp) {
// Only revert if revertOnInvalid has been supplied as true.
if (revertOnInvalid) {
revert InvalidTime();
}
// Return false as the order is invalid.
return false;
}
// Return true as the order time is valid.
valid = true;
}
/**
* @dev Internal view function to verify the signature of an order. An
* ERC-1271 fallback will be attempted if either the signature length
* is not 64 or 65 bytes or if the recovered signer does not match the
* supplied offerer. Note that in cases where a 64 or 65 byte signature
* is supplied, only standard ECDSA signatures that recover to a
* non-zero address are supported.
*
* @param offerer The offerer for the order.
* @param orderHash The order hash.
* @param signature A signature from the offerer indicating that the order
* has been approved.
*/
function _verifySignature(
address offerer,
bytes32 orderHash,
bytes memory signature
) internal view {
// Skip signature verification if the offerer is the caller.
if (offerer == msg.sender) {
return;
}
// Derive EIP-712 digest using the domain separator and the order hash.
bytes32 digest = _deriveEIP712Digest(_domainSeparator(), orderHash);
// Ensure that the signature for the digest is valid for the offerer.
_assertValidSignature(offerer, digest, signature);
}
/**
* @dev Internal view function to validate that a given order is fillable
* and not cancelled based on the order status.
*
* @param orderHash The order hash.
* @param orderStatus The status of the order, including whether it has
* been cancelled and the fraction filled.
* @param onlyAllowUnused A boolean flag indicating whether partial fills
* are supported by the calling function.
* @param revertOnInvalid A boolean indicating whether to revert if the
* order has been cancelled or filled beyond the
* allowable amount.
*
* @return valid A boolean indicating whether the order is valid.
*/
function _verifyOrderStatus(
bytes32 orderHash,
OrderStatus storage orderStatus,
bool onlyAllowUnused,
bool revertOnInvalid
) internal view returns (bool valid) {
// Ensure that the order has not been cancelled.
if (orderStatus.isCancelled) {
// Only revert if revertOnInvalid has been supplied as true.
if (revertOnInvalid) {
revert OrderIsCancelled(orderHash);
}
// Return false as the order status is invalid.
return false;
}
// Read order status numerator from storage and place on stack.
uint256 orderStatusNumerator = orderStatus.numerator;
// If the order is not entirely unused...
if (orderStatusNumerator != 0) {
// ensure the order has not been partially filled when not allowed.
if (onlyAllowUnused) {
// Always revert on partial fills when onlyAllowUnused is true.
revert OrderPartiallyFilled(orderHash);
}
// Otherwise, ensure that order has not been entirely filled.
else if (orderStatusNumerator >= orderStatus.denominator) {
// Only revert if revertOnInvalid has been supplied as true.
if (revertOnInvalid) {
revert OrderAlreadyFilled(orderHash);
}
// Return false as the order status is invalid.
return false;
}
}
// Return true as the order status is valid.
valid = true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/*
* -------------------------- Disambiguation & Other Notes ---------------------
* - The term "head" is used as it is in the documentation for ABI encoding,
* but only in reference to dynamic types, i.e. it always refers to the
* offset or pointer to the body of a dynamic type. In calldata, the head
* is always an offset (relative to the parent object), while in memory,
* the head is always the pointer to the body. More information found here:
* https://docs.soliditylang.org/en/v0.8.14/abi-spec.html#argument-encoding
* - Note that the length of an array is separate from and precedes the
* head of the array.
*
* - The term "body" is used in place of the term "head" used in the ABI
* documentation. It refers to the start of the data for a dynamic type,
* e.g. the first word of a struct or the first word of the first element
* in an array.
*
* - The term "pointer" is used to describe the absolute position of a value
* and never an offset relative to another value.
* - The suffix "_ptr" refers to a memory pointer.
* - The suffix "_cdPtr" refers to a calldata pointer.
*
* - The term "offset" is used to describe the position of a value relative
* to some parent value. For example, OrderParameters_conduit_offset is the
* offset to the "conduit" value in the OrderParameters struct relative to
* the start of the body.
* - Note: Offsets are used to derive pointers.
*
* - Some structs have pointers defined for all of their fields in this file.
* Lines which are commented out are fields that are not used in the
* codebase but have been left in for readability.
*/
// Declare constants for name, version, and reentrancy sentinel values.
// Name is right padded, so it touches the length which is left padded. This
// enables writing both values at once. Length goes at byte 95 in memory, and
// name fills bytes 96-109, so both values can be written left-padded to 77.
uint256 constant NameLengthPtr = 77;
uint256 constant NameWithLength = 0x0d436F6E73696465726174696F6E;
uint256 constant Version = 0x312e31;
uint256 constant Version_length = 3;
uint256 constant Version_shift = 0xe8;
uint256 constant _NOT_ENTERED = 1;
uint256 constant _ENTERED = 2;
// Common Offsets
// Offsets for identically positioned fields shared by:
// OfferItem, ConsiderationItem, SpentItem, ReceivedItem
uint256 constant Common_token_offset = 0x20;
uint256 constant Common_identifier_offset = 0x40;
uint256 constant Common_amount_offset = 0x60;
uint256 constant ReceivedItem_size = 0xa0;
uint256 constant ReceivedItem_amount_offset = 0x60;
uint256 constant ReceivedItem_recipient_offset = 0x80;
uint256 constant ReceivedItem_CommonParams_size = 0x60;
uint256 constant ConsiderationItem_recipient_offset = 0xa0;
// Store the same constant in an abbreviated format for a line length fix.
uint256 constant ConsiderItem_recipient_offset = 0xa0;
uint256 constant Execution_offerer_offset = 0x20;
uint256 constant Execution_conduit_offset = 0x40;
uint256 constant InvalidFulfillmentComponentData_error_signature = (
0x7fda727900000000000000000000000000000000000000000000000000000000
);
uint256 constant InvalidFulfillmentComponentData_error_len = 0x04;
uint256 constant Panic_error_signature = (
0x4e487b7100000000000000000000000000000000000000000000000000000000
);
uint256 constant Panic_error_offset = 0x04;
uint256 constant Panic_error_length = 0x24;
uint256 constant Panic_arithmetic = 0x11;
uint256 constant MissingItemAmount_error_signature = (
0x91b3e51400000000000000000000000000000000000000000000000000000000
);
uint256 constant MissingItemAmount_error_len = 0x04;
uint256 constant OrderParameters_offer_head_offset = 0x40;
uint256 constant OrderParameters_consideration_head_offset = 0x60;
uint256 constant OrderParameters_conduit_offset = 0x120;
uint256 constant OrderParameters_counter_offset = 0x140;
uint256 constant Fulfillment_itemIndex_offset = 0x20;
uint256 constant AdvancedOrder_numerator_offset = 0x20;
uint256 constant AlmostOneWord = 0x1f;
uint256 constant OneWord = 0x20;
uint256 constant TwoWords = 0x40;
uint256 constant ThreeWords = 0x60;
uint256 constant FourWords = 0x80;
uint256 constant FiveWords = 0xa0;
uint256 constant FreeMemoryPointerSlot = 0x40;
uint256 constant ZeroSlot = 0x60;
uint256 constant DefaultFreeMemoryPointer = 0x80;
uint256 constant Slot0x80 = 0x80;
uint256 constant Slot0xA0 = 0xa0;
uint256 constant BasicOrder_endAmount_cdPtr = 0x104;
uint256 constant BasicOrder_common_params_size = 0xa0;
uint256 constant BasicOrder_considerationHashesArray_ptr = 0x160;
uint256 constant EIP712_Order_size = 0x180;
uint256 constant EIP712_OfferItem_size = 0xc0;
uint256 constant EIP712_ConsiderationItem_size = 0xe0;
uint256 constant AdditionalRecipients_size = 0x40;
uint256 constant EIP712_DomainSeparator_offset = 0x02;
uint256 constant EIP712_OrderHash_offset = 0x22;
uint256 constant EIP712_DigestPayload_size = 0x42;
uint256 constant receivedItemsHash_ptr = 0x60;
/*
* Memory layout in _prepareBasicFulfillmentFromCalldata of
* data for OrderFulfilled
*
* event OrderFulfilled(
* bytes32 orderHash,
* address indexed offerer,
* address indexed zone,
* address fulfiller,
* SpentItem[] offer,
* > (itemType, token, id, amount)
* ReceivedItem[] consideration
* > (itemType, token, id, amount, recipient)
* )
*
* - 0x00: orderHash
* - 0x20: fulfiller
* - 0x40: offer offset (0x80)
* - 0x60: consideration offset (0x120)
* - 0x80: offer.length (1)
* - 0xa0: offerItemType
* - 0xc0: offerToken
* - 0xe0: offerIdentifier
* - 0x100: offerAmount
* - 0x120: consideration.length (1 + additionalRecipients.length)
* - 0x140: considerationItemType
* - 0x160: considerationToken
* - 0x180: considerationIdentifier
* - 0x1a0: considerationAmount
* - 0x1c0: considerationRecipient
* - ...
*/
// Minimum length of the OrderFulfilled event data.
// Must be added to the size of the ReceivedItem array for additionalRecipients
// (0xa0 * additionalRecipients.length) to calculate full size of the buffer.
uint256 constant OrderFulfilled_baseSize = 0x1e0;
uint256 constant OrderFulfilled_selector = (
0x9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f31
);
// Minimum offset in memory to OrderFulfilled event data.
// Must be added to the size of the EIP712 hash array for additionalRecipients
// (32 * additionalRecipients.length) to calculate the pointer to event data.
uint256 constant OrderFulfilled_baseOffset = 0x180;
uint256 constant OrderFulfilled_consideration_length_baseOffset = 0x2a0;
uint256 constant OrderFulfilled_offer_length_baseOffset = 0x200;
// uint256 constant OrderFulfilled_orderHash_offset = 0x00;
uint256 constant OrderFulfilled_fulfiller_offset = 0x20;
uint256 constant OrderFulfilled_offer_head_offset = 0x40;
uint256 constant OrderFulfilled_offer_body_offset = 0x80;
uint256 constant OrderFulfilled_consideration_head_offset = 0x60;
uint256 constant OrderFulfilled_consideration_body_offset = 0x120;
// BasicOrderParameters
uint256 constant BasicOrder_parameters_cdPtr = 0x04;
uint256 constant BasicOrder_considerationToken_cdPtr = 0x24;
// uint256 constant BasicOrder_considerationIdentifier_cdPtr = 0x44;
uint256 constant BasicOrder_considerationAmount_cdPtr = 0x64;
uint256 constant BasicOrder_offerer_cdPtr = 0x84;
uint256 constant BasicOrder_zone_cdPtr = 0xa4;
uint256 constant BasicOrder_offerToken_cdPtr = 0xc4;
// uint256 constant BasicOrder_offerIdentifier_cdPtr = 0xe4;
uint256 constant BasicOrder_offerAmount_cdPtr = 0x104;
uint256 constant BasicOrder_basicOrderType_cdPtr = 0x124;
uint256 constant BasicOrder_startTime_cdPtr = 0x144;
// uint256 constant BasicOrder_endTime_cdPtr = 0x164;
// uint256 constant BasicOrder_zoneHash_cdPtr = 0x184;
// uint256 constant BasicOrder_salt_cdPtr = 0x1a4;
uint256 constant BasicOrder_offererConduit_cdPtr = 0x1c4;
uint256 constant BasicOrder_fulfillerConduit_cdPtr = 0x1e4;
uint256 constant BasicOrder_totalOriginalAdditionalRecipients_cdPtr = 0x204;
uint256 constant BasicOrder_additionalRecipients_head_cdPtr = 0x224;
uint256 constant BasicOrder_signature_cdPtr = 0x244;
uint256 constant BasicOrder_additionalRecipients_length_cdPtr = 0x264;
uint256 constant BasicOrder_additionalRecipients_data_cdPtr = 0x284;
uint256 constant BasicOrder_parameters_ptr = 0x20;
uint256 constant BasicOrder_basicOrderType_range = 0x18; // 24 values
/*
* Memory layout in _prepareBasicFulfillmentFromCalldata of
* EIP712 data for ConsiderationItem
* - 0x80: ConsiderationItem EIP-712 typehash (constant)
* - 0xa0: itemType
* - 0xc0: token
* - 0xe0: identifier
* - 0x100: startAmount
* - 0x120: endAmount
* - 0x140: recipient
*/
uint256 constant BasicOrder_considerationItem_typeHash_ptr = 0x80; // memoryPtr
uint256 constant BasicOrder_considerationItem_itemType_ptr = 0xa0;
uint256 constant BasicOrder_considerationItem_token_ptr = 0xc0;
uint256 constant BasicOrder_considerationItem_identifier_ptr = 0xe0;
uint256 constant BasicOrder_considerationItem_startAmount_ptr = 0x100;
uint256 constant BasicOrder_considerationItem_endAmount_ptr = 0x120;
// uint256 constant BasicOrder_considerationItem_recipient_ptr = 0x140;
/*
* Memory layout in _prepareBasicFulfillmentFromCalldata of
* EIP712 data for OfferItem
* - 0x80: OfferItem EIP-712 typehash (constant)
* - 0xa0: itemType
* - 0xc0: token
* - 0xe0: identifier (reused for offeredItemsHash)
* - 0x100: startAmount
* - 0x120: endAmount
*/
uint256 constant BasicOrder_offerItem_typeHash_ptr = DefaultFreeMemoryPointer;
uint256 constant BasicOrder_offerItem_itemType_ptr = 0xa0;
uint256 constant BasicOrder_offerItem_token_ptr = 0xc0;
// uint256 constant BasicOrder_offerItem_identifier_ptr = 0xe0;
// uint256 constant BasicOrder_offerItem_startAmount_ptr = 0x100;
uint256 constant BasicOrder_offerItem_endAmount_ptr = 0x120;
/*
* Memory layout in _prepareBasicFulfillmentFromCalldata of
* EIP712 data for Order
* - 0x80: Order EIP-712 typehash (constant)
* - 0xa0: orderParameters.offerer
* - 0xc0: orderParameters.zone
* - 0xe0: keccak256(abi.encodePacked(offerHashes))
* - 0x100: keccak256(abi.encodePacked(considerationHashes))
* - 0x120: orderType
* - 0x140: startTime
* - 0x160: endTime
* - 0x180: zoneHash
* - 0x1a0: salt
* - 0x1c0: conduit
* - 0x1e0: _counters[orderParameters.offerer] (from storage)
*/
uint256 constant BasicOrder_order_typeHash_ptr = 0x80;
uint256 constant BasicOrder_order_offerer_ptr = 0xa0;
// uint256 constant BasicOrder_order_zone_ptr = 0xc0;
uint256 constant BasicOrder_order_offerHashes_ptr = 0xe0;
uint256 constant BasicOrder_order_considerationHashes_ptr = 0x100;
uint256 constant BasicOrder_order_orderType_ptr = 0x120;
uint256 constant BasicOrder_order_startTime_ptr = 0x140;
// uint256 constant BasicOrder_order_endTime_ptr = 0x160;
// uint256 constant BasicOrder_order_zoneHash_ptr = 0x180;
// uint256 constant BasicOrder_order_salt_ptr = 0x1a0;
// uint256 constant BasicOrder_order_conduitKey_ptr = 0x1c0;
uint256 constant BasicOrder_order_counter_ptr = 0x1e0;
uint256 constant BasicOrder_additionalRecipients_head_ptr = 0x240;
uint256 constant BasicOrder_signature_ptr = 0x260;
// Signature-related
bytes32 constant EIP2098_allButHighestBitMask = (
0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
);
bytes32 constant ECDSA_twentySeventhAndTwentyEighthBytesSet = (
0x0000000000000000000000000000000000000000000000000000000101000000
);
uint256 constant ECDSA_MaxLength = 65;
uint256 constant ECDSA_signature_s_offset = 0x40;
uint256 constant ECDSA_signature_v_offset = 0x60;
bytes32 constant EIP1271_isValidSignature_selector = (
0x1626ba7e00000000000000000000000000000000000000000000000000000000
);
uint256 constant EIP1271_isValidSignature_signatureHead_negativeOffset = 0x20;
uint256 constant EIP1271_isValidSignature_digest_negativeOffset = 0x40;
uint256 constant EIP1271_isValidSignature_selector_negativeOffset = 0x44;
uint256 constant EIP1271_isValidSignature_calldata_baseLength = 0x64;
uint256 constant EIP1271_isValidSignature_signature_head_offset = 0x40;
// abi.encodeWithSignature("NoContract(address)")
uint256 constant NoContract_error_signature = (
0x5f15d67200000000000000000000000000000000000000000000000000000000
);
uint256 constant NoContract_error_sig_ptr = 0x0;
uint256 constant NoContract_error_token_ptr = 0x4;
uint256 constant NoContract_error_length = 0x24; // 4 + 32 == 36
uint256 constant EIP_712_PREFIX = (
0x1901000000000000000000000000000000000000000000000000000000000000
);
uint256 constant ExtraGasBuffer = 0x20;
uint256 constant CostPerWord = 3;
uint256 constant MemoryExpansionCoefficient = 0x200; // 512
uint256 constant Create2AddressDerivation_ptr = 0x0b;
uint256 constant Create2AddressDerivation_length = 0x55;
uint256 constant MaskOverByteTwelve = (
0x0000000000000000000000ff0000000000000000000000000000000000000000
);
uint256 constant MaskOverLastTwentyBytes = (
0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff
);
uint256 constant MaskOverFirstFourBytes = (
0xffffffff00000000000000000000000000000000000000000000000000000000
);
uint256 constant Conduit_execute_signature = (
0x4ce34aa200000000000000000000000000000000000000000000000000000000
);
uint256 constant MaxUint8 = 0xff;
uint256 constant MaxUint120 = 0xffffffffffffffffffffffffffffff;
uint256 constant Conduit_execute_ConduitTransfer_ptr = 0x20;
uint256 constant Conduit_execute_ConduitTransfer_length = 0x01;
uint256 constant Conduit_execute_ConduitTransfer_offset_ptr = 0x04;
uint256 constant Conduit_execute_ConduitTransfer_length_ptr = 0x24;
uint256 constant Conduit_execute_transferItemType_ptr = 0x44;
uint256 constant Conduit_execute_transferToken_ptr = 0x64;
uint256 constant Conduit_execute_transferFrom_ptr = 0x84;
uint256 constant Conduit_execute_transferTo_ptr = 0xa4;
uint256 constant Conduit_execute_transferIdentifier_ptr = 0xc4;
uint256 constant Conduit_execute_transferAmount_ptr = 0xe4;
uint256 constant OneConduitExecute_size = 0x104;
// Sentinel value to indicate that the conduit accumulator is not armed.
uint256 constant AccumulatorDisarmed = 0x20;
uint256 constant AccumulatorArmed = 0x40;
uint256 constant Accumulator_conduitKey_ptr = 0x20;
uint256 constant Accumulator_selector_ptr = 0x40;
uint256 constant Accumulator_array_offset_ptr = 0x44;
uint256 constant Accumulator_array_length_ptr = 0x64;
uint256 constant Accumulator_itemSizeOffsetDifference = 0x3c;
uint256 constant Accumulator_array_offset = 0x20;
uint256 constant Conduit_transferItem_size = 0xc0;
uint256 constant Conduit_transferItem_token_ptr = 0x20;
uint256 constant Conduit_transferItem_from_ptr = 0x40;
uint256 constant Conduit_transferItem_to_ptr = 0x60;
uint256 constant Conduit_transferItem_identifier_ptr = 0x80;
uint256 constant Conduit_transferItem_amount_ptr = 0xa0;
// Declare constant for errors related to amount derivation.
// error InexactFraction() @ AmountDerivationErrors.sol
uint256 constant InexactFraction_error_signature = (
0xc63cf08900000000000000000000000000000000000000000000000000000000
);
uint256 constant InexactFraction_error_len = 0x04;
// Declare constant for errors related to signature verification.
uint256 constant Ecrecover_precompile = 1;
uint256 constant Ecrecover_args_size = 0x80;
uint256 constant Signature_lower_v = 27;
// error BadSignatureV(uint8) @ SignatureVerificationErrors.sol
uint256 constant BadSignatureV_error_signature = (
0x1f003d0a00000000000000000000000000000000000000000000000000000000
);
uint256 constant BadSignatureV_error_offset = 0x04;
uint256 constant BadSignatureV_error_length = 0x24;
// error InvalidSigner() @ SignatureVerificationErrors.sol
uint256 constant InvalidSigner_error_signature = (
0x815e1d6400000000000000000000000000000000000000000000000000000000
);
uint256 constant InvalidSigner_error_length = 0x04;
// error InvalidSignature() @ SignatureVerificationErrors.sol
uint256 constant InvalidSignature_error_signature = (
0x8baa579f00000000000000000000000000000000000000000000000000000000
);
uint256 constant InvalidSignature_error_length = 0x04;
// error BadContractSignature() @ SignatureVerificationErrors.sol
uint256 constant BadContractSignature_error_signature = (
0x4f7fb80d00000000000000000000000000000000000000000000000000000000
);
uint256 constant BadContractSignature_error_length = 0x04;
uint256 constant NumBitsAfterSelector = 0xe0;
// 69 is the lowest modulus for which the remainder
// of every selector other than the two match functions
// is greater than those of the match functions.
uint256 constant NonMatchSelector_MagicModulus = 69;
// Of the two match function selectors, the highest
// remainder modulo 69 is 29.
uint256 constant NonMatchSelector_MagicRemainder = 0x1d;
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { OrderParameters } from "./ConsiderationStructs.sol";
import { GettersAndDerivers } from "./GettersAndDerivers.sol";
import {
TokenTransferrerErrors
} from "../interfaces/TokenTransferrerErrors.sol";
import { CounterManager } from "./CounterManager.sol";
import "./ConsiderationConstants.sol";
/**
* @title Assertions
* @author 0age
* @notice Assertions contains logic for making various assertions that do not
* fit neatly within a dedicated semantic scope.
*/
contract Assertions is
GettersAndDerivers,
CounterManager,
TokenTransferrerErrors
{
/**
* @dev Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController)
GettersAndDerivers(conduitController)
{}
/**
* @dev Internal view function to ensure that the supplied consideration
* array length on a given set of order parameters is not less than the
* original consideration array length for that order and to retrieve
* the current counter for a given order's offerer and zone and use it
* to derive the order hash.
*
* @param orderParameters The parameters of the order to hash.
*
* @return The hash.
*/
function _assertConsiderationLengthAndGetOrderHash(
OrderParameters memory orderParameters
) internal view returns (bytes32) {
// Ensure supplied consideration array length is not less than original.
_assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
orderParameters.consideration.length,
orderParameters.totalOriginalConsiderationItems
);
// Derive and return order hash using current counter for the offerer.
return
_deriveOrderHash(
orderParameters,
_getCounter(orderParameters.offerer)
);
}
/**
* @dev Internal pure function to ensure that the supplied consideration
* array length for an order to be fulfilled is not less than the
* original consideration array length for that order.
*
* @param suppliedConsiderationItemTotal The number of consideration items
* supplied when fulfilling the order.
* @param originalConsiderationItemTotal The number of consideration items
* supplied on initial order creation.
*/
function _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
uint256 suppliedConsiderationItemTotal,
uint256 originalConsiderationItemTotal
) internal pure {
// Ensure supplied consideration array length is not less than original.
if (suppliedConsiderationItemTotal < originalConsiderationItemTotal) {
revert MissingOriginalConsiderationItems();
}
}
/**
* @dev Internal pure function to ensure that a given item amount is not
* zero.
*
* @param amount The amount to check.
*/
function _assertNonZeroAmount(uint256 amount) internal pure {
// Revert if the supplied amount is equal to zero.
if (amount == 0) {
revert MissingItemAmount();
}
}
/**
* @dev Internal pure function to validate calldata offsets for dynamic
* types in BasicOrderParameters and other parameters. This ensures
* that functions using the calldata object normally will be using the
* same data as the assembly functions and that values that are bound
* to a given range are within that range. Note that no parameters are
* supplied as all basic order functions use the same calldata
* encoding.
*/
function _assertValidBasicOrderParameters() internal pure {
// Declare a boolean designating basic order parameter offset validity.
bool validOffsets;
// Utilize assembly in order to read offset data directly from calldata.
assembly {
/*
* Checks:
* 1. Order parameters struct offset == 0x20
* 2. Additional recipients arr offset == 0x240
* 3. Signature offset == 0x260 + (recipients.length * 0x40)
* 4. BasicOrderType between 0 and 23 (i.e. < 24)
*/
validOffsets := and(
// Order parameters at calldata 0x04 must have offset of 0x20.
eq(
calldataload(BasicOrder_parameters_cdPtr),
BasicOrder_parameters_ptr
),
// Additional recipients at cd 0x224 must have offset of 0x240.
eq(
calldataload(BasicOrder_additionalRecipients_head_cdPtr),
BasicOrder_additionalRecipients_head_ptr
)
)
validOffsets := and(
validOffsets,
eq(
// Load signature offset from calldata 0x244.
calldataload(BasicOrder_signature_cdPtr),
// Derive expected offset as start of recipients + len * 64.
add(
BasicOrder_signature_ptr,
mul(
// Additional recipients length at calldata 0x264.
calldataload(
BasicOrder_additionalRecipients_length_cdPtr
),
// Each additional recipient has a length of 0x40.
AdditionalRecipients_size
)
)
)
)
validOffsets := and(
validOffsets,
lt(
// BasicOrderType parameter at calldata offset 0x124.
calldataload(BasicOrder_basicOrderType_cdPtr),
// Value should be less than 24.
BasicOrder_basicOrderType_range
)
)
}
// Revert with an error if basic order parameter offsets are invalid.
if (!validOffsets) {
revert InvalidBasicOrderParameterEncoding();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { EIP1271Interface } from "../interfaces/EIP1271Interface.sol";
import {
SignatureVerificationErrors
} from "../interfaces/SignatureVerificationErrors.sol";
import { LowLevelHelpers } from "./LowLevelHelpers.sol";
import "./ConsiderationConstants.sol";
/**
* @title SignatureVerification
* @author 0age
* @notice SignatureVerification contains logic for verifying signatures.
*/
contract SignatureVerification is SignatureVerificationErrors, LowLevelHelpers {
/**
* @dev Internal view function to verify the signature of an order. An
* ERC-1271 fallback will be attempted if either the signature length
* is not 64 or 65 bytes or if the recovered signer does not match the
* supplied signer.
*
* @param signer The signer for the order.
* @param digest The digest to verify the signature against.
* @param signature A signature from the signer indicating that the order
* has been approved.
*/
function _assertValidSignature(
address signer,
bytes32 digest,
bytes memory signature
) internal view {
// Declare value for ecrecover equality or 1271 call success status.
bool success;
// Utilize assembly to perform optimized signature verification check.
assembly {
// Ensure that first word of scratch space is empty.
mstore(0, 0)
// Declare value for v signature parameter.
let v
// Get the length of the signature.
let signatureLength := mload(signature)
// Get the pointer to the value preceding the signature length.
// This will be used for temporary memory overrides - either the
// signature head for isValidSignature or the digest for ecrecover.
let wordBeforeSignaturePtr := sub(signature, OneWord)
// Cache the current value behind the signature to restore it later.
let cachedWordBeforeSignature := mload(wordBeforeSignaturePtr)
// Declare lenDiff + recoveredSigner scope to manage stack pressure.
{
// Take the difference between the max ECDSA signature length
// and the actual signature length. Overflow desired for any
// values > 65. If the diff is not 0 or 1, it is not a valid
// ECDSA signature - move on to EIP1271 check.
let lenDiff := sub(ECDSA_MaxLength, signatureLength)
// Declare variable for recovered signer.
let recoveredSigner
// If diff is 0 or 1, it may be an ECDSA signature.
// Try to recover signer.
if iszero(gt(lenDiff, 1)) {
// Read the signature `s` value.
let originalSignatureS := mload(
add(signature, ECDSA_signature_s_offset)
)
// Read the first byte of the word after `s`. If the
// signature is 65 bytes, this will be the real `v` value.
// If not, it will need to be modified - doing it this way
// saves an extra condition.
v := byte(
0,
mload(add(signature, ECDSA_signature_v_offset))
)
// If lenDiff is 1, parse 64-byte signature as ECDSA.
if lenDiff {
// Extract yParity from highest bit of vs and add 27 to
// get v.
v := add(
shr(MaxUint8, originalSignatureS),
Signature_lower_v
)
// Extract canonical s from vs, all but the highest bit.
// Temporarily overwrite the original `s` value in the
// signature.
mstore(
add(signature, ECDSA_signature_s_offset),
and(
originalSignatureS,
EIP2098_allButHighestBitMask
)
)
}
// Temporarily overwrite the signature length with `v` to
// conform to the expected input for ecrecover.
mstore(signature, v)
// Temporarily overwrite the word before the length with
// `digest` to conform to the expected input for ecrecover.
mstore(wordBeforeSignaturePtr, digest)
// Attempt to recover the signer for the given signature. Do
// not check the call status as ecrecover will return a null
// address if the signature is invalid.
pop(
staticcall(
gas(),
Ecrecover_precompile, // Call ecrecover precompile.
wordBeforeSignaturePtr, // Use data memory location.
Ecrecover_args_size, // Size of digest, v, r, and s.
0, // Write result to scratch space.
OneWord // Provide size of returned result.
)
)
// Restore cached word before signature.
mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature)
// Restore cached signature length.
mstore(signature, signatureLength)
// Restore cached signature `s` value.
mstore(
add(signature, ECDSA_signature_s_offset),
originalSignatureS
)
// Read the recovered signer from the buffer given as return
// space for ecrecover.
recoveredSigner := mload(0)
}
// Set success to true if the signature provided was a valid
// ECDSA signature and the signer is not the null address. Use
// gt instead of direct as success is used outside of assembly.
success := and(eq(signer, recoveredSigner), gt(signer, 0))
}
// If the signature was not verified with ecrecover, try EIP1271.
if iszero(success) {
// Temporarily overwrite the word before the signature length
// and use it as the head of the signature input to
// `isValidSignature`, which has a value of 64.
mstore(
wordBeforeSignaturePtr,
EIP1271_isValidSignature_signature_head_offset
)
// Get pointer to use for the selector of `isValidSignature`.
let selectorPtr := sub(
signature,
EIP1271_isValidSignature_selector_negativeOffset
)
// Cache the value currently stored at the selector pointer.
let cachedWordOverwrittenBySelector := mload(selectorPtr)
// Get pointer to use for `digest` input to `isValidSignature`.
let digestPtr := sub(
signature,
EIP1271_isValidSignature_digest_negativeOffset
)
// Cache the value currently stored at the digest pointer.
let cachedWordOverwrittenByDigest := mload(digestPtr)
// Write the selector first, since it overlaps the digest.
mstore(selectorPtr, EIP1271_isValidSignature_selector)
// Next, write the digest.
mstore(digestPtr, digest)
// Call signer with `isValidSignature` to validate signature.
success := staticcall(
gas(),
signer,
selectorPtr,
add(
signatureLength,
EIP1271_isValidSignature_calldata_baseLength
),
0,
OneWord
)
// Determine if the signature is valid on successful calls.
if success {
// If first word of scratch space does not contain EIP-1271
// signature selector, revert.
if iszero(eq(mload(0), EIP1271_isValidSignature_selector)) {
// Revert with bad 1271 signature if signer has code.
if extcodesize(signer) {
// Bad contract signature.
mstore(0, BadContractSignature_error_signature)
revert(0, BadContractSignature_error_length)
}
// Check if signature length was invalid.
if gt(sub(ECDSA_MaxLength, signatureLength), 1) {
// Revert with generic invalid signature error.
mstore(0, InvalidSignature_error_signature)
revert(0, InvalidSignature_error_length)
}
// Check if v was invalid.
if iszero(
byte(v, ECDSA_twentySeventhAndTwentyEighthBytesSet)
) {
// Revert with invalid v value.
mstore(0, BadSignatureV_error_signature)
mstore(BadSignatureV_error_offset, v)
revert(0, BadSignatureV_error_length)
}
// Revert with generic invalid signer error message.
mstore(0, InvalidSigner_error_signature)
revert(0, InvalidSigner_error_length)
}
}
// Restore the cached values overwritten by selector, digest and
// signature head.
mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature)
mstore(selectorPtr, cachedWordOverwrittenBySelector)
mstore(digestPtr, cachedWordOverwrittenByDigest)
}
}
// If the call failed...
if (!success) {
// Revert and pass reason along if one was returned.
_revertWithReasonIfOneIsReturned();
// Otherwise, revert with error indicating bad contract signature.
assembly {
mstore(0, BadContractSignature_error_signature)
revert(0, BadContractSignature_error_length)
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { OrderParameters } from "./ConsiderationStructs.sol";
import { ConsiderationBase } from "./ConsiderationBase.sol";
import "./ConsiderationConstants.sol";
/**
* @title GettersAndDerivers
* @author 0age
* @notice ConsiderationInternal contains pure and internal view functions
* related to getting or deriving various values.
*/
contract GettersAndDerivers is ConsiderationBase {
/**
* @dev Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController)
ConsiderationBase(conduitController)
{}
/**
* @dev Internal view function to derive the order hash for a given order.
* Note that only the original consideration items are included in the
* order hash, as additional consideration items may be supplied by the
* caller.
*
* @param orderParameters The parameters of the order to hash.
* @param counter The counter of the order to hash.
*
* @return orderHash The hash.
*/
function _deriveOrderHash(
OrderParameters memory orderParameters,
uint256 counter
) internal view returns (bytes32 orderHash) {
// Get length of original consideration array and place it on the stack.
uint256 originalConsiderationLength = (
orderParameters.totalOriginalConsiderationItems
);
/*
* Memory layout for an array of structs (dynamic or not) is similar
* to ABI encoding of dynamic types, with a head segment followed by
* a data segment. The main difference is that the head of an element
* is a memory pointer rather than an offset.
*/
// Declare a variable for the derived hash of the offer array.
bytes32 offerHash;
// Read offer item EIP-712 typehash from runtime code & place on stack.
bytes32 typeHash = _OFFER_ITEM_TYPEHASH;
// Utilize assembly so that memory regions can be reused across hashes.
assembly {
// Retrieve the free memory pointer and place on the stack.
let hashArrPtr := mload(FreeMemoryPointerSlot)
// Get the pointer to the offers array.
let offerArrPtr := mload(
add(orderParameters, OrderParameters_offer_head_offset)
)
// Load the length.
let offerLength := mload(offerArrPtr)
// Set the pointer to the first offer's head.
offerArrPtr := add(offerArrPtr, OneWord)
// Iterate over the offer items.
// prettier-ignore
for { let i := 0 } lt(i, offerLength) {
i := add(i, 1)
} {
// Read the pointer to the offer data and subtract one word
// to get typeHash pointer.
let ptr := sub(mload(offerArrPtr), OneWord)
// Read the current value before the offer data.
let value := mload(ptr)
// Write the type hash to the previous word.
mstore(ptr, typeHash)
// Take the EIP712 hash and store it in the hash array.
mstore(hashArrPtr, keccak256(ptr, EIP712_OfferItem_size))
// Restore the previous word.
mstore(ptr, value)
// Increment the array pointers by one word.
offerArrPtr := add(offerArrPtr, OneWord)
hashArrPtr := add(hashArrPtr, OneWord)
}
// Derive the offer hash using the hashes of each item.
offerHash := keccak256(
mload(FreeMemoryPointerSlot),
mul(offerLength, OneWord)
)
}
// Declare a variable for the derived hash of the consideration array.
bytes32 considerationHash;
// Read consideration item typehash from runtime code & place on stack.
typeHash = _CONSIDERATION_ITEM_TYPEHASH;
// Utilize assembly so that memory regions can be reused across hashes.
assembly {
// Retrieve the free memory pointer and place on the stack.
let hashArrPtr := mload(FreeMemoryPointerSlot)
// Get the pointer to the consideration array.
let considerationArrPtr := add(
mload(
add(
orderParameters,
OrderParameters_consideration_head_offset
)
),
OneWord
)
// Iterate over the consideration items (not including tips).
// prettier-ignore
for { let i := 0 } lt(i, originalConsiderationLength) {
i := add(i, 1)
} {
// Read the pointer to the consideration data and subtract one
// word to get typeHash pointer.
let ptr := sub(mload(considerationArrPtr), OneWord)
// Read the current value before the consideration data.
let value := mload(ptr)
// Write the type hash to the previous word.
mstore(ptr, typeHash)
// Take the EIP712 hash and store it in the hash array.
mstore(
hashArrPtr,
keccak256(ptr, EIP712_ConsiderationItem_size)
)
// Restore the previous word.
mstore(ptr, value)
// Increment the array pointers by one word.
considerationArrPtr := add(considerationArrPtr, OneWord)
hashArrPtr := add(hashArrPtr, OneWord)
}
// Derive the consideration hash using the hashes of each item.
considerationHash := keccak256(
mload(FreeMemoryPointerSlot),
mul(originalConsiderationLength, OneWord)
)
}
// Read order item EIP-712 typehash from runtime code & place on stack.
typeHash = _ORDER_TYPEHASH;
// Utilize assembly to access derived hashes & other arguments directly.
assembly {
// Retrieve pointer to the region located just behind parameters.
let typeHashPtr := sub(orderParameters, OneWord)
// Store the value at that pointer location to restore later.
let previousValue := mload(typeHashPtr)
// Store the order item EIP-712 typehash at the typehash location.
mstore(typeHashPtr, typeHash)
// Retrieve the pointer for the offer array head.
let offerHeadPtr := add(
orderParameters,
OrderParameters_offer_head_offset
)
// Retrieve the data pointer referenced by the offer head.
let offerDataPtr := mload(offerHeadPtr)
// Store the offer hash at the retrieved memory location.
mstore(offerHeadPtr, offerHash)
// Retrieve the pointer for the consideration array head.
let considerationHeadPtr := add(
orderParameters,
OrderParameters_consideration_head_offset
)
// Retrieve the data pointer referenced by the consideration head.
let considerationDataPtr := mload(considerationHeadPtr)
// Store the consideration hash at the retrieved memory location.
mstore(considerationHeadPtr, considerationHash)
// Retrieve the pointer for the counter.
let counterPtr := add(
orderParameters,
OrderParameters_counter_offset
)
// Store the counter at the retrieved memory location.
mstore(counterPtr, counter)
// Derive the order hash using the full range of order parameters.
orderHash := keccak256(typeHashPtr, EIP712_Order_size)
// Restore the value previously held at typehash pointer location.
mstore(typeHashPtr, previousValue)
// Restore offer data pointer at the offer head pointer location.
mstore(offerHeadPtr, offerDataPtr)
// Restore consideration data pointer at the consideration head ptr.
mstore(considerationHeadPtr, considerationDataPtr)
// Restore consideration item length at the counter pointer.
mstore(counterPtr, originalConsiderationLength)
}
}
/**
* @dev Internal view function to derive the address of a given conduit
* using a corresponding conduit key.
*
* @param conduitKey A bytes32 value indicating what corresponding conduit,
* if any, to source token approvals from. This value is
* the "salt" parameter supplied by the deployer (i.e. the
* conduit controller) when deploying the given conduit.
*
* @return conduit The address of the conduit associated with the given
* conduit key.
*/
function _deriveConduit(bytes32 conduitKey)
internal
view
returns (address conduit)
{
// Read conduit controller address from runtime and place on the stack.
address conduitController = address(_CONDUIT_CONTROLLER);
// Read conduit creation code hash from runtime and place on the stack.
bytes32 conduitCreationCodeHash = _CONDUIT_CREATION_CODE_HASH;
// Leverage scratch space to perform an efficient hash.
assembly {
// Retrieve the free memory pointer; it will be replaced afterwards.
let freeMemoryPointer := mload(FreeMemoryPointerSlot)
// Place the control character and the conduit controller in scratch
// space; note that eleven bytes at the beginning are left unused.
mstore(0, or(MaskOverByteTwelve, conduitController))
// Place the conduit key in the next region of scratch space.
mstore(OneWord, conduitKey)
// Place conduit creation code hash in free memory pointer location.
mstore(TwoWords, conduitCreationCodeHash)
// Derive conduit by hashing and applying a mask over last 20 bytes.
conduit := and(
// Hash the relevant region.
keccak256(
// The region starts at memory pointer 11.
Create2AddressDerivation_ptr,
// The region is 85 bytes long (1 + 20 + 32 + 32).
Create2AddressDerivation_length
),
// The address equals the last twenty bytes of the hash.
MaskOverLastTwentyBytes
)
// Restore the free memory pointer.
mstore(FreeMemoryPointerSlot, freeMemoryPointer)
}
}
/**
* @dev Internal view function to get the EIP-712 domain separator. If the
* chainId matches the chainId set on deployment, the cached domain
* separator will be returned; otherwise, it will be derived from
* scratch.
*
* @return The domain separator.
*/
function _domainSeparator() internal view returns (bytes32) {
// prettier-ignore
return block.chainid == _CHAIN_ID
? _DOMAIN_SEPARATOR
: _deriveDomainSeparator();
}
/**
* @dev Internal view function to retrieve configuration information for
* this contract.
*
* @return version The contract version.
* @return domainSeparator The domain separator for this contract.
* @return conduitController The conduit Controller set for this contract.
*/
function _information()
internal
view
returns (
string memory version,
bytes32 domainSeparator,
address conduitController
)
{
// Derive the domain separator.
domainSeparator = _domainSeparator();
// Declare variable as immutables cannot be accessed within assembly.
conduitController = address(_CONDUIT_CONTROLLER);
// Allocate a string with the intended length.
version = new string(Version_length);
// Set the version as data on the newly allocated string.
assembly {
mstore(add(version, OneWord), shl(Version_shift, Version))
}
}
/**
* @dev Internal pure function to efficiently derive an digest to sign for
* an order in accordance with EIP-712.
*
* @param domainSeparator The domain separator.
* @param orderHash The order hash.
*
* @return value The hash.
*/
function _deriveEIP712Digest(bytes32 domainSeparator, bytes32 orderHash)
internal
pure
returns (bytes32 value)
{
// Leverage scratch space to perform an efficient hash.
assembly {
// Place the EIP-712 prefix at the start of scratch space.
mstore(0, EIP_712_PREFIX)
// Place the domain separator in the next region of scratch space.
mstore(EIP712_DomainSeparator_offset, domainSeparator)
// Place the order hash in scratch space, spilling into the first
// two bytes of the free memory pointer — this should never be set
// as memory cannot be expanded to that size, and will be zeroed out
// after the hash is performed.
mstore(EIP712_OrderHash_offset, orderHash)
// Hash the relevant region (65 bytes).
value := keccak256(0, EIP712_DigestPayload_size)
// Clear out the dirtied bits in the memory pointer.
mstore(EIP712_OrderHash_offset, 0)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import {
ConsiderationEventsAndErrors
} from "../interfaces/ConsiderationEventsAndErrors.sol";
import { ReentrancyGuard } from "./ReentrancyGuard.sol";
/**
* @title CounterManager
* @author 0age
* @notice CounterManager contains a storage mapping and related functionality
* for retrieving and incrementing a per-offerer counter.
*/
contract CounterManager is ConsiderationEventsAndErrors, ReentrancyGuard {
// Only orders signed using an offerer's current counter are fulfillable.
mapping(address => uint256) private _counters;
/**
* @dev Internal function to cancel all orders from a given offerer with a
* given zone in bulk by incrementing a counter. Note that only the
* offerer may increment the counter.
*
* @return newCounter The new counter.
*/
function _incrementCounter() internal returns (uint256 newCounter) {
// Ensure that the reentrancy guard is not currently set.
_assertNonReentrant();
// Skip overflow check as counter cannot be incremented that far.
unchecked {
// Increment current counter for the supplied offerer.
newCounter = ++_counters[msg.sender];
}
// Emit an event containing the new counter.
emit CounterIncremented(newCounter, msg.sender);
}
/**
* @dev Internal view function to retrieve the current counter for a given
* offerer.
*
* @param offerer The offerer in question.
*
* @return currentCounter The current counter.
*/
function _getCounter(address offerer)
internal
view
returns (uint256 currentCounter)
{
// Return the counter for the supplied offerer.
currentCounter = _counters[offerer];
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import {
ConduitControllerInterface
} from "../interfaces/ConduitControllerInterface.sol";
import {
ConsiderationEventsAndErrors
} from "../interfaces/ConsiderationEventsAndErrors.sol";
import "./ConsiderationConstants.sol";
/**
* @title ConsiderationBase
* @author 0age
* @notice ConsiderationBase contains immutable constants and constructor logic.
*/
contract ConsiderationBase is ConsiderationEventsAndErrors {
// Precompute hashes, original chainId, and domain separator on deployment.
bytes32 internal immutable _NAME_HASH;
bytes32 internal immutable _VERSION_HASH;
bytes32 internal immutable _EIP_712_DOMAIN_TYPEHASH;
bytes32 internal immutable _OFFER_ITEM_TYPEHASH;
bytes32 internal immutable _CONSIDERATION_ITEM_TYPEHASH;
bytes32 internal immutable _ORDER_TYPEHASH;
uint256 internal immutable _CHAIN_ID;
bytes32 internal immutable _DOMAIN_SEPARATOR;
// Allow for interaction with the conduit controller.
ConduitControllerInterface internal immutable _CONDUIT_CONTROLLER;
// Cache the conduit creation code hash used by the conduit controller.
bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH;
/**
* @dev Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController) {
// Derive name and version hashes alongside required EIP-712 typehashes.
(
_NAME_HASH,
_VERSION_HASH,
_EIP_712_DOMAIN_TYPEHASH,
_OFFER_ITEM_TYPEHASH,
_CONSIDERATION_ITEM_TYPEHASH,
_ORDER_TYPEHASH
) = _deriveTypehashes();
// Store the current chainId and derive the current domain separator.
_CHAIN_ID = block.chainid;
_DOMAIN_SEPARATOR = _deriveDomainSeparator();
// Set the supplied conduit controller.
_CONDUIT_CONTROLLER = ConduitControllerInterface(conduitController);
// Retrieve the conduit creation code hash from the supplied controller.
(_CONDUIT_CREATION_CODE_HASH, ) = (
_CONDUIT_CONTROLLER.getConduitCodeHashes()
);
}
/**
* @dev Internal view function to derive the EIP-712 domain separator.
*
* @return The derived domain separator.
*/
function _deriveDomainSeparator() internal view returns (bytes32) {
// prettier-ignore
return keccak256(
abi.encode(
_EIP_712_DOMAIN_TYPEHASH,
_NAME_HASH,
_VERSION_HASH,
block.chainid,
address(this)
)
);
}
/**
* @dev Internal pure function to retrieve the default name of this
* contract and return.
*
* @return The name of this contract.
*/
function _name() internal pure virtual returns (string memory) {
// Return the name of the contract.
assembly {
// First element is the offset for the returned string. Offset the
// value in memory by one word so that the free memory pointer will
// be overwritten by the next write.
mstore(OneWord, OneWord)
// Name is right padded, so it touches the length which is left
// padded. This enables writing both values at once. The free memory
// pointer will be overwritten in the process.
mstore(NameLengthPtr, NameWithLength)
// Standard ABI encoding pads returned data to the nearest word. Use
// the already empty zero slot memory region for this purpose and
// return the final name string, offset by the original single word.
return(OneWord, ThreeWords)
}
}
/**
* @dev Internal pure function to retrieve the default name of this contract
* as a string that can be used internally.
*
* @return The name of this contract.
*/
function _nameString() internal pure virtual returns (string memory) {
// Return the name of the contract.
return "Consideration";
}
/**
* @dev Internal pure function to derive required EIP-712 typehashes and
* other hashes during contract creation.
*
* @return nameHash The hash of the name of the contract.
* @return versionHash The hash of the version string of the
* contract.
* @return eip712DomainTypehash The primary EIP-712 domain typehash.
* @return offerItemTypehash The EIP-712 typehash for OfferItem
* types.
* @return considerationItemTypehash The EIP-712 typehash for
* ConsiderationItem types.
* @return orderTypehash The EIP-712 typehash for Order types.
*/
function _deriveTypehashes()
internal
pure
returns (
bytes32 nameHash,
bytes32 versionHash,
bytes32 eip712DomainTypehash,
bytes32 offerItemTypehash,
bytes32 considerationItemTypehash,
bytes32 orderTypehash
)
{
// Derive hash of the name of the contract.
nameHash = keccak256(bytes(_nameString()));
// Derive hash of the version string of the contract.
versionHash = keccak256(bytes("1.1"));
// Construct the OfferItem type string.
// prettier-ignore
bytes memory offerItemTypeString = abi.encodePacked(
"OfferItem(",
"uint8 itemType,",
"address token,",
"uint256 identifierOrCriteria,",
"uint256 startAmount,",
"uint256 endAmount",
")"
);
// Construct the ConsiderationItem type string.
// prettier-ignore
bytes memory considerationItemTypeString = abi.encodePacked(
"ConsiderationItem(",
"uint8 itemType,",
"address token,",
"uint256 identifierOrCriteria,",
"uint256 startAmount,",
"uint256 endAmount,",
"address recipient",
")"
);
// Construct the OrderComponents type string, not including the above.
// prettier-ignore
bytes memory orderComponentsPartialTypeString = abi.encodePacked(
"OrderComponents(",
"address offerer,",
"address zone,",
"OfferItem[] offer,",
"ConsiderationItem[] consideration,",
"uint8 orderType,",
"uint256 startTime,",
"uint256 endTime,",
"bytes32 zoneHash,",
"uint256 salt,",
"bytes32 conduitKey,",
"uint256 counter",
")"
);
// Construct the primary EIP-712 domain type string.
// prettier-ignore
eip712DomainTypehash = keccak256(
abi.encodePacked(
"EIP712Domain(",
"string name,",
"string version,",
"uint256 chainId,",
"address verifyingContract",
")"
)
);
// Derive the OfferItem type hash using the corresponding type string.
offerItemTypehash = keccak256(offerItemTypeString);
// Derive ConsiderationItem type hash using corresponding type string.
considerationItemTypehash = keccak256(considerationItemTypeString);
// Derive OrderItem type hash via combination of relevant type strings.
orderTypehash = keccak256(
abi.encodePacked(
orderComponentsPartialTypeString,
considerationItemTypeString,
offerItemTypeString
)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { SpentItem, ReceivedItem } from "../lib/ConsiderationStructs.sol";
/**
* @title ConsiderationEventsAndErrors
* @author 0age
* @notice ConsiderationEventsAndErrors contains all events and errors.
*/
interface ConsiderationEventsAndErrors {
/**
* @dev Emit an event whenever an order is successfully fulfilled.
*
* @param orderHash The hash of the fulfilled order.
* @param offerer The offerer of the fulfilled order.
* @param zone The zone of the fulfilled order.
* @param recipient The recipient of each spent item on the fulfilled
* order, or the null address if there is no specific
* fulfiller (i.e. the order is part of a group of
* orders). Defaults to the caller unless explicitly
* specified otherwise by the fulfiller.
* @param offer The offer items spent as part of the order.
* @param consideration The consideration items received as part of the
* order along with the recipients of each item.
*/
event OrderFulfilled(
bytes32 orderHash,
address indexed offerer,
address indexed zone,
address recipient,
SpentItem[] offer,
ReceivedItem[] consideration
);
/**
* @dev Emit an event whenever an order is successfully cancelled.
*
* @param orderHash The hash of the cancelled order.
* @param offerer The offerer of the cancelled order.
* @param zone The zone of the cancelled order.
*/
event OrderCancelled(
bytes32 orderHash,
address indexed offerer,
address indexed zone
);
/**
* @dev Emit an event whenever an order is explicitly validated. Note that
* this event will not be emitted on partial fills even though they do
* validate the order as part of partial fulfillment.
*
* @param orderHash The hash of the validated order.
* @param offerer The offerer of the validated order.
* @param zone The zone of the validated order.
*/
event OrderValidated(
bytes32 orderHash,
address indexed offerer,
address indexed zone
);
/**
* @dev Emit an event whenever a counter for a given offerer is incremented.
*
* @param newCounter The new counter for the offerer.
* @param offerer The offerer in question.
*/
event CounterIncremented(uint256 newCounter, address indexed offerer);
/**
* @dev Revert with an error when attempting to fill an order that has
* already been fully filled.
*
* @param orderHash The order hash on which a fill was attempted.
*/
error OrderAlreadyFilled(bytes32 orderHash);
/**
* @dev Revert with an error when attempting to fill an order outside the
* specified start time and end time.
*/
error InvalidTime();
/**
* @dev Revert with an error when attempting to fill an order referencing an
* invalid conduit (i.e. one that has not been deployed).
*/
error InvalidConduit(bytes32 conduitKey, address conduit);
/**
* @dev Revert with an error when an order is supplied for fulfillment with
* a consideration array that is shorter than the original array.
*/
error MissingOriginalConsiderationItems();
/**
* @dev Revert with an error when a call to a conduit fails with revert data
* that is too expensive to return.
*/
error InvalidCallToConduit(address conduit);
/**
* @dev Revert with an error if a consideration amount has not been fully
* zeroed out after applying all fulfillments.
*
* @param orderIndex The index of the order with the consideration
* item with a shortfall.
* @param considerationIndex The index of the consideration item on the
* order.
* @param shortfallAmount The unfulfilled consideration amount.
*/
error ConsiderationNotMet(
uint256 orderIndex,
uint256 considerationIndex,
uint256 shortfallAmount
);
/**
* @dev Revert with an error when insufficient ether is supplied as part of
* msg.value when fulfilling orders.
*/
error InsufficientEtherSupplied();
/**
* @dev Revert with an error when an ether transfer reverts.
*/
error EtherTransferGenericFailure(address account, uint256 amount);
/**
* @dev Revert with an error when a partial fill is attempted on an order
* that does not specify partial fill support in its order type.
*/
error PartialFillsNotEnabledForOrder();
/**
* @dev Revert with an error when attempting to fill an order that has been
* cancelled.
*
* @param orderHash The hash of the cancelled order.
*/
error OrderIsCancelled(bytes32 orderHash);
/**
* @dev Revert with an error when attempting to fill a basic order that has
* been partially filled.
*
* @param orderHash The hash of the partially used order.
*/
error OrderPartiallyFilled(bytes32 orderHash);
/**
* @dev Revert with an error when attempting to cancel an order as a caller
* other than the indicated offerer or zone.
*/
error InvalidCanceller();
/**
* @dev Revert with an error when supplying a fraction with a value of zero
* for the numerator or denominator, or one where the numerator exceeds
* the denominator.
*/
error BadFraction();
/**
* @dev Revert with an error when a caller attempts to supply callvalue to a
* non-payable basic order route or does not supply any callvalue to a
* payable basic order route.
*/
error InvalidMsgValue(uint256 value);
/**
* @dev Revert with an error when attempting to fill a basic order using
* calldata not produced by default ABI encoding.
*/
error InvalidBasicOrderParameterEncoding();
/**
* @dev Revert with an error when attempting to fulfill any number of
* available orders when none are fulfillable.
*/
error NoSpecifiedOrdersAvailable();
/**
* @dev Revert with an error when attempting to fulfill an order with an
* offer for ETH outside of matching orders.
*/
error InvalidNativeOfferItem();
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { ReentrancyErrors } from "../interfaces/ReentrancyErrors.sol";
import "./ConsiderationConstants.sol";
/**
* @title ReentrancyGuard
* @author 0age
* @notice ReentrancyGuard contains a storage variable and related functionality
* for protecting against reentrancy.
*/
contract ReentrancyGuard is ReentrancyErrors {
// Prevent reentrant calls on protected functions.
uint256 private _reentrancyGuard;
/**
* @dev Initialize the reentrancy guard during deployment.
*/
constructor() {
// Initialize the reentrancy guard in a cleared state.
_reentrancyGuard = _NOT_ENTERED;
}
/**
* @dev Internal function to ensure that the sentinel value for the
* reentrancy guard is not currently set and, if not, to set the
* sentinel value for the reentrancy guard.
*/
function _setReentrancyGuard() internal {
// Ensure that the reentrancy guard is not already set.
_assertNonReentrant();
// Set the reentrancy guard.
_reentrancyGuard = _ENTERED;
}
/**
* @dev Internal function to unset the reentrancy guard sentinel value.
*/
function _clearReentrancyGuard() internal {
// Clear the reentrancy guard.
_reentrancyGuard = _NOT_ENTERED;
}
/**
* @dev Internal view function to ensure that the sentinel value for the
reentrancy guard is not currently set.
*/
function _assertNonReentrant() internal view {
// Ensure that the reentrancy guard is not currently set.
if (_reentrancyGuard != _NOT_ENTERED) {
revert NoReentrantCalls();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/**
* @title ReentrancyErrors
* @author 0age
* @notice ReentrancyErrors contains errors related to reentrancy.
*/
interface ReentrancyErrors {
/**
* @dev Revert with an error when a caller attempts to reenter a protected
* function.
*/
error NoReentrantCalls();
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
interface EIP1271Interface {
function isValidSignature(bytes32 digest, bytes calldata signature)
external
view
returns (bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/**
* @title SignatureVerificationErrors
* @author 0age
* @notice SignatureVerificationErrors contains all errors related to signature
* verification.
*/
interface SignatureVerificationErrors {
/**
* @dev Revert with an error when a signature that does not contain a v
* value of 27 or 28 has been supplied.
*
* @param v The invalid v value.
*/
error BadSignatureV(uint8 v);
/**
* @dev Revert with an error when the signer recovered by the supplied
* signature does not match the offerer or an allowed EIP-1271 signer
* as specified by the offerer in the event they are a contract.
*/
error InvalidSigner();
/**
* @dev Revert with an error when a signer cannot be recovered from the
* supplied signature.
*/
error InvalidSignature();
/**
* @dev Revert with an error when an EIP-1271 call to an account fails.
*/
error BadContractSignature();
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import "./ConsiderationConstants.sol";
/**
* @title LowLevelHelpers
* @author 0age
* @notice LowLevelHelpers contains logic for performing various low-level
* operations.
*/
contract LowLevelHelpers {
/**
* @dev Internal view function to staticcall an arbitrary target with given
* calldata. Note that no data is written to memory and no contract
* size check is performed.
*
* @param target The account to staticcall.
* @param callData The calldata to supply when staticcalling the target.
*
* @return success The status of the staticcall to the target.
*/
function _staticcall(address target, bytes memory callData)
internal
view
returns (bool success)
{
assembly {
// Perform the staticcall.
success := staticcall(
gas(),
target,
add(callData, OneWord),
mload(callData),
0,
0
)
}
}
/**
* @dev Internal view function to revert and pass along the revert reason if
* data was returned by the last call and that the size of that data
* does not exceed the currently allocated memory size.
*/
function _revertWithReasonIfOneIsReturned() internal view {
assembly {
// If it returned a message, bubble it up as long as sufficient gas
// remains to do so:
if returndatasize() {
// Ensure that sufficient gas is available to copy returndata
// while expanding memory where necessary. Start by computing
// the word size of returndata and allocated memory.
let returnDataWords := div(
add(returndatasize(), AlmostOneWord),
OneWord
)
// Note: use the free memory pointer in place of msize() to work
// around a Yul warning that prevents accessing msize directly
// when the IR pipeline is activated.
let msizeWords := div(mload(FreeMemoryPointerSlot), OneWord)
// Next, compute the cost of the returndatacopy.
let cost := mul(CostPerWord, returnDataWords)
// Then, compute cost of new memory allocation.
if gt(returnDataWords, msizeWords) {
cost := add(
cost,
add(
mul(sub(returnDataWords, msizeWords), CostPerWord),
div(
sub(
mul(returnDataWords, returnDataWords),
mul(msizeWords, msizeWords)
),
MemoryExpansionCoefficient
)
)
)
}
// Finally, add a small constant and compare to gas remaining;
// bubble up the revert data if enough gas is still available.
if lt(add(cost, ExtraGasBuffer), gas()) {
// Copy returndata to memory; overwrite existing memory.
returndatacopy(0, 0, returndatasize())
// Revert, specifying memory region with copied returndata.
revert(0, returndatasize())
}
}
}
}
/**
* @dev Internal pure function to determine if the first word of returndata
* matches an expected magic value.
*
* @param expected The expected magic value.
*
* @return A boolean indicating whether the expected value matches the one
* located in the first word of returndata.
*/
function _doesNotMatchMagic(bytes4 expected) internal pure returns (bool) {
// Declare a variable for the value held by the return data buffer.
bytes4 result;
// Utilize assembly in order to read directly from returndata buffer.
assembly {
// Only put result on stack if return data is exactly one word.
if eq(returndatasize(), OneWord) {
// Copy the word directly from return data into scratch space.
returndatacopy(0, 0, OneWord)
// Take value from scratch space and place it on the stack.
result := mload(0)
}
}
// Return a boolean indicating whether expected and located value match.
return result != expected;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { ItemType, Side } from "./ConsiderationEnums.sol";
import {
OfferItem,
ConsiderationItem,
ReceivedItem,
OrderParameters,
AdvancedOrder,
Execution,
FulfillmentComponent
} from "./ConsiderationStructs.sol";
import "./ConsiderationConstants.sol";
import {
FulfillmentApplicationErrors
} from "../interfaces/FulfillmentApplicationErrors.sol";
/**
* @title FulfillmentApplier
* @author 0age
* @notice FulfillmentApplier contains logic related to applying fulfillments,
* both as part of order matching (where offer items are matched to
* consideration items) as well as fulfilling available orders (where
* order items and consideration items are independently aggregated).
*/
contract FulfillmentApplier is FulfillmentApplicationErrors {
/**
* @dev Internal pure function to match offer items to consideration items
* on a group of orders via a supplied fulfillment.
*
* @param advancedOrders The orders to match.
* @param offerComponents An array designating offer components to
* match to consideration components.
* @param considerationComponents An array designating consideration
* components to match to offer components.
* Note that each consideration amount must
* be zero in order for the match operation
* to be valid.
*
* @return execution The transfer performed as a result of the fulfillment.
*/
function _applyFulfillment(
AdvancedOrder[] memory advancedOrders,
FulfillmentComponent[] calldata offerComponents,
FulfillmentComponent[] calldata considerationComponents
) internal pure returns (Execution memory execution) {
// Ensure 1+ of both offer and consideration components are supplied.
if (
offerComponents.length == 0 || considerationComponents.length == 0
) {
revert OfferAndConsiderationRequiredOnFulfillment();
}
// Declare a new Execution struct.
Execution memory considerationExecution;
// Validate & aggregate consideration items to new Execution object.
_aggregateValidFulfillmentConsiderationItems(
advancedOrders,
considerationComponents,
considerationExecution
);
// Retrieve the consideration item from the execution struct.
ReceivedItem memory considerationItem = considerationExecution.item;
// Recipient does not need to be specified because it will always be set
// to that of the consideration.
// Validate & aggregate offer items to Execution object.
_aggregateValidFulfillmentOfferItems(
advancedOrders,
offerComponents,
execution
);
// Ensure offer and consideration share types, tokens and identifiers.
if (
execution.item.itemType != considerationItem.itemType ||
execution.item.token != considerationItem.token ||
execution.item.identifier != considerationItem.identifier
) {
revert MismatchedFulfillmentOfferAndConsiderationComponents();
}
// If total consideration amount exceeds the offer amount...
if (considerationItem.amount > execution.item.amount) {
// Retrieve the first consideration component from the fulfillment.
FulfillmentComponent memory targetComponent = (
considerationComponents[0]
);
// Skip underflow check as the conditional being true implies that
// considerationItem.amount > execution.item.amount.
unchecked {
// Add excess consideration item amount to original order array.
advancedOrders[targetComponent.orderIndex]
.parameters
.consideration[targetComponent.itemIndex]
.startAmount = (considerationItem.amount -
execution.item.amount);
}
// Reduce total consideration amount to equal the offer amount.
considerationItem.amount = execution.item.amount;
} else {
// Retrieve the first offer component from the fulfillment.
FulfillmentComponent memory targetComponent = offerComponents[0];
// Skip underflow check as the conditional being false implies that
// execution.item.amount >= considerationItem.amount.
unchecked {
// Add excess offer item amount to the original array of orders.
advancedOrders[targetComponent.orderIndex]
.parameters
.offer[targetComponent.itemIndex]
.startAmount = (execution.item.amount -
considerationItem.amount);
}
// Reduce total offer amount to equal the consideration amount.
execution.item.amount = considerationItem.amount;
}
// Reuse consideration recipient.
execution.item.recipient = considerationItem.recipient;
// Return the final execution that will be triggered for relevant items.
return execution; // Execution(considerationItem, offerer, conduitKey);
}
/**
* @dev Internal view function to aggregate offer or consideration items
* from a group of orders into a single execution via a supplied array
* of fulfillment components. Items that are not available to aggregate
* will not be included in the aggregated execution.
*
* @param advancedOrders The orders to aggregate.
* @param side The side (i.e. offer or consideration).
* @param fulfillmentComponents An array designating item components to
* aggregate if part of an available order.
* @param fulfillerConduitKey A bytes32 value indicating what conduit, if
* any, to source the fulfiller's token
* approvals from. The zero hash signifies that
* no conduit should be used, with approvals
* set directly on this contract.
* @param recipient The intended recipient for all received
* items.
*
* @return execution The transfer performed as a result of the fulfillment.
*/
function _aggregateAvailable(
AdvancedOrder[] memory advancedOrders,
Side side,
FulfillmentComponent[] memory fulfillmentComponents,
bytes32 fulfillerConduitKey,
address recipient
) internal view returns (Execution memory execution) {
// Skip overflow / underflow checks; conditions checked or unreachable.
unchecked {
// Retrieve fulfillment components array length and place on stack.
// Ensure at least one fulfillment component has been supplied.
if (fulfillmentComponents.length == 0) {
revert MissingFulfillmentComponentOnAggregation(side);
}
// If the fulfillment components are offer components...
if (side == Side.OFFER) {
// Set the supplied recipient on the execution item.
execution.item.recipient = payable(recipient);
// Return execution for aggregated items provided by offerer.
_aggregateValidFulfillmentOfferItems(
advancedOrders,
fulfillmentComponents,
execution
);
} else {
// Otherwise, fulfillment components are consideration
// components. Return execution for aggregated items provided by
// the fulfiller.
_aggregateValidFulfillmentConsiderationItems(
advancedOrders,
fulfillmentComponents,
execution
);
// Set the caller as the offerer on the execution.
execution.offerer = msg.sender;
// Set fulfiller conduit key as the conduit key on execution.
execution.conduitKey = fulfillerConduitKey;
}
// Set the offerer and recipient to null address if execution
// amount is zero. This will cause the execution item to be skipped.
if (execution.item.amount == 0) {
execution.offerer = address(0);
execution.item.recipient = payable(0);
}
}
}
/**
* @dev Internal pure function to aggregate a group of offer items using
* supplied directives on which component items are candidates for
* aggregation, skipping items on orders that are not available.
*
* @param advancedOrders The orders to aggregate offer items from.
* @param offerComponents An array of FulfillmentComponent structs
* indicating the order index and item index of each
* candidate offer item for aggregation.
* @param execution The execution to apply the aggregation to.
*/
function _aggregateValidFulfillmentOfferItems(
AdvancedOrder[] memory advancedOrders,
FulfillmentComponent[] memory offerComponents,
Execution memory execution
) internal pure {
assembly {
// Declare function for reverts on invalid fulfillment data.
function throwInvalidFulfillmentComponentData() {
// Store the InvalidFulfillmentComponentData error signature.
mstore(0, InvalidFulfillmentComponentData_error_signature)
// Return, supplying InvalidFulfillmentComponentData signature.
revert(0, InvalidFulfillmentComponentData_error_len)
}
// Declare function for reverts due to arithmetic overflows.
function throwOverflow() {
// Store the Panic error signature.
mstore(0, Panic_error_signature)
// Store the arithmetic (0x11) panic code as initial argument.
mstore(Panic_error_offset, Panic_arithmetic)
// Return, supplying Panic signature and arithmetic code.
revert(0, Panic_error_length)
}
// Get position in offerComponents head.
let fulfillmentHeadPtr := add(offerComponents, OneWord)
// Retrieve the order index using the fulfillment pointer.
let orderIndex := mload(mload(fulfillmentHeadPtr))
// Ensure that the order index is not out of range.
if iszero(lt(orderIndex, mload(advancedOrders))) {
throwInvalidFulfillmentComponentData()
}
// Read advancedOrders[orderIndex] pointer from its array head.
let orderPtr := mload(
// Calculate head position of advancedOrders[orderIndex].
add(add(advancedOrders, OneWord), mul(orderIndex, OneWord))
)
// Read the pointer to OrderParameters from the AdvancedOrder.
let paramsPtr := mload(orderPtr)
// Load the offer array pointer.
let offerArrPtr := mload(
add(paramsPtr, OrderParameters_offer_head_offset)
)
// Retrieve item index using an offset of the fulfillment pointer.
let itemIndex := mload(
add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset)
)
// Only continue if the fulfillment is not invalid.
if iszero(lt(itemIndex, mload(offerArrPtr))) {
throwInvalidFulfillmentComponentData()
}
// Retrieve consideration item pointer using the item index.
let offerItemPtr := mload(
add(
// Get pointer to beginning of receivedItem.
add(offerArrPtr, OneWord),
// Calculate offset to pointer for desired order.
mul(itemIndex, OneWord)
)
)
// Declare a variable for the final aggregated item amount.
let amount := 0
// Create variable to track errors encountered with amount.
let errorBuffer := 0
// Only add offer amount to execution amount on a nonzero numerator.
if mload(add(orderPtr, AdvancedOrder_numerator_offset)) {
// Retrieve amount pointer using consideration item pointer.
let amountPtr := add(offerItemPtr, Common_amount_offset)
// Set the amount.
amount := mload(amountPtr)
// Zero out amount on item to indicate it is credited.
mstore(amountPtr, 0)
// Buffer indicating whether issues were found.
errorBuffer := iszero(amount)
}
// Retrieve the received item pointer.
let receivedItemPtr := mload(execution)
// Set the item type on the received item.
mstore(receivedItemPtr, mload(offerItemPtr))
// Set the token on the received item.
mstore(
add(receivedItemPtr, Common_token_offset),
mload(add(offerItemPtr, Common_token_offset))
)
// Set the identifier on the received item.
mstore(
add(receivedItemPtr, Common_identifier_offset),
mload(add(offerItemPtr, Common_identifier_offset))
)
// Set the offerer on returned execution using order pointer.
mstore(add(execution, Execution_offerer_offset), mload(paramsPtr))
// Set conduitKey on returned execution via offset of order pointer.
mstore(
add(execution, Execution_conduit_offset),
mload(add(paramsPtr, OrderParameters_conduit_offset))
)
// Calculate the hash of (itemType, token, identifier).
let dataHash := keccak256(
receivedItemPtr,
ReceivedItem_CommonParams_size
)
// Get position one word past last element in head of array.
let endPtr := add(
offerComponents,
mul(mload(offerComponents), OneWord)
)
// Iterate over remaining offer components.
// prettier-ignore
for {} lt(fulfillmentHeadPtr, endPtr) {} {
// Increment the pointer to the fulfillment head by one word.
fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord)
// Get the order index using the fulfillment pointer.
orderIndex := mload(mload(fulfillmentHeadPtr))
// Ensure the order index is in range.
if iszero(lt(orderIndex, mload(advancedOrders))) {
throwInvalidFulfillmentComponentData()
}
// Get pointer to AdvancedOrder element.
orderPtr := mload(
add(
add(advancedOrders, OneWord),
mul(orderIndex, OneWord)
)
)
// Only continue if numerator is not zero.
if iszero(mload(
add(orderPtr, AdvancedOrder_numerator_offset)
)) {
continue
}
// Read the pointer to OrderParameters from the AdvancedOrder.
paramsPtr := mload(orderPtr)
// Load offer array pointer.
offerArrPtr := mload(
add(
paramsPtr,
OrderParameters_offer_head_offset
)
)
// Get the item index using the fulfillment pointer.
itemIndex := mload(add(mload(fulfillmentHeadPtr), OneWord))
// Throw if itemIndex is out of the range of array.
if iszero(
lt(itemIndex, mload(offerArrPtr))
) {
throwInvalidFulfillmentComponentData()
}
// Retrieve offer item pointer using index.
offerItemPtr := mload(
add(
// Get pointer to beginning of receivedItem.
add(offerArrPtr, OneWord),
// Use offset to pointer for desired order.
mul(itemIndex, OneWord)
)
)
// Retrieve amount pointer using offer item pointer.
let amountPtr := add(
offerItemPtr,
Common_amount_offset
)
// Add offer amount to execution amount.
let newAmount := add(amount, mload(amountPtr))
// Update error buffer: 1 = zero amount, 2 = overflow, 3 = both.
errorBuffer := or(
errorBuffer,
or(
shl(1, lt(newAmount, amount)),
iszero(mload(amountPtr))
)
)
// Update the amount to the new, summed amount.
amount := newAmount
// Zero out amount on original item to indicate it is credited.
mstore(amountPtr, 0)
// Ensure the indicated item matches original item.
if iszero(
and(
and(
// The offerer must match on both items.
eq(
mload(paramsPtr),
mload(
add(execution, Execution_offerer_offset)
)
),
// The conduit key must match on both items.
eq(
mload(
add(
paramsPtr,
OrderParameters_conduit_offset
)
),
mload(
add(
execution,
Execution_conduit_offset
)
)
)
),
// The itemType, token, and identifier must match.
eq(
dataHash,
keccak256(
offerItemPtr,
ReceivedItem_CommonParams_size
)
)
)
) {
// Throw if any of the requirements are not met.
throwInvalidFulfillmentComponentData()
}
}
// Write final amount to execution.
mstore(add(mload(execution), Common_amount_offset), amount)
// Determine whether the error buffer contains a nonzero error code.
if errorBuffer {
// If errorBuffer is 1, an item had an amount of zero.
if eq(errorBuffer, 1) {
// Store the MissingItemAmount error signature.
mstore(0, MissingItemAmount_error_signature)
// Return, supplying MissingItemAmount signature.
revert(0, MissingItemAmount_error_len)
}
// If errorBuffer is not 1 or 0, the sum overflowed.
// Panic!
throwOverflow()
}
}
}
/**
* @dev Internal pure function to aggregate a group of consideration items
* using supplied directives on which component items are candidates
* for aggregation, skipping items on orders that are not available.
*
* @param advancedOrders The orders to aggregate consideration
* items from.
* @param considerationComponents An array of FulfillmentComponent structs
* indicating the order index and item index
* of each candidate consideration item for
* aggregation.
* @param execution The execution to apply the aggregation to.
*/
function _aggregateValidFulfillmentConsiderationItems(
AdvancedOrder[] memory advancedOrders,
FulfillmentComponent[] memory considerationComponents,
Execution memory execution
) internal pure {
// Utilize assembly in order to efficiently aggregate the items.
assembly {
// Declare function for reverts on invalid fulfillment data.
function throwInvalidFulfillmentComponentData() {
// Store the InvalidFulfillmentComponentData error signature.
mstore(0, InvalidFulfillmentComponentData_error_signature)
// Return, supplying InvalidFulfillmentComponentData signature.
revert(0, InvalidFulfillmentComponentData_error_len)
}
// Declare function for reverts due to arithmetic overflows.
function throwOverflow() {
// Store the Panic error signature.
mstore(0, Panic_error_signature)
// Store the arithmetic (0x11) panic code as initial argument.
mstore(Panic_error_offset, Panic_arithmetic)
// Return, supplying Panic signature and arithmetic code.
revert(0, Panic_error_length)
}
// Get position in considerationComponents head.
let fulfillmentHeadPtr := add(considerationComponents, OneWord)
// Retrieve the order index using the fulfillment pointer.
let orderIndex := mload(mload(fulfillmentHeadPtr))
// Ensure that the order index is not out of range.
if iszero(lt(orderIndex, mload(advancedOrders))) {
throwInvalidFulfillmentComponentData()
}
// Read advancedOrders[orderIndex] pointer from its array head.
let orderPtr := mload(
// Calculate head position of advancedOrders[orderIndex].
add(add(advancedOrders, OneWord), mul(orderIndex, OneWord))
)
// Load consideration array pointer.
let considerationArrPtr := mload(
add(
// Read pointer to OrderParameters from the AdvancedOrder.
mload(orderPtr),
OrderParameters_consideration_head_offset
)
)
// Retrieve item index using an offset of the fulfillment pointer.
let itemIndex := mload(
add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset)
)
// Ensure that the order index is not out of range.
if iszero(lt(itemIndex, mload(considerationArrPtr))) {
throwInvalidFulfillmentComponentData()
}
// Retrieve consideration item pointer using the item index.
let considerationItemPtr := mload(
add(
// Get pointer to beginning of receivedItem.
add(considerationArrPtr, OneWord),
// Calculate offset to pointer for desired order.
mul(itemIndex, OneWord)
)
)
// Declare a variable for the final aggregated item amount.
let amount := 0
// Create variable to track errors encountered with amount.
let errorBuffer := 0
// Only add consideration amount to execution amount if numerator is
// greater than zero.
if mload(add(orderPtr, AdvancedOrder_numerator_offset)) {
// Retrieve amount pointer using consideration item pointer.
let amountPtr := add(considerationItemPtr, Common_amount_offset)
// Set the amount.
amount := mload(amountPtr)
// Set error bit if amount is zero.
errorBuffer := iszero(amount)
// Zero out amount on item to indicate it is credited.
mstore(amountPtr, 0)
}
// Retrieve ReceivedItem pointer from Execution.
let receivedItem := mload(execution)
// Set the item type on the received item.
mstore(receivedItem, mload(considerationItemPtr))
// Set the token on the received item.
mstore(
add(receivedItem, Common_token_offset),
mload(add(considerationItemPtr, Common_token_offset))
)
// Set the identifier on the received item.
mstore(
add(receivedItem, Common_identifier_offset),
mload(add(considerationItemPtr, Common_identifier_offset))
)
// Set the recipient on the received item.
mstore(
add(receivedItem, ReceivedItem_recipient_offset),
mload(
add(
considerationItemPtr,
ConsiderationItem_recipient_offset
)
)
)
// Calculate the hash of (itemType, token, identifier).
let dataHash := keccak256(
receivedItem,
ReceivedItem_CommonParams_size
)
// Get position one word past last element in head of array.
let endPtr := add(
considerationComponents,
mul(mload(considerationComponents), OneWord)
)
// Iterate over remaining offer components.
// prettier-ignore
for {} lt(fulfillmentHeadPtr, endPtr) {} {
// Increment position in considerationComponents head.
fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord)
// Get the order index using the fulfillment pointer.
orderIndex := mload(mload(fulfillmentHeadPtr))
// Ensure the order index is in range.
if iszero(lt(orderIndex, mload(advancedOrders))) {
throwInvalidFulfillmentComponentData()
}
// Get pointer to AdvancedOrder element.
orderPtr := mload(
add(
add(advancedOrders, OneWord),
mul(orderIndex, OneWord)
)
)
// Only continue if numerator is not zero.
if iszero(
mload(add(orderPtr, AdvancedOrder_numerator_offset))
) {
continue
}
// Load consideration array pointer from OrderParameters.
considerationArrPtr := mload(
add(
// Get pointer to OrderParameters from AdvancedOrder.
mload(orderPtr),
OrderParameters_consideration_head_offset
)
)
// Get the item index using the fulfillment pointer.
itemIndex := mload(add(mload(fulfillmentHeadPtr), OneWord))
// Check if itemIndex is within the range of array.
if iszero(lt(itemIndex, mload(considerationArrPtr))) {
throwInvalidFulfillmentComponentData()
}
// Retrieve consideration item pointer using index.
considerationItemPtr := mload(
add(
// Get pointer to beginning of receivedItem.
add(considerationArrPtr, OneWord),
// Use offset to pointer for desired order.
mul(itemIndex, OneWord)
)
)
// Retrieve amount pointer using consideration item pointer.
let amountPtr := add(
considerationItemPtr,
Common_amount_offset
)
// Add offer amount to execution amount.
let newAmount := add(amount, mload(amountPtr))
// Update error buffer: 1 = zero amount, 2 = overflow, 3 = both.
errorBuffer := or(
errorBuffer,
or(
shl(1, lt(newAmount, amount)),
iszero(mload(amountPtr))
)
)
// Update the amount to the new, summed amount.
amount := newAmount
// Zero out amount on original item to indicate it is credited.
mstore(amountPtr, 0)
// Ensure the indicated item matches original item.
if iszero(
and(
// Item recipients must match.
eq(
mload(
add(
considerationItemPtr,
ConsiderItem_recipient_offset
)
),
mload(
add(
receivedItem,
ReceivedItem_recipient_offset
)
)
),
// The itemType, token, identifier must match.
eq(
dataHash,
keccak256(
considerationItemPtr,
ReceivedItem_CommonParams_size
)
)
)
) {
// Throw if any of the requirements are not met.
throwInvalidFulfillmentComponentData()
}
}
// Write final amount to execution.
mstore(add(receivedItem, Common_amount_offset), amount)
// Determine whether the error buffer contains a nonzero error code.
if errorBuffer {
// If errorBuffer is 1, an item had an amount of zero.
if eq(errorBuffer, 1) {
// Store the MissingItemAmount error signature.
mstore(0, MissingItemAmount_error_signature)
// Return, supplying MissingItemAmount signature.
revert(0, MissingItemAmount_error_len)
}
// If errorBuffer is not 1 or 0, the sum overflowed.
// Panic!
throwOverflow()
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { Side } from "../lib/ConsiderationEnums.sol";
/**
* @title FulfillmentApplicationErrors
* @author 0age
* @notice FulfillmentApplicationErrors contains errors related to fulfillment
* application and aggregation.
*/
interface FulfillmentApplicationErrors {
/**
* @dev Revert with an error when a fulfillment is provided that does not
* declare at least one component as part of a call to fulfill
* available orders.
*/
error MissingFulfillmentComponentOnAggregation(Side side);
/**
* @dev Revert with an error when a fulfillment is provided that does not
* declare at least one offer component and at least one consideration
* component.
*/
error OfferAndConsiderationRequiredOnFulfillment();
/**
* @dev Revert with an error when the initial offer item named by a
* fulfillment component does not match the type, token, identifier,
* or conduit preference of the initial consideration item.
*/
error MismatchedFulfillmentOfferAndConsiderationComponents();
/**
* @dev Revert with an error when an order or item index are out of range
* or a fulfillment component does not match the type, token,
* identifier, or conduit preference of the initial consideration item.
*/
error InvalidFulfillmentComponentData();
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { ItemType, Side } from "./ConsiderationEnums.sol";
import {
OfferItem,
ConsiderationItem,
OrderParameters,
AdvancedOrder,
CriteriaResolver
} from "./ConsiderationStructs.sol";
import "./ConsiderationConstants.sol";
import {
CriteriaResolutionErrors
} from "../interfaces/CriteriaResolutionErrors.sol";
/**
* @title CriteriaResolution
* @author 0age
* @notice CriteriaResolution contains a collection of pure functions related to
* resolving criteria-based items.
*/
contract CriteriaResolution is CriteriaResolutionErrors {
/**
* @dev Internal pure function to apply criteria resolvers containing
* specific token identifiers and associated proofs to order items.
*
* @param advancedOrders The orders to apply criteria resolvers to.
* @param criteriaResolvers An array where each element contains a
* reference to a specific order as well as that
* order's offer or consideration, a token
* identifier, and a proof that the supplied token
* identifier is contained in the order's merkle
* root. Note that a root of zero indicates that
* any transferable token identifier is valid and
* that no proof needs to be supplied.
*/
function _applyCriteriaResolvers(
AdvancedOrder[] memory advancedOrders,
CriteriaResolver[] memory criteriaResolvers
) internal pure {
// Skip overflow checks as all for loops are indexed starting at zero.
unchecked {
// Retrieve length of criteria resolvers array and place on stack.
uint256 totalCriteriaResolvers = criteriaResolvers.length;
// Retrieve length of orders array and place on stack.
uint256 totalAdvancedOrders = advancedOrders.length;
// Iterate over each criteria resolver.
for (uint256 i = 0; i < totalCriteriaResolvers; ++i) {
// Retrieve the criteria resolver.
CriteriaResolver memory criteriaResolver = (
criteriaResolvers[i]
);
// Read the order index from memory and place it on the stack.
uint256 orderIndex = criteriaResolver.orderIndex;
// Ensure that the order index is in range.
if (orderIndex >= totalAdvancedOrders) {
revert OrderCriteriaResolverOutOfRange();
}
// Skip criteria resolution for order if not fulfilled.
if (advancedOrders[orderIndex].numerator == 0) {
continue;
}
// Retrieve the parameters for the order.
OrderParameters memory orderParameters = (
advancedOrders[orderIndex].parameters
);
// Read component index from memory and place it on the stack.
uint256 componentIndex = criteriaResolver.index;
// Declare values for item's type and criteria.
ItemType itemType;
uint256 identifierOrCriteria;
// If the criteria resolver refers to an offer item...
if (criteriaResolver.side == Side.OFFER) {
// Retrieve the offer.
OfferItem[] memory offer = orderParameters.offer;
// Ensure that the component index is in range.
if (componentIndex >= offer.length) {
revert OfferCriteriaResolverOutOfRange();
}
// Retrieve relevant item using the component index.
OfferItem memory offerItem = offer[componentIndex];
// Read item type and criteria from memory & place on stack.
itemType = offerItem.itemType;
identifierOrCriteria = offerItem.identifierOrCriteria;
// Optimistically update item type to remove criteria usage.
// Use assembly to operate on ItemType enum as a number.
ItemType newItemType;
assembly {
// Item type 4 becomes 2 and item type 5 becomes 3.
newItemType := sub(3, eq(itemType, 4))
}
offerItem.itemType = newItemType;
// Optimistically update identifier w/ supplied identifier.
offerItem.identifierOrCriteria = criteriaResolver
.identifier;
} else {
// Otherwise, the resolver refers to a consideration item.
ConsiderationItem[] memory consideration = (
orderParameters.consideration
);
// Ensure that the component index is in range.
if (componentIndex >= consideration.length) {
revert ConsiderationCriteriaResolverOutOfRange();
}
// Retrieve relevant item using order and component index.
ConsiderationItem memory considerationItem = (
consideration[componentIndex]
);
// Read item type and criteria from memory & place on stack.
itemType = considerationItem.itemType;
identifierOrCriteria = (
considerationItem.identifierOrCriteria
);
// Optimistically update item type to remove criteria usage.
// Use assembly to operate on ItemType enum as a number.
ItemType newItemType;
assembly {
// Item type 4 becomes 2 and item type 5 becomes 3.
newItemType := sub(3, eq(itemType, 4))
}
considerationItem.itemType = newItemType;
// Optimistically update identifier w/ supplied identifier.
considerationItem.identifierOrCriteria = (
criteriaResolver.identifier
);
}
// Ensure the specified item type indicates criteria usage.
if (!_isItemWithCriteria(itemType)) {
revert CriteriaNotEnabledForItem();
}
// If criteria is not 0 (i.e. a collection-wide offer)...
if (identifierOrCriteria != uint256(0)) {
// Verify identifier inclusion in criteria root using proof.
_verifyProof(
criteriaResolver.identifier,
identifierOrCriteria,
criteriaResolver.criteriaProof
);
}
}
// Iterate over each advanced order.
for (uint256 i = 0; i < totalAdvancedOrders; ++i) {
// Retrieve the advanced order.
AdvancedOrder memory advancedOrder = advancedOrders[i];
// Skip criteria resolution for order if not fulfilled.
if (advancedOrder.numerator == 0) {
continue;
}
// Retrieve the parameters for the order.
OrderParameters memory orderParameters = (
advancedOrder.parameters
);
// Read consideration length from memory and place on stack.
uint256 totalItems = orderParameters.consideration.length;
// Iterate over each consideration item on the order.
for (uint256 j = 0; j < totalItems; ++j) {
// Ensure item type no longer indicates criteria usage.
if (
_isItemWithCriteria(
orderParameters.consideration[j].itemType
)
) {
revert UnresolvedConsiderationCriteria();
}
}
// Read offer length from memory and place on stack.
totalItems = orderParameters.offer.length;
// Iterate over each offer item on the order.
for (uint256 j = 0; j < totalItems; ++j) {
// Ensure item type no longer indicates criteria usage.
if (
_isItemWithCriteria(orderParameters.offer[j].itemType)
) {
revert UnresolvedOfferCriteria();
}
}
}
}
}
/**
* @dev Internal pure function to check whether a given item type represents
* a criteria-based ERC721 or ERC1155 item (e.g. an item that can be
* resolved to one of a number of different identifiers at the time of
* order fulfillment).
*
* @param itemType The item type in question.
*
* @return withCriteria A boolean indicating that the item type in question
* represents a criteria-based item.
*/
function _isItemWithCriteria(ItemType itemType)
internal
pure
returns (bool withCriteria)
{
// ERC721WithCriteria is ItemType 4. ERC1155WithCriteria is ItemType 5.
assembly {
withCriteria := gt(itemType, 3)
}
}
/**
* @dev Internal pure function to ensure that a given element is contained
* in a merkle root via a supplied proof.
*
* @param leaf The element for which to prove inclusion.
* @param root The merkle root that inclusion will be proved against.
* @param proof The merkle proof.
*/
function _verifyProof(
uint256 leaf,
uint256 root,
bytes32[] memory proof
) internal pure {
// Declare a variable that will be used to determine proof validity.
bool isValid;
// Utilize assembly to efficiently verify the proof against the root.
assembly {
// Store the leaf at the beginning of scratch space.
mstore(0, leaf)
// Derive the hash of the leaf to use as the initial proof element.
let computedHash := keccak256(0, OneWord)
// Based on: https://github.com/Rari-Capital/solmate/blob/v7/src/utils/MerkleProof.sol
// Get memory start location of the first element in proof array.
let data := add(proof, OneWord)
// Iterate over each proof element to compute the root hash.
for {
// Left shift by 5 is equivalent to multiplying by 0x20.
let end := add(data, shl(5, mload(proof)))
} lt(data, end) {
// Increment by one word at a time.
data := add(data, OneWord)
} {
// Get the proof element.
let loadedData := mload(data)
// Sort proof elements and place them in scratch space.
// Slot of `computedHash` in scratch space.
// If the condition is true: 0x20, otherwise: 0x00.
let scratch := shl(5, gt(computedHash, loadedData))
// Store elements to hash contiguously in scratch space. Scratch
// space is 64 bytes (0x00 - 0x3f) & both elements are 32 bytes.
mstore(scratch, computedHash)
mstore(xor(scratch, OneWord), loadedData)
// Derive the updated hash.
computedHash := keccak256(0, TwoWords)
}
// Compare the final hash to the supplied root.
isValid := eq(computedHash, root)
}
// Revert if computed hash does not equal supplied root.
if (!isValid) {
revert InvalidProof();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/**
* @title CriteriaResolutionErrors
* @author 0age
* @notice CriteriaResolutionErrors contains all errors related to criteria
* resolution.
*/
interface CriteriaResolutionErrors {
/**
* @dev Revert with an error when providing a criteria resolver that refers
* to an order that has not been supplied.
*/
error OrderCriteriaResolverOutOfRange();
/**
* @dev Revert with an error if an offer item still has unresolved criteria
* after applying all criteria resolvers.
*/
error UnresolvedOfferCriteria();
/**
* @dev Revert with an error if a consideration item still has unresolved
* criteria after applying all criteria resolvers.
*/
error UnresolvedConsiderationCriteria();
/**
* @dev Revert with an error when providing a criteria resolver that refers
* to an order with an offer item that has not been supplied.
*/
error OfferCriteriaResolverOutOfRange();
/**
* @dev Revert with an error when providing a criteria resolver that refers
* to an order with a consideration item that has not been supplied.
*/
error ConsiderationCriteriaResolverOutOfRange();
/**
* @dev Revert with an error when providing a criteria resolver that refers
* to an order with an item that does not expect a criteria to be
* resolved.
*/
error CriteriaNotEnabledForItem();
/**
* @dev Revert with an error when providing a criteria resolver that
* contains an invalid proof with respect to the given item and
* chosen identifier.
*/
error InvalidProof();
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { PausableZone } from "./PausableZone.sol";
import {
PausableZoneControllerInterface
} from "./interfaces/PausableZoneControllerInterface.sol";
import {
PausableZoneEventsAndErrors
} from "./interfaces/PausableZoneEventsAndErrors.sol";
import {
Order,
Fulfillment,
OrderComponents,
AdvancedOrder,
CriteriaResolver,
Execution
} from "../lib/ConsiderationStructs.sol";
import { SeaportInterface } from "../interfaces/SeaportInterface.sol";
/**
* @title PausableZoneController
* @author cupOJoseph, BCLeFevre, stuckinaboot, stephankmin
* @notice PausableZoneController enables deploying, pausing and executing
* orders on PausableZones. This deployer is designed to be owned
* by a gnosis safe, DAO, or trusted party.
*/
contract PausableZoneController is
PausableZoneControllerInterface,
PausableZoneEventsAndErrors
{
// Set the owner that can deploy, pause and execute orders on PausableZones.
address internal _owner;
// Set the address of the new potential owner of the zone.
address private _potentialOwner;
// Set the address with the ability to pause the zone.
address internal _pauser;
// Set the immutable zone creation code hash.
bytes32 public immutable zoneCreationCode;
/**
* @dev Throws if called by any account other than the owner or pauser.
*/
modifier isPauser() {
if (msg.sender != _pauser && msg.sender != _owner) {
revert InvalidPauser();
}
_;
}
/**
* @notice Set the owner of the controller and store
* the zone creation code.
*
* @param ownerAddress The deployer to be set as the owner.
*/
constructor(address ownerAddress) {
// Set the owner address as the owner.
_owner = ownerAddress;
// Hash and store the zone creation code.
zoneCreationCode = keccak256(type(PausableZone).creationCode);
}
/**
* @notice Deploy a PausableZone to a precomputed address.
*
* @param salt The salt to be used to derive the zone address
*
* @return derivedAddress The derived address for the zone.
*/
function createZone(bytes32 salt)
external
override
returns (address derivedAddress)
{
// Ensure the caller is the owner.
if (msg.sender != _owner) {
revert CallerIsNotOwner();
}
// Derive the PausableZone address.
// This expression demonstrates address computation but is not required.
derivedAddress = address(
uint160(
uint256(
keccak256(
abi.encodePacked(
bytes1(0xff),
address(this),
salt,
zoneCreationCode
)
)
)
)
);
// Revert if a zone is currently deployed to the derived address.
if (derivedAddress.code.length != 0) {
revert ZoneAlreadyExists(derivedAddress);
}
// Deploy the zone using the supplied salt.
new PausableZone{ salt: salt }();
// Emit an event signifying that the zone was created.
emit ZoneCreated(derivedAddress, salt);
}
/**
* @notice Pause orders on a given zone.
*
* @param zone The address of the zone to be paused.
*
* @return success A boolean indicating the zone has been paused.
*/
function pause(address zone)
external
override
isPauser
returns (bool success)
{
// Call pause on the given zone.
PausableZone(zone).pause(msg.sender);
// Return a boolean indicating the pause was successful.
success = true;
}
/**
* @notice Cancel Seaport orders on a given zone.
*
* @param pausableZoneAddress The zone that manages the
* orders to be cancelled.
* @param seaportAddress The Seaport address.
* @param orders The orders to cancel.
*/
function cancelOrders(
address pausableZoneAddress,
SeaportInterface seaportAddress,
OrderComponents[] calldata orders
) external override {
// Ensure the caller is the owner.
if (msg.sender != _owner) {
revert CallerIsNotOwner();
}
// Create a zone object from the zone address.
PausableZone zone = PausableZone(pausableZoneAddress);
// Call cancelOrders on the given zone.
zone.cancelOrders(seaportAddress, orders);
}
/**
* @notice Execute an arbitrary number of matched orders on a given zone.
*
* @param pausableZoneAddress The zone that manages the orders
* to be cancelled.
* @param seaportAddress The Seaport address.
* @param orders The orders to match.
* @param fulfillments An array of elements allocating offer
* components to consideration components.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function executeMatchOrders(
address pausableZoneAddress,
SeaportInterface seaportAddress,
Order[] calldata orders,
Fulfillment[] calldata fulfillments
) external payable override returns (Execution[] memory executions) {
// Ensure the caller is the owner.
if (msg.sender != _owner) {
revert CallerIsNotOwner();
}
// Create a zone object from the zone address.
PausableZone zone = PausableZone(pausableZoneAddress);
// Call executeMatchOrders on the given zone and return the sequence
// of transfers performed as part of matching the given orders.
executions = zone.executeMatchOrders{ value: msg.value }(
seaportAddress,
orders,
fulfillments
);
}
/**
* @notice Execute an arbitrary number of matched advanced orders on a given
* zone.
*
* @param pausableZoneAddress The zone that manages the orders to be
* cancelled.
* @param seaportAddress The Seaport address.
* @param orders The orders to match.
* @param criteriaResolvers An array where each element contains a
* reference to a specific order as well as that
* order's offer or consideration, a token
* identifier, and a proof that the supplied
* token identifier is contained in the
* order's merkle root.
* @param fulfillments An array of elements allocating offer
* components to consideration components.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function executeMatchAdvancedOrders(
address pausableZoneAddress,
SeaportInterface seaportAddress,
AdvancedOrder[] calldata orders,
CriteriaResolver[] calldata criteriaResolvers,
Fulfillment[] calldata fulfillments
) external payable override returns (Execution[] memory executions) {
// Ensure the caller is the owner.
if (msg.sender != _owner) {
revert CallerIsNotOwner();
}
// Create a zone object from the zone address.
PausableZone zone = PausableZone(pausableZoneAddress);
// Call executeMatchOrders on the given zone and return the sequence
// of transfers performed as part of matching the given orders.
executions = zone.executeMatchAdvancedOrders{ value: msg.value }(
seaportAddress,
orders,
criteriaResolvers,
fulfillments
);
}
/**
* @notice Initiate Zone ownership transfer by assigning a new potential
* owner this contract. Once set, the new potential owner
* may call `acceptOwnership` to claim ownership.
* Only the owner in question may call this function.
*
* @param newPotentialOwner The address for which to initiate ownership
* transfer to.
*/
function transferOwnership(address newPotentialOwner) external override {
// Ensure the caller is the owner.
if (msg.sender != _owner) {
revert CallerIsNotOwner();
}
// Ensure the new potential owner is not an invalid address.
if (newPotentialOwner == address(0)) {
revert OwnerCanNotBeSetAsZero();
}
// Emit an event indicating that the potential owner has been updated.
emit PotentialOwnerUpdated(newPotentialOwner);
// Set the new potential owner as the potential owner.
_potentialOwner = newPotentialOwner;
}
/**
* @notice Clear the currently set potential owner, if any.
* Only the owner of this contract may call this function.
*/
function cancelOwnershipTransfer() external override {
// Ensure the caller is the current owner.
if (msg.sender != _owner) {
revert CallerIsNotOwner();
}
// Emit an event indicating that the potential owner has been cleared.
emit PotentialOwnerUpdated(address(0));
// Clear the current new potential owner.
delete _potentialOwner;
}
/**
* @notice Accept ownership of this contract. Only the account that the
* current owner has set as the new potential owner may call this
* function.
*/
function acceptOwnership() external override {
// Ensure the caller is the potential owner.
if (msg.sender != _potentialOwner) {
revert CallerIsNotPotentialOwner();
}
// Emit an event indicating that the potential owner has been cleared.
emit PotentialOwnerUpdated(address(0));
// Clear the current new potential owner
delete _potentialOwner;
// Emit an event indicating ownership has been transferred.
emit OwnershipTransferred(_owner, msg.sender);
// Set the caller as the owner of this contract.
_owner = msg.sender;
}
/**
* @notice Assign the given address with the ability to pause the zone.
*
* @param pauserToAssign The address to assign the pauser role.
*/
function assignPauser(address pauserToAssign) external override {
// Ensure the caller is the owner.
if (msg.sender != _owner) {
revert CallerIsNotOwner();
}
// Ensure the pauser to assign is not an invalid address.
if (pauserToAssign == address(0)) {
revert PauserCanNotBeSetAsZero();
}
// Set the given account as the pauser.
_pauser = pauserToAssign;
// Emit an event indicating the pauser has been assigned.
emit PauserUpdated(_pauser);
}
/**
* @notice Assign the given address with the ability to operate the
* given zone.
*
* @param pausableZoneAddress The zone address to assign operator role.
* @param operatorToAssign The address to assign as operator.
*/
function assignOperator(
address pausableZoneAddress,
address operatorToAssign
) external override {
// Ensure the caller is the owner.
if (msg.sender != _owner) {
revert CallerIsNotOwner();
}
// Create a zone object from the zone address.
PausableZone zone = PausableZone(pausableZoneAddress);
// Call assignOperator on the zone by passing in the given
// operator address.
zone.assignOperator(operatorToAssign);
}
/**
* @notice An external view function that returns the owner.
*
* @return The address of the owner.
*/
function owner() external view override returns (address) {
return _owner;
}
/**
* @notice An external view function that return the potential owner.
*
* @return The address of the potential owner.
*/
function potentialOwner() external view override returns (address) {
return _potentialOwner;
}
/**
* @notice An external view function that returns the pauser.
*
* @return The address of the pauser.
*/
function pauser() external view override returns (address) {
return _pauser;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { ZoneInterface } from "../interfaces/ZoneInterface.sol";
import { ZoneInteractionErrors } from "../interfaces/ZoneInteractionErrors.sol";
import {
PausableZoneEventsAndErrors
} from "./interfaces/PausableZoneEventsAndErrors.sol";
import { SeaportInterface } from "../interfaces/SeaportInterface.sol";
import {
AdvancedOrder,
CriteriaResolver,
Order,
OrderComponents,
Fulfillment,
Execution
} from "../lib/ConsiderationStructs.sol";
import { PausableZoneInterface } from "./interfaces/PausableZoneInterface.sol";
/**
* @title PausableZone
* @author cupOJoseph, BCLeFevre, ryanio
* @notice PausableZone is a simple zone implementation that approves every
* order. It can be self-destructed by its controller to pause
* restricted orders that have it set as their zone.
*/
contract PausableZone is
PausableZoneEventsAndErrors,
ZoneInterface,
PausableZoneInterface
{
// Set an immutable controller that can pause the zone & update an operator.
address internal immutable _controller;
// Set an operator that can instruct the zone to cancel or execute orders.
address public operator;
/**
* @dev Ensure that the caller is either the operator or controller.
*/
modifier isOperator() {
// Ensure that the caller is either the operator or the controller.
if (msg.sender != operator && msg.sender != _controller) {
revert InvalidOperator();
}
// Continue with function execution.
_;
}
/**
* @dev Ensure that the caller is the controller.
*/
modifier isController() {
// Ensure that the caller is the controller.
if (msg.sender != _controller) {
revert InvalidController();
}
// Continue with function execution.
_;
}
/**
* @notice Set the deployer as the controller of the zone.
*/
constructor() {
// Set the controller to the deployer.
_controller = msg.sender;
// Emit an event signifying that the zone is unpaused.
emit Unpaused();
}
/**
* @notice Cancel an arbitrary number of orders that have agreed to use the
* contract as their zone.
*
* @param seaport The Seaport address.
* @param orders The orders to cancel.
*
* @return cancelled A boolean indicating whether the supplied orders have
* been successfully cancelled.
*/
function cancelOrders(
SeaportInterface seaport,
OrderComponents[] calldata orders
) external override isOperator returns (bool cancelled) {
// Call cancel on Seaport and return its boolean value.
cancelled = seaport.cancel(orders);
}
/**
* @notice Pause this contract, safely stopping orders from using
* the contract as a zone. Restricted orders with this address as a
* zone will not be fulfillable unless the zone is redeployed to the
* same address.
*/
function pause(address payee) external override isController {
// Emit an event signifying that the zone is paused.
emit Paused();
// Destroy the zone, sending any ether to the transaction submitter.
selfdestruct(payable(payee));
}
/**
* @notice Assign the given address with the ability to operate the zone.
*
* @param operatorToAssign The address to assign as the operator.
*/
function assignOperator(address operatorToAssign)
external
override
isController
{
// Ensure the operator being assigned is not the null address.
if (operatorToAssign == address(0)) {
revert PauserCanNotBeSetAsZero();
}
// Set the given address as the new operator.
operator = operatorToAssign;
// Emit an event indicating the operator has been updated.
emit OperatorUpdated(operator);
}
/**
* @notice Execute an arbitrary number of matched orders, each with
* an arbitrary number of items for offer and consideration
* along with a set of fulfillments allocating offer components
* to consideration components.
*
* @param seaport The Seaport address.
* @param orders The orders to match.
* @param fulfillments An array of elements allocating offer components
* to consideration components.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function executeMatchOrders(
SeaportInterface seaport,
Order[] calldata orders,
Fulfillment[] calldata fulfillments
)
external
payable
override
isOperator
returns (Execution[] memory executions)
{
// Call matchOrders on Seaport and return the sequence of transfers
// performed as part of matching the given orders.
executions = seaport.matchOrders{ value: msg.value }(
orders,
fulfillments
);
}
/**
* @notice Execute an arbitrary number of matched advanced orders,
* each with an arbitrary number of items for offer and
* consideration along with a set of fulfillments allocating
* offer components to consideration components.
*
* @param seaport The Seaport address.
* @param orders The orders to match.
* @param criteriaResolvers An array where each element contains a reference
* to a specific order as well as that order's
* offer or consideration, a token identifier, and
* a proof that the supplied token identifier is
* contained in the order's merkle root.
* @param fulfillments An array of elements allocating offer components
* to consideration components.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function executeMatchAdvancedOrders(
SeaportInterface seaport,
AdvancedOrder[] calldata orders,
CriteriaResolver[] calldata criteriaResolvers,
Fulfillment[] calldata fulfillments
)
external
payable
override
isOperator
returns (Execution[] memory executions)
{
// Call matchAdvancedOrders on Seaport and return the sequence of
// transfers performed as part of matching the given orders.
executions = seaport.matchAdvancedOrders{ value: msg.value }(
orders,
criteriaResolvers,
fulfillments
);
}
/**
* @notice Check if a given order is currently valid.
*
* @dev This function is called by Seaport whenever extraData is not
* provided by the caller.
*
* @param orderHash The hash of the order.
* @param caller The caller in question.
* @param offerer The offerer in question.
* @param zoneHash The hash to provide upon calling the zone.
*
* @return validOrderMagicValue A magic value indicating if the order is
* currently valid.
*/
function isValidOrder(
bytes32 orderHash,
address caller,
address offerer,
bytes32 zoneHash
) external pure override returns (bytes4 validOrderMagicValue) {
orderHash;
caller;
offerer;
zoneHash;
// Return the selector of isValidOrder as the magic value.
validOrderMagicValue = ZoneInterface.isValidOrder.selector;
}
/**
* @notice Check if a given order including extraData is currently valid.
*
* @dev This function is called by Seaport whenever any extraData is
* provided by the caller.
*
* @param orderHash The hash of the order.
* @param caller The caller in question.
* @param order The order in question.
* @param priorOrderHashes The order hashes of each order supplied prior to
* the current order as part of a "match" variety
* of order fulfillment.
* @param criteriaResolvers The criteria resolvers corresponding to
* the order.
*
* @return validOrderMagicValue A magic value indicating if the order is
* currently valid.
*/
function isValidOrderIncludingExtraData(
bytes32 orderHash,
address caller,
AdvancedOrder calldata order,
bytes32[] calldata priorOrderHashes,
CriteriaResolver[] calldata criteriaResolvers
) external pure override returns (bytes4 validOrderMagicValue) {
orderHash;
caller;
order;
priorOrderHashes;
criteriaResolvers;
// Return the selector of isValidOrder as the magic value.
validOrderMagicValue = ZoneInterface.isValidOrder.selector;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { PausableZone } from "../PausableZone.sol";
import { PausableZoneEventsAndErrors } from "./PausableZoneEventsAndErrors.sol";
import {
Order,
Fulfillment,
OrderComponents,
AdvancedOrder,
CriteriaResolver,
Execution
} from "../../lib/ConsiderationStructs.sol";
import { SeaportInterface } from "../../interfaces/SeaportInterface.sol";
/**
* @title PausableZoneController
* @author cupOJoseph, BCLeFevre, stuckinaboot
* @notice PausableZoneController enables deploying, pausing and executing
* orders on PausableZones. This deployer is designed to be owned
* by a gnosis safe, DAO, or trusted party.
*/
interface PausableZoneControllerInterface {
/**
* @notice Deploy a PausableZone to a precomputed address.
*
* @param salt The salt to be used to derive the zone address
*
* @return derivedAddress The derived address for the zone.
*/
function createZone(bytes32 salt) external returns (address derivedAddress);
/**
* @notice Pause orders on a given zone.
*
* @param zone The address of the zone to be paused.
*
* @return success A boolean indicating the zone has been paused.
*/
function pause(address zone) external returns (bool success);
/**
* @notice Cancel Seaport offers on a given zone.
*
* @param pausableZoneAddress The zone that manages the orders to be
* cancelled.
* @param seaportAddress The Seaport address.
* @param orders The orders to cancel.
*/
function cancelOrders(
address pausableZoneAddress,
SeaportInterface seaportAddress,
OrderComponents[] calldata orders
) external;
/**
* @notice Execute an arbitrary number of matched orders on a given zone.
*
* @param pausableZoneAddress The zone that manages the orders to be
* cancelled.
* @param seaportAddress The Seaport address.
* @param orders The orders to match.
* @param fulfillments An array of elements allocating offer
* components to consideration components.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function executeMatchOrders(
address pausableZoneAddress,
SeaportInterface seaportAddress,
Order[] calldata orders,
Fulfillment[] calldata fulfillments
) external payable returns (Execution[] memory executions);
/**
* @notice Execute an arbitrary number of matched advanced orders on a
* given zone.
*
* @param pausableZoneAddress The zone that manages the orders to be
* cancelled.
* @param seaportAddress The Seaport address.
* @param orders The orders to match.
* @param criteriaResolvers An array where each element contains a
* reference to a specific order as well as
* that order's offer or consideration,
* a token identifier, and a proof that
* the supplied token identifier is
* contained in the order's merkle root.
* @param fulfillments An array of elements allocating offer
* components to consideration components.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function executeMatchAdvancedOrders(
address pausableZoneAddress,
SeaportInterface seaportAddress,
AdvancedOrder[] calldata orders,
CriteriaResolver[] calldata criteriaResolvers,
Fulfillment[] calldata fulfillments
) external payable returns (Execution[] memory executions);
/**
* @notice Initiate Zone ownership transfer by assigning a new potential
* owner this contract. Once set, the new potential owner
* may call `acceptOwnership` to claim ownership.
* Only the owner in question may call this function.
*
* @param newPotentialOwner The address for which to initiate ownership
* transfer to.
*/
function transferOwnership(address newPotentialOwner) external;
/**
* @notice Clear the currently set potential owner, if any.
* Only the owner of this contract may call this function.
*/
function cancelOwnershipTransfer() external;
/**
* @notice Accept ownership of this contract. Only the account that the
* current owner has set as the new potential owner may call this
* function.
*/
function acceptOwnership() external;
/**
* @notice Assign the given address with the ability to pause the zone.
*
* @param pauserToAssign The address to assign the pauser role.
*/
function assignPauser(address pauserToAssign) external;
/**
* @notice Assign the given address with the ability to operate the
* given zone.
*
* @param pausableZoneAddress The zone address to assign operator role.
* @param operatorToAssign The address to assign as operator.
*/
function assignOperator(
address pausableZoneAddress,
address operatorToAssign
) external;
/**
* @notice An external view function that returns the owner.
*
* @return The address of the owner.
*/
function owner() external view returns (address);
/**
* @notice An external view function that return the potential owner.
*
* @return The address of the potential owner.
*/
function potentialOwner() external view returns (address);
/**
* @notice An external view function that returns the pauser.
*
* @return The address of the pauser.
*/
function pauser() external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/**
* @notice PausableZoneEventsAndErrors contains errors and events
* related to zone interaction.
*/
interface PausableZoneEventsAndErrors {
/**
* @dev Emit an event whenever a zone is successfully paused.
*/
event Paused();
/**
* @dev Emit an event whenever a zone is successfully unpaused (created).
*/
event Unpaused();
/**
* @dev Emit an event whenever a zone owner registers a new potential
* owner for that zone.
*
* @param newPotentialOwner The new potential owner of the zone.
*/
event PotentialOwnerUpdated(address newPotentialOwner);
/**
* @dev Emit an event whenever zone ownership is transferred.
*
* @param previousOwner The previous owner of the zone.
* @param newOwner The new owner of the zone.
*/
event OwnershipTransferred(address previousOwner, address newOwner);
/**
* @dev Emit an event whenever a new zone is created.
*
* @param zone The address of the zone.
* @param salt The salt used to deploy the zone.
*/
event ZoneCreated(address zone, bytes32 salt);
/**
* @dev Emit an event whenever a zone owner assigns a new pauser
*
* @param newPauser The new pausear of the zone.
*/
event PauserUpdated(address newPauser);
/**
* @dev Emit an event whenever a zone owner assigns a new operator
*
* @param newOperator The new operator of the zone.
*/
event OperatorUpdated(address newOperator);
/**
* @dev Revert with an error when attempting to pause the zone
* while the caller is not the owner or pauser of the zone.
*/
error InvalidPauser();
/**
* @dev Revert with an error when attempting to call an operation
* while the caller is not the controller or operator of the zone.
*/
error InvalidOperator();
/**
* @dev Revert with an error when attempting to pause the zone or update the
* operator while the caller is not the controller of the zone.
*/
error InvalidController();
/**
* @dev Revert with an error when attempting to deploy a zone that is
* currently deployed.
*/
error ZoneAlreadyExists(address zone);
/**
* @dev Revert with an error when the caller does not have the _owner role
*
*/
error CallerIsNotOwner();
/**
* @dev Revert with an error when the caller does not have the operator role
*
*/
error CallerIsNotOperator();
/**
* @dev Revert with an error when attempting to set the new potential owner
* as the 0 address.
*
*/
error OwnerCanNotBeSetAsZero();
/**
* @dev Revert with an error when attempting to set the new potential pauser
* as the 0 address.
*
*/
error PauserCanNotBeSetAsZero();
/**
* @dev Revert with an error when the caller does not have
* the potentialOwner role.
*/
error CallerIsNotPotentialOwner();
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import {
BasicOrderParameters,
OrderComponents,
Fulfillment,
FulfillmentComponent,
Execution,
Order,
AdvancedOrder,
OrderStatus,
CriteriaResolver
} from "../lib/ConsiderationStructs.sol";
/**
* @title SeaportInterface
* @author 0age
* @custom:version 1.1
* @notice Seaport is a generalized ETH/ERC20/ERC721/ERC1155 marketplace. It
* minimizes external calls to the greatest extent possible and provides
* lightweight methods for common routes as well as more flexible
* methods for composing advanced orders.
*
* @dev SeaportInterface contains all external function interfaces for Seaport.
*/
interface SeaportInterface {
/**
* @notice Fulfill an order offering an ERC721 token by supplying Ether (or
* the native token for the given chain) as consideration for the
* order. An arbitrary number of "additional recipients" may also be
* supplied which will each receive native tokens from the fulfiller
* as consideration.
*
* @param parameters Additional information on the fulfilled order. Note
* that the offerer must first approve this contract (or
* their preferred conduit if indicated by the order) for
* their offered ERC721 token to be transferred.
*
* @return fulfilled A boolean indicating whether the order has been
* successfully fulfilled.
*/
function fulfillBasicOrder(BasicOrderParameters calldata parameters)
external
payable
returns (bool fulfilled);
/**
* @notice Fulfill an order with an arbitrary number of items for offer and
* consideration. Note that this function does not support
* criteria-based orders or partial filling of orders (though
* filling the remainder of a partially-filled order is supported).
*
* @param order The order to fulfill. Note that both the
* offerer and the fulfiller must first approve
* this contract (or the corresponding conduit if
* indicated) to transfer any relevant tokens on
* their behalf and that contracts must implement
* `onERC1155Received` to receive ERC1155 tokens
* as consideration.
* @param fulfillerConduitKey A bytes32 value indicating what conduit, if
* any, to source the fulfiller's token approvals
* from. The zero hash signifies that no conduit
* should be used, with direct approvals set on
* Seaport.
*
* @return fulfilled A boolean indicating whether the order has been
* successfully fulfilled.
*/
function fulfillOrder(Order calldata order, bytes32 fulfillerConduitKey)
external
payable
returns (bool fulfilled);
/**
* @notice Fill an order, fully or partially, with an arbitrary number of
* items for offer and consideration alongside criteria resolvers
* containing specific token identifiers and associated proofs.
*
* @param advancedOrder The order to fulfill along with the fraction
* of the order to attempt to fill. Note that
* both the offerer and the fulfiller must first
* approve this contract (or their preferred
* conduit if indicated by the order) to transfer
* any relevant tokens on their behalf and that
* contracts must implement `onERC1155Received`
* to receive ERC1155 tokens as consideration.
* Also note that all offer and consideration
* components must have no remainder after
* multiplication of the respective amount with
* the supplied fraction for the partial fill to
* be considered valid.
* @param criteriaResolvers An array where each element contains a
* reference to a specific offer or
* consideration, a token identifier, and a proof
* that the supplied token identifier is
* contained in the merkle root held by the item
* in question's criteria element. Note that an
* empty criteria indicates that any
* (transferable) token identifier on the token
* in question is valid and that no associated
* proof needs to be supplied.
* @param fulfillerConduitKey A bytes32 value indicating what conduit, if
* any, to source the fulfiller's token approvals
* from. The zero hash signifies that no conduit
* should be used, with direct approvals set on
* Seaport.
* @param recipient The intended recipient for all received items,
* with `address(0)` indicating that the caller
* should receive the items.
*
* @return fulfilled A boolean indicating whether the order has been
* successfully fulfilled.
*/
function fulfillAdvancedOrder(
AdvancedOrder calldata advancedOrder,
CriteriaResolver[] calldata criteriaResolvers,
bytes32 fulfillerConduitKey,
address recipient
) external payable returns (bool fulfilled);
/**
* @notice Attempt to fill a group of orders, each with an arbitrary number
* of items for offer and consideration. Any order that is not
* currently active, has already been fully filled, or has been
* cancelled will be omitted. Remaining offer and consideration
* items will then be aggregated where possible as indicated by the
* supplied offer and consideration component arrays and aggregated
* items will be transferred to the fulfiller or to each intended
* recipient, respectively. Note that a failing item transfer or an
* issue with order formatting will cause the entire batch to fail.
* Note that this function does not support criteria-based orders or
* partial filling of orders (though filling the remainder of a
* partially-filled order is supported).
*
* @param orders The orders to fulfill. Note that both
* the offerer and the fulfiller must first
* approve this contract (or the
* corresponding conduit if indicated) to
* transfer any relevant tokens on their
* behalf and that contracts must implement
* `onERC1155Received` to receive ERC1155
* tokens as consideration.
* @param offerFulfillments An array of FulfillmentComponent arrays
* indicating which offer items to attempt
* to aggregate when preparing executions.
* @param considerationFulfillments An array of FulfillmentComponent arrays
* indicating which consideration items to
* attempt to aggregate when preparing
* executions.
* @param fulfillerConduitKey A bytes32 value indicating what conduit,
* if any, to source the fulfiller's token
* approvals from. The zero hash signifies
* that no conduit should be used, with
* direct approvals set on this contract.
* @param maximumFulfilled The maximum number of orders to fulfill.
*
* @return availableOrders An array of booleans indicating if each order
* with an index corresponding to the index of the
* returned boolean was fulfillable or not.
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function fulfillAvailableOrders(
Order[] calldata orders,
FulfillmentComponent[][] calldata offerFulfillments,
FulfillmentComponent[][] calldata considerationFulfillments,
bytes32 fulfillerConduitKey,
uint256 maximumFulfilled
)
external
payable
returns (bool[] memory availableOrders, Execution[] memory executions);
/**
* @notice Attempt to fill a group of orders, fully or partially, with an
* arbitrary number of items for offer and consideration per order
* alongside criteria resolvers containing specific token
* identifiers and associated proofs. Any order that is not
* currently active, has already been fully filled, or has been
* cancelled will be omitted. Remaining offer and consideration
* items will then be aggregated where possible as indicated by the
* supplied offer and consideration component arrays and aggregated
* items will be transferred to the fulfiller or to each intended
* recipient, respectively. Note that a failing item transfer or an
* issue with order formatting will cause the entire batch to fail.
*
* @param advancedOrders The orders to fulfill along with the
* fraction of those orders to attempt to
* fill. Note that both the offerer and the
* fulfiller must first approve this
* contract (or their preferred conduit if
* indicated by the order) to transfer any
* relevant tokens on their behalf and that
* contracts must implement
* `onERC1155Received` to enable receipt of
* ERC1155 tokens as consideration. Also
* note that all offer and consideration
* components must have no remainder after
* multiplication of the respective amount
* with the supplied fraction for an
* order's partial fill amount to be
* considered valid.
* @param criteriaResolvers An array where each element contains a
* reference to a specific offer or
* consideration, a token identifier, and a
* proof that the supplied token identifier
* is contained in the merkle root held by
* the item in question's criteria element.
* Note that an empty criteria indicates
* that any (transferable) token
* identifier on the token in question is
* valid and that no associated proof needs
* to be supplied.
* @param offerFulfillments An array of FulfillmentComponent arrays
* indicating which offer items to attempt
* to aggregate when preparing executions.
* @param considerationFulfillments An array of FulfillmentComponent arrays
* indicating which consideration items to
* attempt to aggregate when preparing
* executions.
* @param fulfillerConduitKey A bytes32 value indicating what conduit,
* if any, to source the fulfiller's token
* approvals from. The zero hash signifies
* that no conduit should be used, with
* direct approvals set on this contract.
* @param recipient The intended recipient for all received
* items, with `address(0)` indicating that
* the caller should receive the items.
* @param maximumFulfilled The maximum number of orders to fulfill.
*
* @return availableOrders An array of booleans indicating if each order
* with an index corresponding to the index of the
* returned boolean was fulfillable or not.
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function fulfillAvailableAdvancedOrders(
AdvancedOrder[] calldata advancedOrders,
CriteriaResolver[] calldata criteriaResolvers,
FulfillmentComponent[][] calldata offerFulfillments,
FulfillmentComponent[][] calldata considerationFulfillments,
bytes32 fulfillerConduitKey,
address recipient,
uint256 maximumFulfilled
)
external
payable
returns (bool[] memory availableOrders, Execution[] memory executions);
/**
* @notice Match an arbitrary number of orders, each with an arbitrary
* number of items for offer and consideration along with as set of
* fulfillments allocating offer components to consideration
* components. Note that this function does not support
* criteria-based or partial filling of orders (though filling the
* remainder of a partially-filled order is supported).
*
* @param orders The orders to match. Note that both the offerer and
* fulfiller on each order must first approve this
* contract (or their conduit if indicated by the order)
* to transfer any relevant tokens on their behalf and
* each consideration recipient must implement
* `onERC1155Received` to enable ERC1155 token receipt.
* @param fulfillments An array of elements allocating offer components to
* consideration components. Note that each
* consideration component must be fully met for the
* match operation to be valid.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function matchOrders(
Order[] calldata orders,
Fulfillment[] calldata fulfillments
) external payable returns (Execution[] memory executions);
/**
* @notice Match an arbitrary number of full or partial orders, each with an
* arbitrary number of items for offer and consideration, supplying
* criteria resolvers containing specific token identifiers and
* associated proofs as well as fulfillments allocating offer
* components to consideration components.
*
* @param orders The advanced orders to match. Note that both the
* offerer and fulfiller on each order must first
* approve this contract (or a preferred conduit if
* indicated by the order) to transfer any relevant
* tokens on their behalf and each consideration
* recipient must implement `onERC1155Received` in
* order to receive ERC1155 tokens. Also note that
* the offer and consideration components for each
* order must have no remainder after multiplying
* the respective amount with the supplied fraction
* in order for the group of partial fills to be
* considered valid.
* @param criteriaResolvers An array where each element contains a reference
* to a specific order as well as that order's
* offer or consideration, a token identifier, and
* a proof that the supplied token identifier is
* contained in the order's merkle root. Note that
* an empty root indicates that any (transferable)
* token identifier is valid and that no associated
* proof needs to be supplied.
* @param fulfillments An array of elements allocating offer components
* to consideration components. Note that each
* consideration component must be fully met in
* order for the match operation to be valid.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function matchAdvancedOrders(
AdvancedOrder[] calldata orders,
CriteriaResolver[] calldata criteriaResolvers,
Fulfillment[] calldata fulfillments
) external payable returns (Execution[] memory executions);
/**
* @notice Cancel an arbitrary number of orders. Note that only the offerer
* or the zone of a given order may cancel it. Callers should ensure
* that the intended order was cancelled by calling `getOrderStatus`
* and confirming that `isCancelled` returns `true`.
*
* @param orders The orders to cancel.
*
* @return cancelled A boolean indicating whether the supplied orders have
* been successfully cancelled.
*/
function cancel(OrderComponents[] calldata orders)
external
returns (bool cancelled);
/**
* @notice Validate an arbitrary number of orders, thereby registering their
* signatures as valid and allowing the fulfiller to skip signature
* verification on fulfillment. Note that validated orders may still
* be unfulfillable due to invalid item amounts or other factors;
* callers should determine whether validated orders are fulfillable
* by simulating the fulfillment call prior to execution. Also note
* that anyone can validate a signed order, but only the offerer can
* validate an order without supplying a signature.
*
* @param orders The orders to validate.
*
* @return validated A boolean indicating whether the supplied orders have
* been successfully validated.
*/
function validate(Order[] calldata orders)
external
returns (bool validated);
/**
* @notice Cancel all orders from a given offerer with a given zone in bulk
* by incrementing a counter. Note that only the offerer may
* increment the counter.
*
* @return newCounter The new counter.
*/
function incrementCounter() external returns (uint256 newCounter);
/**
* @notice Retrieve the order hash for a given order.
*
* @param order The components of the order.
*
* @return orderHash The order hash.
*/
function getOrderHash(OrderComponents calldata order)
external
view
returns (bytes32 orderHash);
/**
* @notice Retrieve the status of a given order by hash, including whether
* the order has been cancelled or validated and the fraction of the
* order that has been filled.
*
* @param orderHash The order hash in question.
*
* @return isValidated A boolean indicating whether the order in question
* has been validated (i.e. previously approved or
* partially filled).
* @return isCancelled A boolean indicating whether the order in question
* has been cancelled.
* @return totalFilled The total portion of the order that has been filled
* (i.e. the "numerator").
* @return totalSize The total size of the order that is either filled or
* unfilled (i.e. the "denominator").
*/
function getOrderStatus(bytes32 orderHash)
external
view
returns (
bool isValidated,
bool isCancelled,
uint256 totalFilled,
uint256 totalSize
);
/**
* @notice Retrieve the current counter for a given offerer.
*
* @param offerer The offerer in question.
*
* @return counter The current counter.
*/
function getCounter(address offerer)
external
view
returns (uint256 counter);
/**
* @notice Retrieve configuration information for this contract.
*
* @return version The contract version.
* @return domainSeparator The domain separator for this contract.
* @return conduitController The conduit Controller set for this contract.
*/
function information()
external
view
returns (
string memory version,
bytes32 domainSeparator,
address conduitController
);
/**
* @notice Retrieve the name of this contract.
*
* @return contractName The name of this contract.
*/
function name() external view returns (string memory contractName);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import {
AdvancedOrder,
CriteriaResolver
} from "../lib/ConsiderationStructs.sol";
interface ZoneInterface {
// Called by Consideration whenever extraData is not provided by the caller.
function isValidOrder(
bytes32 orderHash,
address caller,
address offerer,
bytes32 zoneHash
) external view returns (bytes4 validOrderMagicValue);
// Called by Consideration whenever any extraData is provided by the caller.
function isValidOrderIncludingExtraData(
bytes32 orderHash,
address caller,
AdvancedOrder calldata order,
bytes32[] calldata priorOrderHashes,
CriteriaResolver[] calldata criteriaResolvers
) external view returns (bytes4 validOrderMagicValue);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/**
* @title ZoneInteractionErrors
* @author 0age
* @notice ZoneInteractionErrors contains errors related to zone interaction.
*/
interface ZoneInteractionErrors {
/**
* @dev Revert with an error when attempting to fill an order that specifies
* a restricted submitter as its order type when not submitted by
* either the offerer or the order's zone or approved as valid by the
* zone in question via a staticcall to `isValidOrder`.
*
* @param orderHash The order hash for the invalid restricted order.
*/
error InvalidRestrictedOrder(bytes32 orderHash);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { SeaportInterface } from "../../interfaces/SeaportInterface.sol";
import {
AdvancedOrder,
CriteriaResolver,
Order,
OrderComponents,
Fulfillment,
Execution
} from "../../lib/ConsiderationStructs.sol";
/**
* @title PausableZone
* @author cupOJoseph, BCLeFevre, ryanio
* @notice PausableZone is a simple zone implementation that approves every
* order. It can be self-destructed by its controller to pause
* restricted orders that have it set as their zone.
*/
interface PausableZoneInterface {
/**
* @notice Cancel an arbitrary number of orders that have agreed to use the
* contract as their zone.
*
* @param seaport The Seaport address.
* @param orders The orders to cancel.
*
* @return cancelled A boolean indicating whether the supplied orders have
* been successfully cancelled.
*/
function cancelOrders(
SeaportInterface seaport,
OrderComponents[] calldata orders
) external returns (bool cancelled);
/**
* @notice Execute an arbitrary number of matched orders, each with
* an arbitrary number of items for offer and consideration
* along with a set of fulfillments allocating offer components
* to consideration components.
*
* @param seaport The Seaport address.
* @param orders The orders to match.
* @param fulfillments An array of elements allocating offer components
* to consideration components.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function executeMatchOrders(
SeaportInterface seaport,
Order[] calldata orders,
Fulfillment[] calldata fulfillments
) external payable returns (Execution[] memory executions);
/**
* @notice Execute an arbitrary number of matched advanced orders,
* each with an arbitrary number of items for offer and
* consideration along with a set of fulfillments allocating
* offer components to consideration components.
*
* @param seaport The Seaport address.
* @param orders The orders to match.
* @param criteriaResolvers An array where each element contains a reference
* to a specific order as well as that order's
* offer or consideration, a token identifier, and
* a proof that the supplied token identifier is
* contained in the order's merkle root.
* @param fulfillments An array of elements allocating offer components
* to consideration components.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function executeMatchAdvancedOrders(
SeaportInterface seaport,
AdvancedOrder[] calldata orders,
CriteriaResolver[] calldata criteriaResolvers,
Fulfillment[] calldata fulfillments
) external payable returns (Execution[] memory executions);
/**
* @notice Pause this contract, safely stopping orders from using
* the contract as a zone. Restricted orders with this address as a
* zone will not be fulfillable unless the zone is redeployed to the
* same address.
*/
function pause(address payee) external;
/**
* @notice Assign the given address with the ability to operate the zone.
*
* @param operatorToAssign The address to assign as the operator.
*/
function assignOperator(address operatorToAssign) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { ZoneInterface } from "../interfaces/ZoneInterface.sol";
import { OrderType } from "./ConsiderationEnums.sol";
import { AdvancedOrder, CriteriaResolver } from "./ConsiderationStructs.sol";
import "./ConsiderationConstants.sol";
import { ZoneInteractionErrors } from "../interfaces/ZoneInteractionErrors.sol";
import { LowLevelHelpers } from "./LowLevelHelpers.sol";
/**
* @title ZoneInteraction
* @author 0age
* @notice ZoneInteraction contains logic related to interacting with zones.
*/
contract ZoneInteraction is ZoneInteractionErrors, LowLevelHelpers {
/**
* @dev Internal view function to determine if an order has a restricted
* order type and, if so, to ensure that either the offerer or the zone
* are the fulfiller or that a staticcall to `isValidOrder` on the zone
* returns a magic value indicating that the order is currently valid.
*
* @param orderHash The hash of the order.
* @param zoneHash The hash to provide upon calling the zone.
* @param orderType The type of the order.
* @param offerer The offerer in question.
* @param zone The zone in question.
*/
function _assertRestrictedBasicOrderValidity(
bytes32 orderHash,
bytes32 zoneHash,
OrderType orderType,
address offerer,
address zone
) internal view {
// Order type 2-3 require zone or offerer be caller or zone to approve.
if (
uint256(orderType) > 1 &&
msg.sender != zone &&
msg.sender != offerer
) {
// Perform minimal staticcall to the zone.
_callIsValidOrder(zone, orderHash, offerer, zoneHash);
}
}
function _callIsValidOrder(
address zone,
bytes32 orderHash,
address offerer,
bytes32 zoneHash
) internal view {
// Perform minimal staticcall to the zone.
bool success = _staticcall(
zone,
abi.encodeWithSelector(
ZoneInterface.isValidOrder.selector,
orderHash,
msg.sender,
offerer,
zoneHash
)
);
// Ensure call was successful and returned the correct magic value.
_assertIsValidOrderStaticcallSuccess(success, orderHash);
}
/**
* @dev Internal view function to determine whether an order is a restricted
* order and, if so, to ensure that it was either submitted by the
* offerer or the zone for the order, or that the zone returns the
* expected magic value upon performing a staticcall to `isValidOrder`
* or `isValidOrderIncludingExtraData` depending on whether the order
* fulfillment specifies extra data or criteria resolvers.
*
* @param advancedOrder The advanced order in question.
* @param criteriaResolvers An array where each element contains a reference
* to a specific offer or consideration, a token
* identifier, and a proof that the supplied token
* identifier is contained in the order's merkle
* root. Note that a criteria of zero indicates
* that any (transferable) token identifier is
* valid and that no proof needs to be supplied.
* @param priorOrderHashes The order hashes of each order supplied prior to
* the current order as part of a "match" variety
* of order fulfillment (e.g. this array will be
* empty for single or "fulfill available").
* @param orderHash The hash of the order.
* @param zoneHash The hash to provide upon calling the zone.
* @param orderType The type of the order.
* @param offerer The offerer in question.
* @param zone The zone in question.
*/
function _assertRestrictedAdvancedOrderValidity(
AdvancedOrder memory advancedOrder,
CriteriaResolver[] memory criteriaResolvers,
bytes32[] memory priorOrderHashes,
bytes32 orderHash,
bytes32 zoneHash,
OrderType orderType,
address offerer,
address zone
) internal view {
// Order type 2-3 require zone or offerer be caller or zone to approve.
if (
uint256(orderType) > 1 &&
msg.sender != zone &&
msg.sender != offerer
) {
// If no extraData or criteria resolvers are supplied...
if (
advancedOrder.extraData.length == 0 &&
criteriaResolvers.length == 0
) {
// Perform minimal staticcall to the zone.
_callIsValidOrder(zone, orderHash, offerer, zoneHash);
} else {
// Otherwise, extra data or criteria resolvers were supplied; in
// that event, perform a more verbose staticcall to the zone.
bool success = _staticcall(
zone,
abi.encodeWithSelector(
ZoneInterface.isValidOrderIncludingExtraData.selector,
orderHash,
msg.sender,
advancedOrder,
priorOrderHashes,
criteriaResolvers
)
);
// Ensure call was successful and returned correct magic value.
_assertIsValidOrderStaticcallSuccess(success, orderHash);
}
}
}
/**
* @dev Internal view function to ensure that a staticcall to `isValidOrder`
* or `isValidOrderIncludingExtraData` as part of validating a
* restricted order that was not submitted by the named offerer or zone
* was successful and returned the required magic value.
*
* @param success A boolean indicating the status of the staticcall.
* @param orderHash The order hash of the order in question.
*/
function _assertIsValidOrderStaticcallSuccess(
bool success,
bytes32 orderHash
) internal view {
// If the call failed...
if (!success) {
// Revert and pass reason along if one was returned.
_revertWithReasonIfOneIsReturned();
// Otherwise, revert with a generic error message.
revert InvalidRestrictedOrder(orderHash);
}
// Ensure result was extracted and matches isValidOrder magic value.
if (_doesNotMatchMagic(ZoneInterface.isValidOrder.selector)) {
revert InvalidRestrictedOrder(orderHash);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import {
ConduitControllerInterface
} from "../interfaces/ConduitControllerInterface.sol";
import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
import { ConduitController } from "../conduit/ConduitController.sol";
import { ConduitMock } from "../test/ConduitMock.sol";
import { ConduitMockInvalidMagic } from "../test/ConduitMockInvalidMagic.sol";
import {
ConduitMockRevertNoReason
} from "../test/ConduitMockRevertNoReason.sol";
import { ConduitMockRevertBytes } from "../test/ConduitMockRevertBytes.sol";
contract ConduitControllerMock is ConduitControllerInterface {
// Register keys, owners, new potential owners, and channels by conduit.
mapping(address => ConduitProperties) internal _conduits;
// Set conduit creation code and runtime code hashes as immutable arguments.
bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH;
bytes32 internal immutable _CONDUIT_RUNTIME_CODE_HASH;
uint256 private conduitNum;
/**
* @dev Initialize contract by deploying a conduit and setting the creation
* code and runtime code hashes as immutable arguments.
*/
constructor(uint256 _conduitNum) {
conduitNum = _conduitNum;
bytes32 creationCodeHash;
bytes32 runtimeCodeHash;
if (conduitNum == 0) {
creationCodeHash = keccak256(type(ConduitMock).creationCode);
ConduitMock zeroConduit = new ConduitMock{ salt: bytes32(0) }();
runtimeCodeHash = address(zeroConduit).codehash;
} else if (conduitNum == 1) {
creationCodeHash = keccak256(
type(ConduitMockRevertNoReason).creationCode
);
ConduitMockRevertNoReason zeroConduit = new ConduitMockRevertNoReason{
salt: bytes32(0)
}();
runtimeCodeHash = address(zeroConduit).codehash;
} else if (conduitNum == 2) {
creationCodeHash = keccak256(
type(ConduitMockInvalidMagic).creationCode
);
ConduitMockInvalidMagic zeroConduit = new ConduitMockInvalidMagic{
salt: bytes32(0)
}();
runtimeCodeHash = address(zeroConduit).codehash;
} else if (conduitNum == 3) {
creationCodeHash = keccak256(
type(ConduitMockRevertBytes).creationCode
);
ConduitMockRevertBytes zeroConduit = new ConduitMockRevertBytes{
salt: bytes32(0)
}();
runtimeCodeHash = address(zeroConduit).codehash;
}
_CONDUIT_CREATION_CODE_HASH = creationCodeHash;
_CONDUIT_RUNTIME_CODE_HASH = runtimeCodeHash;
}
/**
* @notice Deploy a new conduit using a supplied conduit key and assigning
* an initial owner for the deployed conduit. Note that the first
* twenty bytes of the supplied conduit key must match the caller
* and that a new conduit cannot be created if one has already been
* deployed using the same conduit key.
*
* @param conduitKey The conduit key used to deploy the conduit. Note that
* the first twenty bytes of the conduit key must match
* the caller of this contract.
* @param initialOwner The initial owner to set for the new conduit.
*
* @return conduit The address of the newly deployed conduit.
*/
function createConduit(bytes32 conduitKey, address initialOwner)
external
override
returns (address conduit)
{
// Ensure that an initial owner has been supplied.
if (initialOwner == address(0)) {
revert InvalidInitialOwner();
}
// If the first 20 bytes of the conduit key do not match the caller...
if (address(uint160(bytes20(conduitKey))) != msg.sender) {
// Revert with an error indicating that the creator is invalid.
revert InvalidCreator();
}
// Derive address from deployer, conduit key and creation code hash.
conduit = address(
uint160(
uint256(
keccak256(
abi.encodePacked(
bytes1(0xff),
address(this),
conduitKey,
_CONDUIT_CREATION_CODE_HASH
)
)
)
)
);
// If derived conduit exists, as evidenced by comparing runtime code...
if (conduit.codehash == _CONDUIT_RUNTIME_CODE_HASH) {
// Revert with an error indicating that the conduit already exists.
revert ConduitAlreadyExists(conduit);
}
// Deploy the conduit via CREATE2 using the conduit key as the salt.
if (conduitNum == 0) {
new ConduitMock{ salt: conduitKey }();
} else if (conduitNum == 1) {
new ConduitMockRevertNoReason{ salt: conduitKey }();
} else if (conduitNum == 2) {
new ConduitMockInvalidMagic{ salt: conduitKey }();
} else if (conduitNum == 3) {
new ConduitMockRevertBytes{ salt: conduitKey }();
}
// Initialize storage variable referencing conduit properties.
ConduitProperties storage conduitProperties = _conduits[conduit];
// Set the supplied initial owner as the owner of the conduit.
conduitProperties.owner = initialOwner;
// Set conduit key used to deploy the conduit to enable reverse lookup.
conduitProperties.key = conduitKey;
// Emit an event indicating that the conduit has been deployed.
emit NewConduit(conduit, conduitKey);
// Emit an event indicating that conduit ownership has been assigned.
emit OwnershipTransferred(conduit, address(0), initialOwner);
}
/**
* @notice Open or close a channel on a given conduit, thereby allowing the
* specified account to execute transfers against that conduit.
* Extreme care must be taken when updating channels, as malicious
* or vulnerable channels can transfer any ERC20, ERC721 and ERC1155
* tokens where the token holder has granted the conduit approval.
* Only the owner of the conduit in question may call this function.
*
* @param conduit The conduit for which to open or close the channel.
* @param channel The channel to open or close on the conduit.
* @param isOpen A boolean indicating whether to open or close the channel.
*/
function updateChannel(
address conduit,
address channel,
bool isOpen
) external override {
// Ensure the caller is the current owner of the conduit in question.
_assertCallerIsConduitOwner(conduit);
// Call the conduit, updating the channel.
ConduitInterface(conduit).updateChannel(channel, isOpen);
// Retrieve storage region where channels for the conduit are tracked.
ConduitProperties storage conduitProperties = _conduits[conduit];
// Retrieve the index, if one currently exists, for the updated channel.
uint256 channelIndexPlusOne = (
conduitProperties.channelIndexesPlusOne[channel]
);
// Determine whether the updated channel is already tracked as open.
bool channelPreviouslyOpen = channelIndexPlusOne != 0;
// If the channel has been set to open and was previously closed...
if (isOpen && !channelPreviouslyOpen) {
// Add the channel to the channels array for the conduit.
conduitProperties.channels.push(channel);
// Add new open channel length to associated mapping as index + 1.
conduitProperties.channelIndexesPlusOne[channel] = (
conduitProperties.channels.length
);
} else if (!isOpen && channelPreviouslyOpen) {
// Set a previously open channel as closed via "swap & pop" method.
// Decrement located index to get the index of the closed channel.
uint256 removedChannelIndex;
// Skip underflow check as channelPreviouslyOpen being true ensures
// that channelIndexPlusOne is nonzero.
unchecked {
removedChannelIndex = channelIndexPlusOne - 1;
}
// Use length of channels array to determine index of last channel.
uint256 finalChannelIndex = conduitProperties.channels.length - 1;
// If closed channel is not last channel in the channels array...
if (finalChannelIndex != removedChannelIndex) {
// Retrieve the final channel and place the value on the stack.
address finalChannel = (
conduitProperties.channels[finalChannelIndex]
);
// Overwrite the removed channel using the final channel value.
conduitProperties.channels[removedChannelIndex] = finalChannel;
// Update final index in associated mapping to removed index.
conduitProperties.channelIndexesPlusOne[finalChannel] = (
channelIndexPlusOne
);
}
// Remove the last channel from the channels array for the conduit.
conduitProperties.channels.pop();
// Remove the closed channel from associated mapping of indexes.
delete conduitProperties.channelIndexesPlusOne[channel];
}
}
/**
* @notice Initiate conduit ownership transfer by assigning a new potential
* owner for the given conduit. Once set, the new potential owner
* may call `acceptOwnership` to claim ownership of the conduit.
* Only the owner of the conduit in question may call this function.
*
* @param conduit The conduit for which to initiate ownership transfer.
* @param newPotentialOwner The new potential owner of the conduit.
*/
function transferOwnership(address conduit, address newPotentialOwner)
external
override
{
// Ensure the caller is the current owner of the conduit in question.
_assertCallerIsConduitOwner(conduit);
// Ensure the new potential owner is not an invalid address.
if (newPotentialOwner == address(0)) {
revert NewPotentialOwnerIsZeroAddress(conduit);
}
// Ensure the new potential owner is not already set.
if (newPotentialOwner == _conduits[conduit].potentialOwner) {
revert NewPotentialOwnerAlreadySet(conduit, newPotentialOwner);
}
// Emit an event indicating that the potential owner has been updated.
emit PotentialOwnerUpdated(newPotentialOwner);
// Set the new potential owner as the potential owner of the conduit.
_conduits[conduit].potentialOwner = newPotentialOwner;
}
/**
* @notice Clear the currently set potential owner, if any, from a conduit.
* Only the owner of the conduit in question may call this function.
*
* @param conduit The conduit for which to cancel ownership transfer.
*/
function cancelOwnershipTransfer(address conduit) external override {
// Ensure the caller is the current owner of the conduit in question.
_assertCallerIsConduitOwner(conduit);
// Ensure that ownership transfer is currently possible.
if (_conduits[conduit].potentialOwner == address(0)) {
revert NoPotentialOwnerCurrentlySet(conduit);
}
// Emit an event indicating that the potential owner has been cleared.
emit PotentialOwnerUpdated(address(0));
// Clear the current new potential owner from the conduit.
_conduits[conduit].potentialOwner = address(0);
}
/**
* @notice Accept ownership of a supplied conduit. Only accounts that the
* current owner has set as the new potential owner may call this
* function.
*
* @param conduit The conduit for which to accept ownership.
*/
function acceptOwnership(address conduit) external override {
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// If caller does not match current potential owner of the conduit...
if (msg.sender != _conduits[conduit].potentialOwner) {
// Revert, indicating that caller is not current potential owner.
revert CallerIsNotNewPotentialOwner(conduit);
}
// Emit an event indicating that the potential owner has been cleared.
emit PotentialOwnerUpdated(address(0));
// Clear the current new potential owner from the conduit.
_conduits[conduit].potentialOwner = address(0);
// Emit an event indicating conduit ownership has been transferred.
emit OwnershipTransferred(
conduit,
_conduits[conduit].owner,
msg.sender
);
// Set the caller as the owner of the conduit.
_conduits[conduit].owner = msg.sender;
}
/**
* @notice Retrieve the current owner of a deployed conduit.
*
* @param conduit The conduit for which to retrieve the associated owner.
*
* @return owner The owner of the supplied conduit.
*/
function ownerOf(address conduit)
external
view
override
returns (address owner)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve the current owner of the conduit in question.
owner = _conduits[conduit].owner;
}
/**
* @notice Retrieve the conduit key for a deployed conduit via reverse
* lookup.
*
* @param conduit The conduit for which to retrieve the associated conduit
* key.
*
* @return conduitKey The conduit key used to deploy the supplied conduit.
*/
function getKey(address conduit)
external
view
override
returns (bytes32 conduitKey)
{
// Attempt to retrieve a conduit key for the conduit in question.
conduitKey = _conduits[conduit].key;
// Revert if no conduit key was located.
if (conduitKey == bytes32(0)) {
revert NoConduit();
}
}
/**
* @notice Derive the conduit associated with a given conduit key and
* determine whether that conduit exists (i.e. whether it has been
* deployed).
*
* @param conduitKey The conduit key used to derive the conduit.
*
* @return conduit The derived address of the conduit.
* @return exists A boolean indicating whether the derived conduit has been
* deployed or not.
*/
function getConduit(bytes32 conduitKey)
external
view
override
returns (address conduit, bool exists)
{
// Derive address from deployer, conduit key and creation code hash.
conduit = address(
uint160(
uint256(
keccak256(
abi.encodePacked(
bytes1(0xff),
address(this),
conduitKey,
_CONDUIT_CREATION_CODE_HASH
)
)
)
)
);
// Determine whether conduit exists by retrieving its runtime code.
exists = (conduit.codehash == _CONDUIT_RUNTIME_CODE_HASH);
}
/**
* @notice Retrieve the potential owner, if any, for a given conduit. The
* current owner may set a new potential owner via
* `transferOwnership` and that owner may then accept ownership of
* the conduit in question via `acceptOwnership`.
*
* @param conduit The conduit for which to retrieve the potential owner.
*
* @return potentialOwner The potential owner, if any, for the conduit.
*/
function getPotentialOwner(address conduit)
external
view
override
returns (address potentialOwner)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve the current potential owner of the conduit in question.
potentialOwner = _conduits[conduit].potentialOwner;
}
/**
* @notice Retrieve the status (either open or closed) of a given channel on
* a conduit.
*
* @param conduit The conduit for which to retrieve the channel status.
* @param channel The channel for which to retrieve the status.
*
* @return isOpen The status of the channel on the given conduit.
*/
function getChannelStatus(address conduit, address channel)
external
view
override
returns (bool isOpen)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve the current channel status for the conduit in question.
isOpen = _conduits[conduit].channelIndexesPlusOne[channel] != 0;
}
/**
* @notice Retrieve the total number of open channels for a given conduit.
*
* @param conduit The conduit for which to retrieve the total channel count.
*
* @return totalChannels The total number of open channels for the conduit.
*/
function getTotalChannels(address conduit)
external
view
override
returns (uint256 totalChannels)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve the total open channel count for the conduit in question.
totalChannels = _conduits[conduit].channels.length;
}
/**
* @notice Retrieve an open channel at a specific index for a given conduit.
* Note that the index of a channel can change as a result of other
* channels being closed on the conduit.
*
* @param conduit The conduit for which to retrieve the open channel.
* @param channelIndex The index of the channel in question.
*
* @return channel The open channel, if any, at the specified channel index.
*/
function getChannel(address conduit, uint256 channelIndex)
external
view
override
returns (address channel)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve the total open channel count for the conduit in question.
uint256 totalChannels = _conduits[conduit].channels.length;
// Ensure that the supplied index is within range.
if (channelIndex >= totalChannels) {
revert ChannelOutOfRange(conduit);
}
// Retrieve the channel at the given index.
channel = _conduits[conduit].channels[channelIndex];
}
/**
* @notice Retrieve all open channels for a given conduit. Note that calling
* this function for a conduit with many channels will revert with
* an out-of-gas error.
*
* @param conduit The conduit for which to retrieve open channels.
*
* @return channels An array of open channels on the given conduit.
*/
function getChannels(address conduit)
external
view
override
returns (address[] memory channels)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve all of the open channels on the conduit in question.
channels = _conduits[conduit].channels;
}
/**
* @dev Retrieve the conduit creation code and runtime code hashes.
*/
function getConduitCodeHashes()
external
view
override
returns (bytes32 creationCodeHash, bytes32 runtimeCodeHash)
{
// Retrieve the conduit creation code hash from runtime.
creationCodeHash = _CONDUIT_CREATION_CODE_HASH;
// Retrieve the conduit runtime code hash from runtime.
runtimeCodeHash = _CONDUIT_RUNTIME_CODE_HASH;
}
/**
* @dev Private view function to revert if the caller is not the owner of a
* given conduit.
*
* @param conduit The conduit for which to assert ownership.
*/
function _assertCallerIsConduitOwner(address conduit) private view {
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// If the caller does not match the current owner of the conduit...
if (msg.sender != _conduits[conduit].owner) {
// Revert, indicating that the caller is not the owner.
revert CallerIsNotOwner(conduit);
}
}
/**
* @dev Private view function to revert if a given conduit does not exist.
*
* @param conduit The conduit for which to assert existence.
*/
function _assertConduitExists(address conduit) private view {
// Attempt to retrieve a conduit key for the conduit in question.
if (_conduits[conduit].key == bytes32(0)) {
// Revert if no conduit key was located.
revert NoConduit();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import {
ConduitControllerInterface
} from "../interfaces/ConduitControllerInterface.sol";
import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
import { Conduit } from "./Conduit.sol";
/**
* @title ConduitController
* @author 0age
* @notice ConduitController enables deploying and managing new conduits, or
* contracts that allow registered callers (or open "channels") to
* transfer approved ERC20/721/1155 tokens on their behalf.
*/
contract ConduitController is ConduitControllerInterface {
// Register keys, owners, new potential owners, and channels by conduit.
mapping(address => ConduitProperties) internal _conduits;
// Set conduit creation code and runtime code hashes as immutable arguments.
bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH;
bytes32 internal immutable _CONDUIT_RUNTIME_CODE_HASH;
/**
* @dev Initialize contract by deploying a conduit and setting the creation
* code and runtime code hashes as immutable arguments.
*/
constructor() {
// Derive the conduit creation code hash and set it as an immutable.
_CONDUIT_CREATION_CODE_HASH = keccak256(type(Conduit).creationCode);
// Deploy a conduit with the zero hash as the salt.
Conduit zeroConduit = new Conduit{ salt: bytes32(0) }();
// Retrieve the conduit runtime code hash and set it as an immutable.
_CONDUIT_RUNTIME_CODE_HASH = address(zeroConduit).codehash;
}
/**
* @notice Deploy a new conduit using a supplied conduit key and assigning
* an initial owner for the deployed conduit. Note that the first
* twenty bytes of the supplied conduit key must match the caller
* and that a new conduit cannot be created if one has already been
* deployed using the same conduit key.
*
* @param conduitKey The conduit key used to deploy the conduit. Note that
* the first twenty bytes of the conduit key must match
* the caller of this contract.
* @param initialOwner The initial owner to set for the new conduit.
*
* @return conduit The address of the newly deployed conduit.
*/
function createConduit(bytes32 conduitKey, address initialOwner)
external
override
returns (address conduit)
{
// Ensure that an initial owner has been supplied.
if (initialOwner == address(0)) {
revert InvalidInitialOwner();
}
// If the first 20 bytes of the conduit key do not match the caller...
if (address(uint160(bytes20(conduitKey))) != msg.sender) {
// Revert with an error indicating that the creator is invalid.
revert InvalidCreator();
}
// Derive address from deployer, conduit key and creation code hash.
conduit = address(
uint160(
uint256(
keccak256(
abi.encodePacked(
bytes1(0xff),
address(this),
conduitKey,
_CONDUIT_CREATION_CODE_HASH
)
)
)
)
);
// If derived conduit exists, as evidenced by comparing runtime code...
if (conduit.codehash == _CONDUIT_RUNTIME_CODE_HASH) {
// Revert with an error indicating that the conduit already exists.
revert ConduitAlreadyExists(conduit);
}
// Deploy the conduit via CREATE2 using the conduit key as the salt.
new Conduit{ salt: conduitKey }();
// Initialize storage variable referencing conduit properties.
ConduitProperties storage conduitProperties = _conduits[conduit];
// Set the supplied initial owner as the owner of the conduit.
conduitProperties.owner = initialOwner;
// Set conduit key used to deploy the conduit to enable reverse lookup.
conduitProperties.key = conduitKey;
// Emit an event indicating that the conduit has been deployed.
emit NewConduit(conduit, conduitKey);
// Emit an event indicating that conduit ownership has been assigned.
emit OwnershipTransferred(conduit, address(0), initialOwner);
}
/**
* @notice Open or close a channel on a given conduit, thereby allowing the
* specified account to execute transfers against that conduit.
* Extreme care must be taken when updating channels, as malicious
* or vulnerable channels can transfer any ERC20, ERC721 and ERC1155
* tokens where the token holder has granted the conduit approval.
* Only the owner of the conduit in question may call this function.
*
* @param conduit The conduit for which to open or close the channel.
* @param channel The channel to open or close on the conduit.
* @param isOpen A boolean indicating whether to open or close the channel.
*/
function updateChannel(
address conduit,
address channel,
bool isOpen
) external override {
// Ensure the caller is the current owner of the conduit in question.
_assertCallerIsConduitOwner(conduit);
// Call the conduit, updating the channel.
ConduitInterface(conduit).updateChannel(channel, isOpen);
// Retrieve storage region where channels for the conduit are tracked.
ConduitProperties storage conduitProperties = _conduits[conduit];
// Retrieve the index, if one currently exists, for the updated channel.
uint256 channelIndexPlusOne = (
conduitProperties.channelIndexesPlusOne[channel]
);
// Determine whether the updated channel is already tracked as open.
bool channelPreviouslyOpen = channelIndexPlusOne != 0;
// If the channel has been set to open and was previously closed...
if (isOpen && !channelPreviouslyOpen) {
// Add the channel to the channels array for the conduit.
conduitProperties.channels.push(channel);
// Add new open channel length to associated mapping as index + 1.
conduitProperties.channelIndexesPlusOne[channel] = (
conduitProperties.channels.length
);
} else if (!isOpen && channelPreviouslyOpen) {
// Set a previously open channel as closed via "swap & pop" method.
// Decrement located index to get the index of the closed channel.
uint256 removedChannelIndex;
// Skip underflow check as channelPreviouslyOpen being true ensures
// that channelIndexPlusOne is nonzero.
unchecked {
removedChannelIndex = channelIndexPlusOne - 1;
}
// Use length of channels array to determine index of last channel.
uint256 finalChannelIndex = conduitProperties.channels.length - 1;
// If closed channel is not last channel in the channels array...
if (finalChannelIndex != removedChannelIndex) {
// Retrieve the final channel and place the value on the stack.
address finalChannel = (
conduitProperties.channels[finalChannelIndex]
);
// Overwrite the removed channel using the final channel value.
conduitProperties.channels[removedChannelIndex] = finalChannel;
// Update final index in associated mapping to removed index.
conduitProperties.channelIndexesPlusOne[finalChannel] = (
channelIndexPlusOne
);
}
// Remove the last channel from the channels array for the conduit.
conduitProperties.channels.pop();
// Remove the closed channel from associated mapping of indexes.
delete conduitProperties.channelIndexesPlusOne[channel];
}
}
/**
* @notice Initiate conduit ownership transfer by assigning a new potential
* owner for the given conduit. Once set, the new potential owner
* may call `acceptOwnership` to claim ownership of the conduit.
* Only the owner of the conduit in question may call this function.
*
* @param conduit The conduit for which to initiate ownership transfer.
* @param newPotentialOwner The new potential owner of the conduit.
*/
function transferOwnership(address conduit, address newPotentialOwner)
external
override
{
// Ensure the caller is the current owner of the conduit in question.
_assertCallerIsConduitOwner(conduit);
// Ensure the new potential owner is not an invalid address.
if (newPotentialOwner == address(0)) {
revert NewPotentialOwnerIsZeroAddress(conduit);
}
// Ensure the new potential owner is not already set.
if (newPotentialOwner == _conduits[conduit].potentialOwner) {
revert NewPotentialOwnerAlreadySet(conduit, newPotentialOwner);
}
// Emit an event indicating that the potential owner has been updated.
emit PotentialOwnerUpdated(newPotentialOwner);
// Set the new potential owner as the potential owner of the conduit.
_conduits[conduit].potentialOwner = newPotentialOwner;
}
/**
* @notice Clear the currently set potential owner, if any, from a conduit.
* Only the owner of the conduit in question may call this function.
*
* @param conduit The conduit for which to cancel ownership transfer.
*/
function cancelOwnershipTransfer(address conduit) external override {
// Ensure the caller is the current owner of the conduit in question.
_assertCallerIsConduitOwner(conduit);
// Ensure that ownership transfer is currently possible.
if (_conduits[conduit].potentialOwner == address(0)) {
revert NoPotentialOwnerCurrentlySet(conduit);
}
// Emit an event indicating that the potential owner has been cleared.
emit PotentialOwnerUpdated(address(0));
// Clear the current new potential owner from the conduit.
_conduits[conduit].potentialOwner = address(0);
}
/**
* @notice Accept ownership of a supplied conduit. Only accounts that the
* current owner has set as the new potential owner may call this
* function.
*
* @param conduit The conduit for which to accept ownership.
*/
function acceptOwnership(address conduit) external override {
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// If caller does not match current potential owner of the conduit...
if (msg.sender != _conduits[conduit].potentialOwner) {
// Revert, indicating that caller is not current potential owner.
revert CallerIsNotNewPotentialOwner(conduit);
}
// Emit an event indicating that the potential owner has been cleared.
emit PotentialOwnerUpdated(address(0));
// Clear the current new potential owner from the conduit.
_conduits[conduit].potentialOwner = address(0);
// Emit an event indicating conduit ownership has been transferred.
emit OwnershipTransferred(
conduit,
_conduits[conduit].owner,
msg.sender
);
// Set the caller as the owner of the conduit.
_conduits[conduit].owner = msg.sender;
}
/**
* @notice Retrieve the current owner of a deployed conduit.
*
* @param conduit The conduit for which to retrieve the associated owner.
*
* @return owner The owner of the supplied conduit.
*/
function ownerOf(address conduit)
external
view
override
returns (address owner)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve the current owner of the conduit in question.
owner = _conduits[conduit].owner;
}
/**
* @notice Retrieve the conduit key for a deployed conduit via reverse
* lookup.
*
* @param conduit The conduit for which to retrieve the associated conduit
* key.
*
* @return conduitKey The conduit key used to deploy the supplied conduit.
*/
function getKey(address conduit)
external
view
override
returns (bytes32 conduitKey)
{
// Attempt to retrieve a conduit key for the conduit in question.
conduitKey = _conduits[conduit].key;
// Revert if no conduit key was located.
if (conduitKey == bytes32(0)) {
revert NoConduit();
}
}
/**
* @notice Derive the conduit associated with a given conduit key and
* determine whether that conduit exists (i.e. whether it has been
* deployed).
*
* @param conduitKey The conduit key used to derive the conduit.
*
* @return conduit The derived address of the conduit.
* @return exists A boolean indicating whether the derived conduit has been
* deployed or not.
*/
function getConduit(bytes32 conduitKey)
external
view
override
returns (address conduit, bool exists)
{
// Derive address from deployer, conduit key and creation code hash.
conduit = address(
uint160(
uint256(
keccak256(
abi.encodePacked(
bytes1(0xff),
address(this),
conduitKey,
_CONDUIT_CREATION_CODE_HASH
)
)
)
)
);
// Determine whether conduit exists by retrieving its runtime code.
exists = (conduit.codehash == _CONDUIT_RUNTIME_CODE_HASH);
}
/**
* @notice Retrieve the potential owner, if any, for a given conduit. The
* current owner may set a new potential owner via
* `transferOwnership` and that owner may then accept ownership of
* the conduit in question via `acceptOwnership`.
*
* @param conduit The conduit for which to retrieve the potential owner.
*
* @return potentialOwner The potential owner, if any, for the conduit.
*/
function getPotentialOwner(address conduit)
external
view
override
returns (address potentialOwner)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve the current potential owner of the conduit in question.
potentialOwner = _conduits[conduit].potentialOwner;
}
/**
* @notice Retrieve the status (either open or closed) of a given channel on
* a conduit.
*
* @param conduit The conduit for which to retrieve the channel status.
* @param channel The channel for which to retrieve the status.
*
* @return isOpen The status of the channel on the given conduit.
*/
function getChannelStatus(address conduit, address channel)
external
view
override
returns (bool isOpen)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve the current channel status for the conduit in question.
isOpen = _conduits[conduit].channelIndexesPlusOne[channel] != 0;
}
/**
* @notice Retrieve the total number of open channels for a given conduit.
*
* @param conduit The conduit for which to retrieve the total channel count.
*
* @return totalChannels The total number of open channels for the conduit.
*/
function getTotalChannels(address conduit)
external
view
override
returns (uint256 totalChannels)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve the total open channel count for the conduit in question.
totalChannels = _conduits[conduit].channels.length;
}
/**
* @notice Retrieve an open channel at a specific index for a given conduit.
* Note that the index of a channel can change as a result of other
* channels being closed on the conduit.
*
* @param conduit The conduit for which to retrieve the open channel.
* @param channelIndex The index of the channel in question.
*
* @return channel The open channel, if any, at the specified channel index.
*/
function getChannel(address conduit, uint256 channelIndex)
external
view
override
returns (address channel)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve the total open channel count for the conduit in question.
uint256 totalChannels = _conduits[conduit].channels.length;
// Ensure that the supplied index is within range.
if (channelIndex >= totalChannels) {
revert ChannelOutOfRange(conduit);
}
// Retrieve the channel at the given index.
channel = _conduits[conduit].channels[channelIndex];
}
/**
* @notice Retrieve all open channels for a given conduit. Note that calling
* this function for a conduit with many channels will revert with
* an out-of-gas error.
*
* @param conduit The conduit for which to retrieve open channels.
*
* @return channels An array of open channels on the given conduit.
*/
function getChannels(address conduit)
external
view
override
returns (address[] memory channels)
{
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// Retrieve all of the open channels on the conduit in question.
channels = _conduits[conduit].channels;
}
/**
* @dev Retrieve the conduit creation code and runtime code hashes.
*/
function getConduitCodeHashes()
external
view
override
returns (bytes32 creationCodeHash, bytes32 runtimeCodeHash)
{
// Retrieve the conduit creation code hash from runtime.
creationCodeHash = _CONDUIT_CREATION_CODE_HASH;
// Retrieve the conduit runtime code hash from runtime.
runtimeCodeHash = _CONDUIT_RUNTIME_CODE_HASH;
}
/**
* @dev Private view function to revert if the caller is not the owner of a
* given conduit.
*
* @param conduit The conduit for which to assert ownership.
*/
function _assertCallerIsConduitOwner(address conduit) private view {
// Ensure that the conduit in question exists.
_assertConduitExists(conduit);
// If the caller does not match the current owner of the conduit...
if (msg.sender != _conduits[conduit].owner) {
// Revert, indicating that the caller is not the owner.
revert CallerIsNotOwner(conduit);
}
}
/**
* @dev Private view function to revert if a given conduit does not exist.
*
* @param conduit The conduit for which to assert existence.
*/
function _assertConduitExists(address conduit) private view {
// Attempt to retrieve a conduit key for the conduit in question.
if (_conduits[conduit].key == bytes32(0)) {
// Revert if no conduit key was located.
revert NoConduit();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
import { TokenTransferrer } from "../lib/TokenTransferrer.sol";
import {
ConduitTransfer,
ConduitBatch1155Transfer
} from "../conduit/lib/ConduitStructs.sol";
contract ConduitMock is ConduitInterface {
constructor() {}
function execute(
ConduitTransfer[] calldata /* transfers */
) external pure override returns (bytes4) {
// Return the valid magic value.
return 0x4ce34aa2;
}
function executeBatch1155(
ConduitBatch1155Transfer[] calldata /* batch1155Transfers */
) external view override returns (bytes4 magicValue) {}
function executeWithBatch1155(
ConduitTransfer[] calldata, /* standardTransfers */
ConduitBatch1155Transfer[] calldata /* batch1155Transfers */
) external view override returns (bytes4 magicValue) {}
function updateChannel(address channel, bool isOpen) external override {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
import { TokenTransferrer } from "../lib/TokenTransferrer.sol";
import {
ConduitTransfer,
ConduitBatch1155Transfer
} from "../conduit/lib/ConduitStructs.sol";
contract ConduitMockInvalidMagic is ConduitInterface {
constructor() {}
function execute(
ConduitTransfer[] calldata /* transfers */
) external pure override returns (bytes4) {
return 0xabcd0000;
}
function executeBatch1155(
ConduitBatch1155Transfer[] calldata /* batch1155Transfers */
) external view override returns (bytes4 magicValue) {}
function executeWithBatch1155(
ConduitTransfer[] calldata, /* standardTransfers */
ConduitBatch1155Transfer[] calldata /* batch1155Transfers */
) external view override returns (bytes4 magicValue) {}
function updateChannel(address channel, bool isOpen) external override {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
import { TokenTransferrer } from "../lib/TokenTransferrer.sol";
import {
ConduitTransfer,
ConduitBatch1155Transfer
} from "../conduit/lib/ConduitStructs.sol";
contract ConduitMockRevertNoReason is ConduitInterface {
constructor() {}
function execute(
ConduitTransfer[] calldata /* transfers */
) external pure override returns (bytes4) {
// Revert without reason string.
revert();
}
function executeBatch1155(
ConduitBatch1155Transfer[] calldata /* batch1155Transfers */
) external view override returns (bytes4 magicValue) {}
function executeWithBatch1155(
ConduitTransfer[] calldata, /* standardTransfers */
ConduitBatch1155Transfer[] calldata /* batch1155Transfers */
) external view override returns (bytes4 magicValue) {}
function updateChannel(address channel, bool isOpen) external override {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
import { TokenTransferrer } from "../lib/TokenTransferrer.sol";
import {
ConduitTransfer,
ConduitBatch1155Transfer
} from "../conduit/lib/ConduitStructs.sol";
contract ConduitMockRevertBytes is ConduitInterface {
constructor() {}
error CustomError();
function execute(
ConduitTransfer[] calldata /* transfers */
) external pure override returns (bytes4) {
revert CustomError();
}
function executeBatch1155(
ConduitBatch1155Transfer[] calldata /* batch1155Transfers */
) external view override returns (bytes4 magicValue) {}
function executeWithBatch1155(
ConduitTransfer[] calldata, /* standardTransfers */
ConduitBatch1155Transfer[] calldata /* batch1155Transfers */
) external view override returns (bytes4 magicValue) {}
function updateChannel(address channel, bool isOpen) external override {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { ConduitInterface } from "../interfaces/ConduitInterface.sol";
import {
OrderType,
ItemType,
BasicOrderRouteType
} from "./ConsiderationEnums.sol";
import {
AdditionalRecipient,
BasicOrderParameters,
OfferItem,
ConsiderationItem,
SpentItem,
ReceivedItem
} from "./ConsiderationStructs.sol";
import { OrderValidator } from "./OrderValidator.sol";
import "./ConsiderationConstants.sol";
/**
* @title BasicOrderFulfiller
* @author 0age
* @notice BasicOrderFulfiller contains functionality for fulfilling "basic"
* orders with minimal overhead. See documentation for details on what
* qualifies as a basic order.
*/
contract BasicOrderFulfiller is OrderValidator {
/**
* @dev Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController) OrderValidator(conduitController) {}
/**
* @dev Internal function to fulfill an order offering an ERC20, ERC721, or
* ERC1155 item by supplying Ether (or other native tokens), ERC20
* tokens, an ERC721 item, or an ERC1155 item as consideration. Six
* permutations are supported: Native token to ERC721, Native token to
* ERC1155, ERC20 to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and
* ERC1155 to ERC20 (with native tokens supplied as msg.value). For an
* order to be eligible for fulfillment via this method, it must
* contain a single offer item (though that item may have a greater
* amount if the item is not an ERC721). An arbitrary number of
* "additional recipients" may also be supplied which will each receive
* native tokens or ERC20 items from the fulfiller as consideration.
* Refer to the documentation for a more comprehensive summary of how
* to utilize this method and what orders are compatible with it.
*
* @param parameters Additional information on the fulfilled order. Note
* that the offerer and the fulfiller must first approve
* this contract (or their chosen conduit if indicated)
* before any tokens can be transferred. Also note that
* contract recipients of ERC1155 consideration items must
* implement `onERC1155Received` in order to receive those
* items.
*
* @return A boolean indicating whether the order has been fulfilled.
*/
function _validateAndFulfillBasicOrder(
BasicOrderParameters calldata parameters
) internal returns (bool) {
// Declare enums for order type & route to extract from basicOrderType.
BasicOrderRouteType route;
OrderType orderType;
// Declare additional recipient item type to derive from the route type.
ItemType additionalRecipientsItemType;
// Utilize assembly to extract the order type and the basic order route.
assembly {
// Read basicOrderType from calldata.
let basicOrderType := calldataload(BasicOrder_basicOrderType_cdPtr)
// Mask all but 2 least-significant bits to derive the order type.
orderType := and(basicOrderType, 3)
// Divide basicOrderType by four to derive the route.
route := shr(2, basicOrderType)
// If route > 1 additionalRecipient items are ERC20 (1) else Eth (0)
additionalRecipientsItemType := gt(route, 1)
}
{
// Declare temporary variable for enforcing payable status.
bool correctPayableStatus;
// Utilize assembly to compare the route to the callvalue.
assembly {
// route 0 and 1 are payable, otherwise route is not payable.
correctPayableStatus := eq(
additionalRecipientsItemType,
iszero(callvalue())
)
}
// Revert if msg.value has not been supplied as part of payable
// routes or has been supplied as part of non-payable routes.
if (!correctPayableStatus) {
revert InvalidMsgValue(msg.value);
}
}
// Declare more arguments that will be derived from route and calldata.
address additionalRecipientsToken;
ItemType offeredItemType;
bool offerTypeIsAdditionalRecipientsType;
// Declare scope for received item type to manage stack pressure.
{
ItemType receivedItemType;
// Utilize assembly to retrieve function arguments and cast types.
assembly {
// Check if offered item type == additional recipient item type.
offerTypeIsAdditionalRecipientsType := gt(route, 3)
// If route > 3 additionalRecipientsToken is at 0xc4 else 0x24.
additionalRecipientsToken := calldataload(
add(
BasicOrder_considerationToken_cdPtr,
mul(
offerTypeIsAdditionalRecipientsType,
BasicOrder_common_params_size
)
)
)
// If route > 2, receivedItemType is route - 2. If route is 2,
// the receivedItemType is ERC20 (1). Otherwise, it is Eth (0).
receivedItemType := add(
mul(sub(route, 2), gt(route, 2)),
eq(route, 2)
)
// If route > 3, offeredItemType is ERC20 (1). Route is 2 or 3,
// offeredItemType = route. Route is 0 or 1, it is route + 2.
offeredItemType := sub(
add(route, mul(iszero(additionalRecipientsItemType), 2)),
mul(
offerTypeIsAdditionalRecipientsType,
add(receivedItemType, 1)
)
)
}
// Derive & validate order using parameters and update order status.
_prepareBasicFulfillmentFromCalldata(
parameters,
orderType,
receivedItemType,
additionalRecipientsItemType,
additionalRecipientsToken,
offeredItemType
);
}
// Declare conduitKey argument used by transfer functions.
bytes32 conduitKey;
// Utilize assembly to derive conduit (if relevant) based on route.
assembly {
// use offerer conduit for routes 0-3, fulfiller conduit otherwise.
conduitKey := calldataload(
add(
BasicOrder_offererConduit_cdPtr,
mul(offerTypeIsAdditionalRecipientsType, OneWord)
)
)
}
// Transfer tokens based on the route.
if (additionalRecipientsItemType == ItemType.NATIVE) {
// Ensure neither the token nor the identifier parameters are set.
if (
(uint160(parameters.considerationToken) |
parameters.considerationIdentifier) != 0
) {
revert UnusedItemParameters();
}
// Transfer the ERC721 or ERC1155 item, bypassing the accumulator.
_transferIndividual721Or1155Item(
offeredItemType,
parameters.offerToken,
parameters.offerer,
msg.sender,
parameters.offerIdentifier,
parameters.offerAmount,
conduitKey
);
// Transfer native to recipients, return excess to caller & wrap up.
_transferEthAndFinalize(
parameters.considerationAmount,
parameters.offerer,
parameters.additionalRecipients
);
} else {
// Initialize an accumulator array. From this point forward, no new
// memory regions can be safely allocated until the accumulator is
// no longer being utilized, as the accumulator operates in an
// open-ended fashion from this memory pointer; existing memory may
// still be accessed and modified, however.
bytes memory accumulator = new bytes(AccumulatorDisarmed);
// Choose transfer method for ERC721 or ERC1155 item based on route.
if (route == BasicOrderRouteType.ERC20_TO_ERC721) {
// Transfer ERC721 to caller using offerer's conduit preference.
_transferERC721(
parameters.offerToken,
parameters.offerer,
msg.sender,
parameters.offerIdentifier,
parameters.offerAmount,
conduitKey,
accumulator
);
} else if (route == BasicOrderRouteType.ERC20_TO_ERC1155) {
// Transfer ERC1155 to caller with offerer's conduit preference.
_transferERC1155(
parameters.offerToken,
parameters.offerer,
msg.sender,
parameters.offerIdentifier,
parameters.offerAmount,
conduitKey,
accumulator
);
} else if (route == BasicOrderRouteType.ERC721_TO_ERC20) {
// Transfer ERC721 to offerer using caller's conduit preference.
_transferERC721(
parameters.considerationToken,
msg.sender,
parameters.offerer,
parameters.considerationIdentifier,
parameters.considerationAmount,
conduitKey,
accumulator
);
} else {
// route == BasicOrderRouteType.ERC1155_TO_ERC20
// Transfer ERC1155 to offerer with caller's conduit preference.
_transferERC1155(
parameters.considerationToken,
msg.sender,
parameters.offerer,
parameters.considerationIdentifier,
parameters.considerationAmount,
conduitKey,
accumulator
);
}
// Transfer ERC20 tokens to all recipients and wrap up.
_transferERC20AndFinalize(
parameters.offerer,
parameters,
offerTypeIsAdditionalRecipientsType,
accumulator
);
// Trigger any remaining accumulated transfers via call to conduit.
_triggerIfArmed(accumulator);
}
// Clear the reentrancy guard.
_clearReentrancyGuard();
return true;
}
/**
* @dev Internal function to prepare fulfillment of a basic order with
* manual calldata and memory access. This calculates the order hash,
* emits an OrderFulfilled event, and asserts basic order validity.
* Note that calldata offsets must be validated as this function
* accesses constant calldata pointers for dynamic types that match
* default ABI encoding, but valid ABI encoding can use arbitrary
* offsets. Checking that the offsets were produced by default encoding
* will ensure that other functions using Solidity's calldata accessors
* (which calculate pointers from the stored offsets) are reading the
* same data as the order hash is derived from. Also note that This
* function accesses memory directly. It does not clear the expanded
* memory regions used, nor does it update the free memory pointer, so
* other direct memory access must not assume that unused memory is
* empty.
*
* @param parameters The parameters of the basic order.
* @param orderType The order type.
* @param receivedItemType The item type of the initial
* consideration item on the order.
* @param additionalRecipientsItemType The item type of any additional
* consideration item on the order.
* @param additionalRecipientsToken The ERC20 token contract address (if
* applicable) for any additional
* consideration item on the order.
* @param offeredItemType The item type of the offered item on
* the order.
*/
function _prepareBasicFulfillmentFromCalldata(
BasicOrderParameters calldata parameters,
OrderType orderType,
ItemType receivedItemType,
ItemType additionalRecipientsItemType,
address additionalRecipientsToken,
ItemType offeredItemType
) internal {
// Ensure this function cannot be triggered during a reentrant call.
_setReentrancyGuard();
// Ensure current timestamp falls between order start time and end time.
_verifyTime(parameters.startTime, parameters.endTime, true);
// Verify that calldata offsets for all dynamic types were produced by
// default encoding. This ensures that the constants we use for calldata
// pointers to dynamic types are the same as those calculated by
// Solidity using their offsets. Also verify that the basic order type
// is within range.
_assertValidBasicOrderParameters();
// Ensure supplied consideration array length is not less than original.
_assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
parameters.additionalRecipients.length,
parameters.totalOriginalAdditionalRecipients
);
// Declare stack element for the order hash.
bytes32 orderHash;
{
/**
* First, handle consideration items. Memory Layout:
* 0x60: final hash of the array of consideration item hashes
* 0x80-0x160: reused space for EIP712 hashing of each item
* - 0x80: ConsiderationItem EIP-712 typehash (constant)
* - 0xa0: itemType
* - 0xc0: token
* - 0xe0: identifier
* - 0x100: startAmount
* - 0x120: endAmount
* - 0x140: recipient
* 0x160-END_ARR: array of consideration item hashes
* - 0x160: primary consideration item EIP712 hash
* - 0x180-END_ARR: additional recipient item EIP712 hashes
* END_ARR: beginning of data for OrderFulfilled event
* - END_ARR + 0x120: length of ReceivedItem array
* - END_ARR + 0x140: beginning of data for first ReceivedItem
* (Note: END_ARR = 0x180 + RECIPIENTS_LENGTH * 0x20)
*/
// Load consideration item typehash from runtime and place on stack.
bytes32 typeHash = _CONSIDERATION_ITEM_TYPEHASH;
// Utilize assembly to enable reuse of memory regions and use
// constant pointers when possible.
assembly {
/*
* 1. Calculate the EIP712 ConsiderationItem hash for the
* primary consideration item of the basic order.
*/
// Write ConsiderationItem type hash and item type to memory.
mstore(BasicOrder_considerationItem_typeHash_ptr, typeHash)
mstore(
BasicOrder_considerationItem_itemType_ptr,
receivedItemType
)
// Copy calldata region with (token, identifier, amount) from
// BasicOrderParameters to ConsiderationItem. The
// considerationAmount is written to startAmount and endAmount
// as basic orders do not have dynamic amounts.
calldatacopy(
BasicOrder_considerationItem_token_ptr,
BasicOrder_considerationToken_cdPtr,
ThreeWords
)
// Copy calldata region with considerationAmount and offerer
// from BasicOrderParameters to endAmount and recipient in
// ConsiderationItem.
calldatacopy(
BasicOrder_considerationItem_endAmount_ptr,
BasicOrder_considerationAmount_cdPtr,
TwoWords
)
// Calculate EIP712 ConsiderationItem hash and store it in the
// array of EIP712 consideration hashes.
mstore(
BasicOrder_considerationHashesArray_ptr,
keccak256(
BasicOrder_considerationItem_typeHash_ptr,
EIP712_ConsiderationItem_size
)
)
/*
* 2. Write a ReceivedItem struct for the primary consideration
* item to the consideration array in OrderFulfilled.
*/
// Get the length of the additional recipients array.
let totalAdditionalRecipients := calldataload(
BasicOrder_additionalRecipients_length_cdPtr
)
// Calculate pointer to length of OrderFulfilled consideration
// array.
let eventConsiderationArrPtr := add(
OrderFulfilled_consideration_length_baseOffset,
mul(totalAdditionalRecipients, OneWord)
)
// Set the length of the consideration array to the number of
// additional recipients, plus one for the primary consideration
// item.
mstore(
eventConsiderationArrPtr,
add(
calldataload(
BasicOrder_additionalRecipients_length_cdPtr
),
1
)
)
// Overwrite the consideration array pointer so it points to the
// body of the first element
eventConsiderationArrPtr := add(
eventConsiderationArrPtr,
OneWord
)
// Set itemType at start of the ReceivedItem memory region.
mstore(eventConsiderationArrPtr, receivedItemType)
// Copy calldata region (token, identifier, amount & recipient)
// from BasicOrderParameters to ReceivedItem memory.
calldatacopy(
add(eventConsiderationArrPtr, Common_token_offset),
BasicOrder_considerationToken_cdPtr,
FourWords
)
/*
* 3. Calculate EIP712 ConsiderationItem hashes for original
* additional recipients and add a ReceivedItem for each to the
* consideration array in the OrderFulfilled event. The original
* additional recipients are all the considerations signed by
* the offerer aside from the primary consideration of the
* order. Uses memory region from 0x80-0x160 as a buffer for
* calculating EIP712 ConsiderationItem hashes.
*/
// Put pointer to consideration hashes array on the stack.
// This will be updated as each additional recipient is hashed
let
considerationHashesPtr
:= BasicOrder_considerationHashesArray_ptr
// Write item type, token, & identifier for additional recipient
// to memory region for hashing EIP712 ConsiderationItem; these
// values will be reused for each recipient.
mstore(
BasicOrder_considerationItem_itemType_ptr,
additionalRecipientsItemType
)
mstore(
BasicOrder_considerationItem_token_ptr,
additionalRecipientsToken
)
mstore(BasicOrder_considerationItem_identifier_ptr, 0)
// Read length of the additionalRecipients array from calldata
// and iterate.
totalAdditionalRecipients := calldataload(
BasicOrder_totalOriginalAdditionalRecipients_cdPtr
)
let i := 0
// prettier-ignore
for {} lt(i, totalAdditionalRecipients) {
i := add(i, 1)
} {
/*
* Calculate EIP712 ConsiderationItem hash for recipient.
*/
// Retrieve calldata pointer for additional recipient.
let additionalRecipientCdPtr := add(
BasicOrder_additionalRecipients_data_cdPtr,
mul(AdditionalRecipients_size, i)
)
// Copy startAmount from calldata to the ConsiderationItem
// struct.
calldatacopy(
BasicOrder_considerationItem_startAmount_ptr,
additionalRecipientCdPtr,
OneWord
)
// Copy endAmount and recipient from calldata to the
// ConsiderationItem struct.
calldatacopy(
BasicOrder_considerationItem_endAmount_ptr,
additionalRecipientCdPtr,
AdditionalRecipients_size
)
// Add 1 word to the pointer as part of each loop to reduce
// operations needed to get local offset into the array.
considerationHashesPtr := add(
considerationHashesPtr,
OneWord
)
// Calculate EIP712 ConsiderationItem hash and store it in
// the array of consideration hashes.
mstore(
considerationHashesPtr,
keccak256(
BasicOrder_considerationItem_typeHash_ptr,
EIP712_ConsiderationItem_size
)
)
/*
* Write ReceivedItem to OrderFulfilled data.
*/
// At this point, eventConsiderationArrPtr points to the
// beginning of the ReceivedItem struct of the previous
// element in the array. Increase it by the size of the
// struct to arrive at the pointer for the current element.
eventConsiderationArrPtr := add(
eventConsiderationArrPtr,
ReceivedItem_size
)
// Write itemType to the ReceivedItem struct.
mstore(
eventConsiderationArrPtr,
additionalRecipientsItemType
)
// Write token to the next word of the ReceivedItem struct.
mstore(
add(eventConsiderationArrPtr, OneWord),
additionalRecipientsToken
)
// Copy endAmount & recipient words to ReceivedItem struct.
calldatacopy(
add(
eventConsiderationArrPtr,
ReceivedItem_amount_offset
),
additionalRecipientCdPtr,
TwoWords
)
}
/*
* 4. Hash packed array of ConsiderationItem EIP712 hashes:
* `keccak256(abi.encodePacked(receivedItemHashes))`
* Note that it is set at 0x60 — all other memory begins at
* 0x80. 0x60 is the "zero slot" and will be restored at the end
* of the assembly section and before required by the compiler.
*/
mstore(
receivedItemsHash_ptr,
keccak256(
BasicOrder_considerationHashesArray_ptr,
mul(add(totalAdditionalRecipients, 1), OneWord)
)
)
/*
* 5. Add a ReceivedItem for each tip to the consideration array
* in the OrderFulfilled event. The tips are all the
* consideration items that were not signed by the offerer and
* were provided by the fulfiller.
*/
// Overwrite length to length of the additionalRecipients array.
totalAdditionalRecipients := calldataload(
BasicOrder_additionalRecipients_length_cdPtr
)
// prettier-ignore
for {} lt(i, totalAdditionalRecipients) {
i := add(i, 1)
} {
// Retrieve calldata pointer for additional recipient.
let additionalRecipientCdPtr := add(
BasicOrder_additionalRecipients_data_cdPtr,
mul(AdditionalRecipients_size, i)
)
// At this point, eventConsiderationArrPtr points to the
// beginning of the ReceivedItem struct of the previous
// element in the array. Increase it by the size of the
// struct to arrive at the pointer for the current element.
eventConsiderationArrPtr := add(
eventConsiderationArrPtr,
ReceivedItem_size
)
// Write itemType to the ReceivedItem struct.
mstore(
eventConsiderationArrPtr,
additionalRecipientsItemType
)
// Write token to the next word of the ReceivedItem struct.
mstore(
add(eventConsiderationArrPtr, OneWord),
additionalRecipientsToken
)
// Copy endAmount & recipient words to ReceivedItem struct.
calldatacopy(
add(
eventConsiderationArrPtr,
ReceivedItem_amount_offset
),
additionalRecipientCdPtr,
TwoWords
)
}
}
}
{
/**
* Next, handle offered items. Memory Layout:
* EIP712 data for OfferItem
* - 0x80: OfferItem EIP-712 typehash (constant)
* - 0xa0: itemType
* - 0xc0: token
* - 0xe0: identifier (reused for offeredItemsHash)
* - 0x100: startAmount
* - 0x120: endAmount
*/
// Place offer item typehash on the stack.
bytes32 typeHash = _OFFER_ITEM_TYPEHASH;
// Utilize assembly to enable reuse of memory regions when possible.
assembly {
/*
* 1. Calculate OfferItem EIP712 hash
*/
// Write the OfferItem typeHash to memory.
mstore(BasicOrder_offerItem_typeHash_ptr, typeHash)
// Write the OfferItem item type to memory.
mstore(BasicOrder_offerItem_itemType_ptr, offeredItemType)
// Copy calldata region with (offerToken, offerIdentifier,
// offerAmount) from OrderParameters to (token, identifier,
// startAmount) in OfferItem struct. The offerAmount is written
// to startAmount and endAmount as basic orders do not have
// dynamic amounts.
calldatacopy(
BasicOrder_offerItem_token_ptr,
BasicOrder_offerToken_cdPtr,
ThreeWords
)
// Copy offerAmount from calldata to endAmount in OfferItem
// struct.
calldatacopy(
BasicOrder_offerItem_endAmount_ptr,
BasicOrder_offerAmount_cdPtr,
OneWord
)
// Compute EIP712 OfferItem hash, write result to scratch space:
// `keccak256(abi.encode(offeredItem))`
mstore(
0,
keccak256(
BasicOrder_offerItem_typeHash_ptr,
EIP712_OfferItem_size
)
)
/*
* 2. Calculate hash of array of EIP712 hashes and write the
* result to the corresponding OfferItem struct:
* `keccak256(abi.encodePacked(offerItemHashes))`
*/
mstore(BasicOrder_order_offerHashes_ptr, keccak256(0, OneWord))
/*
* 3. Write SpentItem to offer array in OrderFulfilled event.
*/
let eventConsiderationArrPtr := add(
OrderFulfilled_offer_length_baseOffset,
mul(
calldataload(
BasicOrder_additionalRecipients_length_cdPtr
),
OneWord
)
)
// Set a length of 1 for the offer array.
mstore(eventConsiderationArrPtr, 1)
// Write itemType to the SpentItem struct.
mstore(add(eventConsiderationArrPtr, OneWord), offeredItemType)
// Copy calldata region with (offerToken, offerIdentifier,
// offerAmount) from OrderParameters to (token, identifier,
// amount) in SpentItem struct.
calldatacopy(
add(eventConsiderationArrPtr, AdditionalRecipients_size),
BasicOrder_offerToken_cdPtr,
ThreeWords
)
}
}
{
/**
* Once consideration items and offer items have been handled,
* derive the final order hash. Memory Layout:
* 0x80-0x1c0: EIP712 data for order
* - 0x80: Order EIP-712 typehash (constant)
* - 0xa0: orderParameters.offerer
* - 0xc0: orderParameters.zone
* - 0xe0: keccak256(abi.encodePacked(offerHashes))
* - 0x100: keccak256(abi.encodePacked(considerationHashes))
* - 0x120: orderParameters.basicOrderType (% 4 = orderType)
* - 0x140: orderParameters.startTime
* - 0x160: orderParameters.endTime
* - 0x180: orderParameters.zoneHash
* - 0x1a0: orderParameters.salt
* - 0x1c0: orderParameters.conduitKey
* - 0x1e0: _counters[orderParameters.offerer] (from storage)
*/
// Read the offerer from calldata and place on the stack.
address offerer;
assembly {
offerer := calldataload(BasicOrder_offerer_cdPtr)
}
// Read offerer's current counter from storage and place on stack.
uint256 counter = _getCounter(offerer);
// Load order typehash from runtime code and place on stack.
bytes32 typeHash = _ORDER_TYPEHASH;
assembly {
// Set the OrderItem typeHash in memory.
mstore(BasicOrder_order_typeHash_ptr, typeHash)
// Copy offerer and zone from OrderParameters in calldata to the
// Order struct.
calldatacopy(
BasicOrder_order_offerer_ptr,
BasicOrder_offerer_cdPtr,
TwoWords
)
// Copy receivedItemsHash from zero slot to the Order struct.
mstore(
BasicOrder_order_considerationHashes_ptr,
mload(receivedItemsHash_ptr)
)
// Write the supplied orderType to the Order struct.
mstore(BasicOrder_order_orderType_ptr, orderType)
// Copy startTime, endTime, zoneHash, salt & conduit from
// calldata to the Order struct.
calldatacopy(
BasicOrder_order_startTime_ptr,
BasicOrder_startTime_cdPtr,
FiveWords
)
// Write offerer's counter, retrieved from storage, to struct.
mstore(BasicOrder_order_counter_ptr, counter)
// Compute the EIP712 Order hash.
orderHash := keccak256(
BasicOrder_order_typeHash_ptr,
EIP712_Order_size
)
}
}
assembly {
/**
* After the order hash has been derived, emit OrderFulfilled event:
* event OrderFulfilled(
* bytes32 orderHash,
* address indexed offerer,
* address indexed zone,
* address fulfiller,
* SpentItem[] offer,
* > (itemType, token, id, amount)
* ReceivedItem[] consideration
* > (itemType, token, id, amount, recipient)
* )
* topic0 - OrderFulfilled event signature
* topic1 - offerer
* topic2 - zone
* data:
* - 0x00: orderHash
* - 0x20: fulfiller
* - 0x40: offer arr ptr (0x80)
* - 0x60: consideration arr ptr (0x120)
* - 0x80: offer arr len (1)
* - 0xa0: offer.itemType
* - 0xc0: offer.token
* - 0xe0: offer.identifier
* - 0x100: offer.amount
* - 0x120: 1 + recipients.length
* - 0x140: recipient 0
*/
// Derive pointer to start of OrderFulfilled event data
let eventDataPtr := add(
OrderFulfilled_baseOffset,
mul(
calldataload(BasicOrder_additionalRecipients_length_cdPtr),
OneWord
)
)
// Write the order hash to the head of the event's data region.
mstore(eventDataPtr, orderHash)
// Write the fulfiller (i.e. the caller) next for receiver argument.
mstore(add(eventDataPtr, OrderFulfilled_fulfiller_offset), caller())
// Write the SpentItem and ReceivedItem array offsets (constants).
mstore(
// SpentItem array offset
add(eventDataPtr, OrderFulfilled_offer_head_offset),
OrderFulfilled_offer_body_offset
)
mstore(
// ReceivedItem array offset
add(eventDataPtr, OrderFulfilled_consideration_head_offset),
OrderFulfilled_consideration_body_offset
)
// Derive total data size including SpentItem and ReceivedItem data.
// SpentItem portion is already included in the baseSize constant,
// as there can only be one element in the array.
let dataSize := add(
OrderFulfilled_baseSize,
mul(
calldataload(BasicOrder_additionalRecipients_length_cdPtr),
ReceivedItem_size
)
)
// Emit OrderFulfilled log with three topics (the event signature
// as well as the two indexed arguments, the offerer and the zone).
log3(
// Supply the pointer for event data in memory.
eventDataPtr,
// Supply the size of event data in memory.
dataSize,
// Supply the OrderFulfilled event signature.
OrderFulfilled_selector,
// Supply the first topic (the offerer).
calldataload(BasicOrder_offerer_cdPtr),
// Supply the second topic (the zone).
calldataload(BasicOrder_zone_cdPtr)
)
// Restore the zero slot.
mstore(ZeroSlot, 0)
}
// Determine whether order is restricted and, if so, that it is valid.
_assertRestrictedBasicOrderValidity(
orderHash,
parameters.zoneHash,
orderType,
parameters.offerer,
parameters.zone
);
// Verify and update the status of the derived order.
_validateBasicOrderAndUpdateStatus(
orderHash,
parameters.offerer,
parameters.signature
);
}
/**
* @dev Internal function to transfer Ether (or other native tokens) to a
* given recipient as part of basic order fulfillment. Note that
* conduits are not utilized for native tokens as the transferred
* amount must be provided as msg.value.
*
* @param amount The amount to transfer.
* @param to The recipient of the native token transfer.
* @param additionalRecipients The additional recipients of the order.
*/
function _transferEthAndFinalize(
uint256 amount,
address payable to,
AdditionalRecipient[] calldata additionalRecipients
) internal {
// Put ether value supplied by the caller on the stack.
uint256 etherRemaining = msg.value;
// Retrieve total number of additional recipients and place on stack.
uint256 totalAdditionalRecipients = additionalRecipients.length;
// Skip overflow check as for loop is indexed starting at zero.
unchecked {
// Iterate over each additional recipient.
for (uint256 i = 0; i < totalAdditionalRecipients; ++i) {
// Retrieve the additional recipient.
AdditionalRecipient calldata additionalRecipient = (
additionalRecipients[i]
);
// Read ether amount to transfer to recipient & place on stack.
uint256 additionalRecipientAmount = additionalRecipient.amount;
// Ensure that sufficient Ether is available.
if (additionalRecipientAmount > etherRemaining) {
revert InsufficientEtherSupplied();
}
// Transfer Ether to the additional recipient.
_transferEth(
additionalRecipient.recipient,
additionalRecipientAmount
);
// Reduce ether value available. Skip underflow check as
// subtracted value is confirmed above as less than remaining.
etherRemaining -= additionalRecipientAmount;
}
}
// Ensure that sufficient Ether is still available.
if (amount > etherRemaining) {
revert InsufficientEtherSupplied();
}
// Transfer Ether to the offerer.
_transferEth(to, amount);
// If any Ether remains after transfers, return it to the caller.
if (etherRemaining > amount) {
// Skip underflow check as etherRemaining > amount.
unchecked {
// Transfer remaining Ether to the caller.
_transferEth(payable(msg.sender), etherRemaining - amount);
}
}
}
/**
* @dev Internal function to transfer ERC20 tokens to a given recipient as
* part of basic order fulfillment.
*
* @param offerer The offerer of the fulfiller order.
* @param parameters The basic order parameters.
* @param fromOfferer A boolean indicating whether to decrement amount from
* the offered amount.
* @param accumulator An open-ended array that collects transfers to execute
* against a given conduit in a single call.
*/
function _transferERC20AndFinalize(
address offerer,
BasicOrderParameters calldata parameters,
bool fromOfferer,
bytes memory accumulator
) internal {
// Declare from and to variables determined by fromOfferer value.
address from;
address to;
// Declare token and amount variables determined by fromOfferer value.
address token;
uint256 amount;
// Declare and check identifier variable within an isolated scope.
{
// Declare identifier variable determined by fromOfferer value.
uint256 identifier;
// Set ERC20 token transfer variables based on fromOfferer boolean.
if (fromOfferer) {
// Use offerer as from value and msg.sender as to value.
from = offerer;
to = msg.sender;
// Use offer token and related values if token is from offerer.
token = parameters.offerToken;
identifier = parameters.offerIdentifier;
amount = parameters.offerAmount;
} else {
// Use msg.sender as from value and offerer as to value.
from = msg.sender;
to = offerer;
// Otherwise, use consideration token and related values.
token = parameters.considerationToken;
identifier = parameters.considerationIdentifier;
amount = parameters.considerationAmount;
}
// Ensure that no identifier is supplied.
if (identifier != 0) {
revert UnusedItemParameters();
}
}
// Determine the appropriate conduit to utilize.
bytes32 conduitKey;
// Utilize assembly to derive conduit (if relevant) based on route.
assembly {
// Use offerer conduit if fromOfferer, fulfiller conduit otherwise.
conduitKey := calldataload(
sub(
BasicOrder_fulfillerConduit_cdPtr,
mul(fromOfferer, OneWord)
)
)
}
// Retrieve total number of additional recipients and place on stack.
uint256 totalAdditionalRecipients = (
parameters.additionalRecipients.length
);
// Iterate over each additional recipient.
for (uint256 i = 0; i < totalAdditionalRecipients; ) {
// Retrieve the additional recipient.
AdditionalRecipient calldata additionalRecipient = (
parameters.additionalRecipients[i]
);
uint256 additionalRecipientAmount = additionalRecipient.amount;
// Decrement the amount to transfer to fulfiller if indicated.
if (fromOfferer) {
amount -= additionalRecipientAmount;
}
// Transfer ERC20 tokens to additional recipient given approval.
_transferERC20(
token,
from,
additionalRecipient.recipient,
additionalRecipientAmount,
conduitKey,
accumulator
);
// Skip overflow check as for loop is indexed starting at zero.
unchecked {
++i;
}
}
// Transfer ERC20 token amount (from account must have proper approval).
_transferERC20(token, from, to, amount, conduitKey, accumulator);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { OrderType } from "./ConsiderationEnums.sol";
import {
OrderParameters,
Order,
AdvancedOrder,
OrderComponents,
OrderStatus,
CriteriaResolver
} from "./ConsiderationStructs.sol";
import "./ConsiderationConstants.sol";
import { Executor } from "./Executor.sol";
import { ZoneInteraction } from "./ZoneInteraction.sol";
/**
* @title OrderValidator
* @author 0age
* @notice OrderValidator contains functionality related to validating orders
* and updating their status.
*/
contract OrderValidator is Executor, ZoneInteraction {
// Track status of each order (validated, cancelled, and fraction filled).
mapping(bytes32 => OrderStatus) private _orderStatus;
/**
* @dev Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController) Executor(conduitController) {}
/**
* @dev Internal function to verify and update the status of a basic order.
*
* @param orderHash The hash of the order.
* @param offerer The offerer of the order.
* @param signature A signature from the offerer indicating that the order
* has been approved.
*/
function _validateBasicOrderAndUpdateStatus(
bytes32 orderHash,
address offerer,
bytes memory signature
) internal {
// Retrieve the order status for the given order hash.
OrderStatus storage orderStatus = _orderStatus[orderHash];
// Ensure order is fillable and is not cancelled.
_verifyOrderStatus(
orderHash,
orderStatus,
true, // Only allow unused orders when fulfilling basic orders.
true // Signifies to revert if the order is invalid.
);
// If the order is not already validated, verify the supplied signature.
if (!orderStatus.isValidated) {
_verifySignature(offerer, orderHash, signature);
}
// Update order status as fully filled, packing struct values.
orderStatus.isValidated = true;
orderStatus.isCancelled = false;
orderStatus.numerator = 1;
orderStatus.denominator = 1;
}
/**
* @dev Internal function to validate an order, determine what portion to
* fill, and update its status. The desired fill amount is supplied as
* a fraction, as is the returned amount to fill.
*
* @param advancedOrder The order to fulfill as well as the fraction to
* fill. Note that all offer and consideration
* amounts must divide with no remainder in order
* for a partial fill to be valid.
* @param criteriaResolvers An array where each element contains a reference
* to a specific offer or consideration, a token
* identifier, and a proof that the supplied token
* identifier is contained in the order's merkle
* root. Note that a criteria of zero indicates
* that any (transferable) token identifier is
* valid and that no proof needs to be supplied.
* @param revertOnInvalid A boolean indicating whether to revert if the
* order is invalid due to the time or status.
* @param priorOrderHashes The order hashes of each order supplied prior to
* the current order as part of a "match" variety
* of order fulfillment (e.g. this array will be
* empty for single or "fulfill available").
*
* @return orderHash The order hash.
* @return newNumerator A value indicating the portion of the order that
* will be filled.
* @return newDenominator A value indicating the total size of the order.
*/
function _validateOrderAndUpdateStatus(
AdvancedOrder memory advancedOrder,
CriteriaResolver[] memory criteriaResolvers,
bool revertOnInvalid,
bytes32[] memory priorOrderHashes
)
internal
returns (
bytes32 orderHash,
uint256 newNumerator,
uint256 newDenominator
)
{
// Retrieve the parameters for the order.
OrderParameters memory orderParameters = advancedOrder.parameters;
// Ensure current timestamp falls between order start time and end time.
if (
!_verifyTime(
orderParameters.startTime,
orderParameters.endTime,
revertOnInvalid
)
) {
// Assuming an invalid time and no revert, return zeroed out values.
return (bytes32(0), 0, 0);
}
// Read numerator and denominator from memory and place on the stack.
uint256 numerator = uint256(advancedOrder.numerator);
uint256 denominator = uint256(advancedOrder.denominator);
// Ensure that the supplied numerator and denominator are valid.
if (numerator > denominator || numerator == 0) {
revert BadFraction();
}
// If attempting partial fill (n < d) check order type & ensure support.
if (
numerator < denominator &&
_doesNotSupportPartialFills(orderParameters.orderType)
) {
// Revert if partial fill was attempted on an unsupported order.
revert PartialFillsNotEnabledForOrder();
}
// Retrieve current counter & use it w/ parameters to derive order hash.
orderHash = _assertConsiderationLengthAndGetOrderHash(orderParameters);
// Ensure restricted orders have a valid submitter or pass a zone check.
_assertRestrictedAdvancedOrderValidity(
advancedOrder,
criteriaResolvers,
priorOrderHashes,
orderHash,
orderParameters.zoneHash,
orderParameters.orderType,
orderParameters.offerer,
orderParameters.zone
);
// Retrieve the order status using the derived order hash.
OrderStatus storage orderStatus = _orderStatus[orderHash];
// Ensure order is fillable and is not cancelled.
if (
!_verifyOrderStatus(
orderHash,
orderStatus,
false, // Allow partially used orders to be filled.
revertOnInvalid
)
) {
// Assuming an invalid order status and no revert, return zero fill.
return (orderHash, 0, 0);
}
// If the order is not already validated, verify the supplied signature.
if (!orderStatus.isValidated) {
_verifySignature(
orderParameters.offerer,
orderHash,
advancedOrder.signature
);
}
// Read filled amount as numerator and denominator and put on the stack.
uint256 filledNumerator = orderStatus.numerator;
uint256 filledDenominator = orderStatus.denominator;
// If order (orderStatus) currently has a non-zero denominator it is
// partially filled.
if (filledDenominator != 0) {
// If denominator of 1 supplied, fill all remaining amount on order.
if (denominator == 1) {
// Scale numerator & denominator to match current denominator.
numerator = filledDenominator;
denominator = filledDenominator;
}
// Otherwise, if supplied denominator differs from current one...
else if (filledDenominator != denominator) {
// scale current numerator by the supplied denominator, then...
filledNumerator *= denominator;
// the supplied numerator & denominator by current denominator.
numerator *= filledDenominator;
denominator *= filledDenominator;
}
// Once adjusted, if current+supplied numerator exceeds denominator:
if (filledNumerator + numerator > denominator) {
// Skip underflow check: denominator >= orderStatus.numerator
unchecked {
// Reduce current numerator so it + supplied = denominator.
numerator = denominator - filledNumerator;
}
}
// Increment the filled numerator by the new numerator.
filledNumerator += numerator;
// Use assembly to ensure fractional amounts are below max uint120.
assembly {
// Check filledNumerator and denominator for uint120 overflow.
if or(
gt(filledNumerator, MaxUint120),
gt(denominator, MaxUint120)
) {
// Derive greatest common divisor using euclidean algorithm.
function gcd(_a, _b) -> out {
for {
} _b {
} {
let _c := _b
_b := mod(_a, _c)
_a := _c
}
out := _a
}
let scaleDown := gcd(
numerator,
gcd(filledNumerator, denominator)
)
// Ensure that the divisor is at least one.
let safeScaleDown := add(scaleDown, iszero(scaleDown))
// Scale all fractional values down by gcd.
numerator := div(numerator, safeScaleDown)
filledNumerator := div(filledNumerator, safeScaleDown)
denominator := div(denominator, safeScaleDown)
// Perform the overflow check a second time.
if or(
gt(filledNumerator, MaxUint120),
gt(denominator, MaxUint120)
) {
// Store the Panic error signature.
mstore(0, Panic_error_signature)
// Set arithmetic (0x11) panic code as initial argument.
mstore(Panic_error_offset, Panic_arithmetic)
// Return, supplying Panic signature & arithmetic code.
revert(0, Panic_error_length)
}
}
}
// Skip overflow check: checked above unless numerator is reduced.
unchecked {
// Update order status and fill amount, packing struct values.
orderStatus.isValidated = true;
orderStatus.isCancelled = false;
orderStatus.numerator = uint120(filledNumerator);
orderStatus.denominator = uint120(denominator);
}
} else {
// Update order status and fill amount, packing struct values.
orderStatus.isValidated = true;
orderStatus.isCancelled = false;
orderStatus.numerator = uint120(numerator);
orderStatus.denominator = uint120(denominator);
}
// Return order hash, a modified numerator, and a modified denominator.
return (orderHash, numerator, denominator);
}
/**
* @dev Internal function to cancel an arbitrary number of orders. Note that
* only the offerer or the zone of a given order may cancel it. Callers
* should ensure that the intended order was cancelled by calling
* `getOrderStatus` and confirming that `isCancelled` returns `true`.
*
* @param orders The orders to cancel.
*
* @return cancelled A boolean indicating whether the supplied orders were
* successfully cancelled.
*/
function _cancel(OrderComponents[] calldata orders)
internal
returns (bool cancelled)
{
// Ensure that the reentrancy guard is not currently set.
_assertNonReentrant();
// Declare variables outside of the loop.
OrderStatus storage orderStatus;
address offerer;
address zone;
// Skip overflow check as for loop is indexed starting at zero.
unchecked {
// Read length of the orders array from memory and place on stack.
uint256 totalOrders = orders.length;
// Iterate over each order.
for (uint256 i = 0; i < totalOrders; ) {
// Retrieve the order.
OrderComponents calldata order = orders[i];
offerer = order.offerer;
zone = order.zone;
// Ensure caller is either offerer or zone of the order.
if (msg.sender != offerer && msg.sender != zone) {
revert InvalidCanceller();
}
// Derive order hash using the order parameters and the counter.
bytes32 orderHash = _deriveOrderHash(
OrderParameters(
offerer,
zone,
order.offer,
order.consideration,
order.orderType,
order.startTime,
order.endTime,
order.zoneHash,
order.salt,
order.conduitKey,
order.consideration.length
),
order.counter
);
// Retrieve the order status using the derived order hash.
orderStatus = _orderStatus[orderHash];
// Update the order status as not valid and cancelled.
orderStatus.isValidated = false;
orderStatus.isCancelled = true;
// Emit an event signifying that the order has been cancelled.
emit OrderCancelled(orderHash, offerer, zone);
// Increment counter inside body of loop for gas efficiency.
++i;
}
}
// Return a boolean indicating that orders were successfully cancelled.
cancelled = true;
}
/**
* @dev Internal function to validate an arbitrary number of orders, thereby
* registering their signatures as valid and allowing the fulfiller to
* skip signature verification on fulfillment. Note that validated
* orders may still be unfulfillable due to invalid item amounts or
* other factors; callers should determine whether validated orders are
* fulfillable by simulating the fulfillment call prior to execution.
* Also note that anyone can validate a signed order, but only the
* offerer can validate an order without supplying a signature.
*
* @param orders The orders to validate.
*
* @return validated A boolean indicating whether the supplied orders were
* successfully validated.
*/
function _validate(Order[] calldata orders)
internal
returns (bool validated)
{
// Ensure that the reentrancy guard is not currently set.
_assertNonReentrant();
// Declare variables outside of the loop.
OrderStatus storage orderStatus;
bytes32 orderHash;
address offerer;
// Skip overflow check as for loop is indexed starting at zero.
unchecked {
// Read length of the orders array from memory and place on stack.
uint256 totalOrders = orders.length;
// Iterate over each order.
for (uint256 i = 0; i < totalOrders; ) {
// Retrieve the order.
Order calldata order = orders[i];
// Retrieve the order parameters.
OrderParameters calldata orderParameters = order.parameters;
// Move offerer from memory to the stack.
offerer = orderParameters.offerer;
// Get current counter & use it w/ params to derive order hash.
orderHash = _assertConsiderationLengthAndGetOrderHash(
orderParameters
);
// Retrieve the order status using the derived order hash.
orderStatus = _orderStatus[orderHash];
// Ensure order is fillable and retrieve the filled amount.
_verifyOrderStatus(
orderHash,
orderStatus,
false, // Signifies that partially filled orders are valid.
true // Signifies to revert if the order is invalid.
);
// If the order has not already been validated...
if (!orderStatus.isValidated) {
// Verify the supplied signature.
_verifySignature(offerer, orderHash, order.signature);
// Update order status to mark the order as valid.
orderStatus.isValidated = true;
// Emit an event signifying the order has been validated.
emit OrderValidated(
orderHash,
offerer,
orderParameters.zone
);
}
// Increment counter inside body of the loop for gas efficiency.
++i;
}
}
// Return a boolean indicating that orders were successfully validated.
validated = true;
}
/**
* @dev Internal view function to retrieve the status of a given order by
* hash, including whether the order has been cancelled or validated
* and the fraction of the order that has been filled.
*
* @param orderHash The order hash in question.
*
* @return isValidated A boolean indicating whether the order in question
* has been validated (i.e. previously approved or
* partially filled).
* @return isCancelled A boolean indicating whether the order in question
* has been cancelled.
* @return totalFilled The total portion of the order that has been filled
* (i.e. the "numerator").
* @return totalSize The total size of the order that is either filled or
* unfilled (i.e. the "denominator").
*/
function _getOrderStatus(bytes32 orderHash)
internal
view
returns (
bool isValidated,
bool isCancelled,
uint256 totalFilled,
uint256 totalSize
)
{
// Retrieve the order status using the order hash.
OrderStatus storage orderStatus = _orderStatus[orderHash];
// Return the fields on the order status.
return (
orderStatus.isValidated,
orderStatus.isCancelled,
orderStatus.numerator,
orderStatus.denominator
);
}
/**
* @dev Internal pure function to check whether a given order type indicates
* that partial fills are not supported (e.g. only "full fills" are
* allowed for the order in question).
*
* @param orderType The order type in question.
*
* @return isFullOrder A boolean indicating whether the order type only
* supports full fills.
*/
function _doesNotSupportPartialFills(OrderType orderType)
internal
pure
returns (bool isFullOrder)
{
// The "full" order types are even, while "partial" order types are odd.
// Bitwise and by 1 is equivalent to modulo by 2, but 2 gas cheaper.
assembly {
// Equivalent to `uint256(orderType) & 1 == 0`.
isFullOrder := iszero(and(orderType, 1))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { ItemType } from "./ConsiderationEnums.sol";
import {
OfferItem,
ConsiderationItem,
SpentItem,
ReceivedItem,
OrderParameters,
Order,
AdvancedOrder,
CriteriaResolver
} from "./ConsiderationStructs.sol";
import { BasicOrderFulfiller } from "./BasicOrderFulfiller.sol";
import { CriteriaResolution } from "./CriteriaResolution.sol";
import { AmountDeriver } from "./AmountDeriver.sol";
import "./ConsiderationConstants.sol";
/**
* @title OrderFulfiller
* @author 0age
* @notice OrderFulfiller contains logic related to order fulfillment where a
* single order is being fulfilled and where basic order fulfillment is
* not available as an option.
*/
contract OrderFulfiller is
BasicOrderFulfiller,
CriteriaResolution,
AmountDeriver
{
/**
* @dev Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController)
BasicOrderFulfiller(conduitController)
{}
/**
* @dev Internal function to validate an order and update its status, adjust
* prices based on current time, apply criteria resolvers, determine
* what portion to fill, and transfer relevant tokens.
*
* @param advancedOrder The order to fulfill as well as the fraction
* to fill. Note that all offer and consideration
* components must divide with no remainder for
* the partial fill to be valid.
* @param criteriaResolvers An array where each element contains a
* reference to a specific offer or
* consideration, a token identifier, and a proof
* that the supplied token identifier is
* contained in the order's merkle root. Note
* that a criteria of zero indicates that any
* (transferable) token identifier is valid and
* that no proof needs to be supplied.
* @param fulfillerConduitKey A bytes32 value indicating what conduit, if
* any, to source the fulfiller's token approvals
* from. The zero hash signifies that no conduit
* should be used, with direct approvals set on
* Consideration.
* @param recipient The intended recipient for all received items.
*
* @return A boolean indicating whether the order has been fulfilled.
*/
function _validateAndFulfillAdvancedOrder(
AdvancedOrder memory advancedOrder,
CriteriaResolver[] memory criteriaResolvers,
bytes32 fulfillerConduitKey,
address recipient
) internal returns (bool) {
// Ensure this function cannot be triggered during a reentrant call.
_setReentrancyGuard();
// Declare empty bytes32 array (unused, will remain empty).
bytes32[] memory priorOrderHashes;
// Validate order, update status, and determine fraction to fill.
(
bytes32 orderHash,
uint256 fillNumerator,
uint256 fillDenominator
) = _validateOrderAndUpdateStatus(
advancedOrder,
criteriaResolvers,
true,
priorOrderHashes
);
// Create an array with length 1 containing the order.
AdvancedOrder[] memory advancedOrders = new AdvancedOrder[](1);
// Populate the order as the first and only element of the new array.
advancedOrders[0] = advancedOrder;
// Apply criteria resolvers using generated orders and details arrays.
_applyCriteriaResolvers(advancedOrders, criteriaResolvers);
// Retrieve the order parameters after applying criteria resolvers.
OrderParameters memory orderParameters = advancedOrders[0].parameters;
// Perform each item transfer with the appropriate fractional amount.
_applyFractionsAndTransferEach(
orderParameters,
fillNumerator,
fillDenominator,
fulfillerConduitKey,
recipient
);
// Emit an event signifying that the order has been fulfilled.
_emitOrderFulfilledEvent(
orderHash,
orderParameters.offerer,
orderParameters.zone,
recipient,
orderParameters.offer,
orderParameters.consideration
);
// Clear the reentrancy guard.
_clearReentrancyGuard();
return true;
}
/**
* @dev Internal function to transfer each item contained in a given single
* order fulfillment after applying a respective fraction to the amount
* being transferred.
*
* @param orderParameters The parameters for the fulfilled order.
* @param numerator A value indicating the portion of the order
* that should be filled.
* @param denominator A value indicating the total order size.
* @param fulfillerConduitKey A bytes32 value indicating what conduit, if
* any, to source the fulfiller's token approvals
* from. The zero hash signifies that no conduit
* should be used, with direct approvals set on
* Consideration.
* @param recipient The intended recipient for all received items.
*/
function _applyFractionsAndTransferEach(
OrderParameters memory orderParameters,
uint256 numerator,
uint256 denominator,
bytes32 fulfillerConduitKey,
address recipient
) internal {
// Read start time & end time from order parameters and place on stack.
uint256 startTime = orderParameters.startTime;
uint256 endTime = orderParameters.endTime;
// Initialize an accumulator array. From this point forward, no new
// memory regions can be safely allocated until the accumulator is no
// longer being utilized, as the accumulator operates in an open-ended
// fashion from this memory pointer; existing memory may still be
// accessed and modified, however.
bytes memory accumulator = new bytes(AccumulatorDisarmed);
// As of solidity 0.6.0, inline assembly cannot directly access function
// definitions, but can still access locally scoped function variables.
// This means that in order to recast the type of a function, we need to
// create a local variable to reference the internal function definition
// (using the same type) and a local variable with the desired type,
// and then cast the original function pointer to the desired type.
/**
* Repurpose existing OfferItem memory regions on the offer array for
* the order by overriding the _transfer function pointer to accept a
* modified OfferItem argument in place of the usual ReceivedItem:
*
* ========= OfferItem ========== ====== ReceivedItem ======
* ItemType itemType; ------------> ItemType itemType;
* address token; ----------------> address token;
* uint256 identifierOrCriteria; -> uint256 identifier;
* uint256 startAmount; ----------> uint256 amount;
* uint256 endAmount; ------------> address recipient;
*/
// Declare a nested scope to minimize stack depth.
unchecked {
// Declare a virtual function pointer taking an OfferItem argument.
function(OfferItem memory, address, bytes32, bytes memory)
internal _transferOfferItem;
{
// Assign _transfer function to a new function pointer (it takes
// a ReceivedItem as its initial argument)
function(ReceivedItem memory, address, bytes32, bytes memory)
internal _transferReceivedItem = _transfer;
// Utilize assembly to override the virtual function pointer.
assembly {
// Cast initial ReceivedItem type to an OfferItem type.
_transferOfferItem := _transferReceivedItem
}
}
// Read offer array length from memory and place on stack.
uint256 totalOfferItems = orderParameters.offer.length;
// Iterate over each offer on the order.
// Skip overflow check as for loop is indexed starting at zero.
for (uint256 i = 0; i < totalOfferItems; ++i) {
// Retrieve the offer item.
OfferItem memory offerItem = orderParameters.offer[i];
// Offer items for the native token can not be received
// outside of a match order function.
if (offerItem.itemType == ItemType.NATIVE) {
revert InvalidNativeOfferItem();
}
// Declare an additional nested scope to minimize stack depth.
{
// Apply fill fraction to get offer item amount to transfer.
uint256 amount = _applyFraction(
offerItem.startAmount,
offerItem.endAmount,
numerator,
denominator,
startTime,
endTime,
false
);
// Utilize assembly to set overloaded offerItem arguments.
assembly {
// Write new fractional amount to startAmount as amount.
mstore(
add(offerItem, ReceivedItem_amount_offset),
amount
)
// Write recipient to endAmount.
mstore(
add(offerItem, ReceivedItem_recipient_offset),
recipient
)
}
}
// Transfer the item from the offerer to the recipient.
_transferOfferItem(
offerItem,
orderParameters.offerer,
orderParameters.conduitKey,
accumulator
);
}
}
// Put ether value supplied by the caller on the stack.
uint256 etherRemaining = msg.value;
/**
* Repurpose existing ConsiderationItem memory regions on the
* consideration array for the order by overriding the _transfer
* function pointer to accept a modified ConsiderationItem argument in
* place of the usual ReceivedItem:
*
* ====== ConsiderationItem ===== ====== ReceivedItem ======
* ItemType itemType; ------------> ItemType itemType;
* address token; ----------------> address token;
* uint256 identifierOrCriteria;--> uint256 identifier;
* uint256 startAmount; ----------> uint256 amount;
* uint256 endAmount; /----> address recipient;
* address recipient; ------/
*/
// Declare a nested scope to minimize stack depth.
unchecked {
// Declare virtual function pointer with ConsiderationItem argument.
function(ConsiderationItem memory, address, bytes32, bytes memory)
internal _transferConsiderationItem;
{
// Reassign _transfer function to a new function pointer (it
// takes a ReceivedItem as its initial argument).
function(ReceivedItem memory, address, bytes32, bytes memory)
internal _transferReceivedItem = _transfer;
// Utilize assembly to override the virtual function pointer.
assembly {
// Cast ReceivedItem type to ConsiderationItem type.
_transferConsiderationItem := _transferReceivedItem
}
}
// Read consideration array length from memory and place on stack.
uint256 totalConsiderationItems = orderParameters
.consideration
.length;
// Iterate over each consideration item on the order.
// Skip overflow check as for loop is indexed starting at zero.
for (uint256 i = 0; i < totalConsiderationItems; ++i) {
// Retrieve the consideration item.
ConsiderationItem memory considerationItem = (
orderParameters.consideration[i]
);
// Apply fraction & derive considerationItem amount to transfer.
uint256 amount = _applyFraction(
considerationItem.startAmount,
considerationItem.endAmount,
numerator,
denominator,
startTime,
endTime,
true
);
// Use assembly to set overloaded considerationItem arguments.
assembly {
// Write derived fractional amount to startAmount as amount.
mstore(
add(considerationItem, ReceivedItem_amount_offset),
amount
)
// Write original recipient to endAmount as recipient.
mstore(
add(considerationItem, ReceivedItem_recipient_offset),
mload(
add(
considerationItem,
ConsiderationItem_recipient_offset
)
)
)
}
// Reduce available value if offer spent ETH or a native token.
if (considerationItem.itemType == ItemType.NATIVE) {
// Ensure that sufficient native tokens are still available.
if (amount > etherRemaining) {
revert InsufficientEtherSupplied();
}
// Skip underflow check as a comparison has just been made.
etherRemaining -= amount;
}
// Transfer item from caller to recipient specified by the item.
_transferConsiderationItem(
considerationItem,
msg.sender,
fulfillerConduitKey,
accumulator
);
}
}
// Trigger any remaining accumulated transfers via call to the conduit.
_triggerIfArmed(accumulator);
// If any ether remains after fulfillments...
if (etherRemaining != 0) {
// return it to the caller.
_transferEth(payable(msg.sender), etherRemaining);
}
}
/**
* @dev Internal function to emit an OrderFulfilled event. OfferItems are
* translated into SpentItems and ConsiderationItems are translated
* into ReceivedItems.
*
* @param orderHash The order hash.
* @param offerer The offerer for the order.
* @param zone The zone for the order.
* @param fulfiller The fulfiller of the order, or the null address if
* the order was fulfilled via order matching.
* @param offer The offer items for the order.
* @param consideration The consideration items for the order.
*/
function _emitOrderFulfilledEvent(
bytes32 orderHash,
address offerer,
address zone,
address fulfiller,
OfferItem[] memory offer,
ConsiderationItem[] memory consideration
) internal {
// Cast already-modified offer memory region as spent items.
SpentItem[] memory spentItems;
assembly {
spentItems := offer
}
// Cast already-modified consideration memory region as received items.
ReceivedItem[] memory receivedItems;
assembly {
receivedItems := consideration
}
// Emit an event signifying that the order has been fulfilled.
emit OrderFulfilled(
orderHash,
offerer,
zone,
fulfiller,
spentItems,
receivedItems
);
}
/**
* @dev Internal pure function to convert an order to an advanced order with
* numerator and denominator of 1 and empty extraData.
*
* @param order The order to convert.
*
* @return advancedOrder The new advanced order.
*/
function _convertOrderToAdvanced(Order calldata order)
internal
pure
returns (AdvancedOrder memory advancedOrder)
{
// Convert to partial order (1/1 or full fill) and return new value.
advancedOrder = AdvancedOrder(
order.parameters,
1,
1,
order.signature,
""
);
}
/**
* @dev Internal pure function to convert an array of orders to an array of
* advanced orders with numerator and denominator of 1.
*
* @param orders The orders to convert.
*
* @return advancedOrders The new array of partial orders.
*/
function _convertOrdersToAdvanced(Order[] calldata orders)
internal
pure
returns (AdvancedOrder[] memory advancedOrders)
{
// Read the number of orders from calldata and place on the stack.
uint256 totalOrders = orders.length;
// Allocate new empty array for each partial order in memory.
advancedOrders = new AdvancedOrder[](totalOrders);
// Skip overflow check as the index for the loop starts at zero.
unchecked {
// Iterate over the given orders.
for (uint256 i = 0; i < totalOrders; ++i) {
// Convert to partial order (1/1 or full fill) and update array.
advancedOrders[i] = _convertOrderToAdvanced(orders[i]);
}
}
// Return the array of advanced orders.
return advancedOrders;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import {
AmountDerivationErrors
} from "../interfaces/AmountDerivationErrors.sol";
import "./ConsiderationConstants.sol";
/**
* @title AmountDeriver
* @author 0age
* @notice AmountDeriver contains view and pure functions related to deriving
* item amounts based on partial fill quantity and on linear
* interpolation based on current time when the start amount and end
* amount differ.
*/
contract AmountDeriver is AmountDerivationErrors {
/**
* @dev Internal view function to derive the current amount of a given item
* based on the current price, the starting price, and the ending
* price. If the start and end prices differ, the current price will be
* interpolated on a linear basis. Note that this function expects that
* the startTime parameter of orderParameters is not greater than the
* current block timestamp and that the endTime parameter is greater
* than the current block timestamp. If this condition is not upheld,
* duration / elapsed / remaining variables will underflow.
*
* @param startAmount The starting amount of the item.
* @param endAmount The ending amount of the item.
* @param startTime The starting time of the order.
* @param endTime The end time of the order.
* @param roundUp A boolean indicating whether the resultant amount
* should be rounded up or down.
*
* @return amount The current amount.
*/
function _locateCurrentAmount(
uint256 startAmount,
uint256 endAmount,
uint256 startTime,
uint256 endTime,
bool roundUp
) internal view returns (uint256 amount) {
// Only modify end amount if it doesn't already equal start amount.
if (startAmount != endAmount) {
// Declare variables to derive in the subsequent unchecked scope.
uint256 duration;
uint256 elapsed;
uint256 remaining;
// Skip underflow checks as startTime <= block.timestamp < endTime.
unchecked {
// Derive the duration for the order and place it on the stack.
duration = endTime - startTime;
// Derive time elapsed since the order started & place on stack.
elapsed = block.timestamp - startTime;
// Derive time remaining until order expires and place on stack.
remaining = duration - elapsed;
}
// Aggregate new amounts weighted by time with rounding factor.
uint256 totalBeforeDivision = ((startAmount * remaining) +
(endAmount * elapsed));
// Use assembly to combine operations and skip divide-by-zero check.
assembly {
// Multiply by iszero(iszero(totalBeforeDivision)) to ensure
// amount is set to zero if totalBeforeDivision is zero,
// as intermediate overflow can occur if it is zero.
amount := mul(
iszero(iszero(totalBeforeDivision)),
// Subtract 1 from the numerator and add 1 to the result if
// roundUp is true to get the proper rounding direction.
// Division is performed with no zero check as duration
// cannot be zero as long as startTime < endTime.
add(
div(sub(totalBeforeDivision, roundUp), duration),
roundUp
)
)
}
// Return the current amount.
return amount;
}
// Return the original amount as startAmount == endAmount.
return endAmount;
}
/**
* @dev Internal pure function to return a fraction of a given value and to
* ensure the resultant value does not have any fractional component.
* Note that this function assumes that zero will never be supplied as
* the denominator parameter; invalid / undefined behavior will result
* should a denominator of zero be provided.
*
* @param numerator A value indicating the portion of the order that
* should be filled.
* @param denominator A value indicating the total size of the order. Note
* that this value cannot be equal to zero.
* @param value The value for which to compute the fraction.
*
* @return newValue The value after applying the fraction.
*/
function _getFraction(
uint256 numerator,
uint256 denominator,
uint256 value
) internal pure returns (uint256 newValue) {
// Return value early in cases where the fraction resolves to 1.
if (numerator == denominator) {
return value;
}
// Ensure fraction can be applied to the value with no remainder. Note
// that the denominator cannot be zero.
assembly {
// Ensure new value contains no remainder via mulmod operator.
// Credit to @hrkrshnn + @axic for proposing this optimal solution.
if mulmod(value, numerator, denominator) {
mstore(0, InexactFraction_error_signature)
revert(0, InexactFraction_error_len)
}
}
// Multiply the numerator by the value and ensure no overflow occurs.
uint256 valueTimesNumerator = value * numerator;
// Divide and check for remainder. Note that denominator cannot be zero.
assembly {
// Perform division without zero check.
newValue := div(valueTimesNumerator, denominator)
}
}
/**
* @dev Internal view function to apply a fraction to a consideration
* or offer item.
*
* @param startAmount The starting amount of the item.
* @param endAmount The ending amount of the item.
* @param numerator A value indicating the portion of the order that
* should be filled.
* @param denominator A value indicating the total size of the order.
* @param startTime The starting time of the order.
* @param endTime The end time of the order.
* @param roundUp A boolean indicating whether the resultant
* amount should be rounded up or down.
*
* @return amount The received item to transfer with the final amount.
*/
function _applyFraction(
uint256 startAmount,
uint256 endAmount,
uint256 numerator,
uint256 denominator,
uint256 startTime,
uint256 endTime,
bool roundUp
) internal view returns (uint256 amount) {
// If start amount equals end amount, apply fraction to end amount.
if (startAmount == endAmount) {
// Apply fraction to end amount.
amount = _getFraction(numerator, denominator, endAmount);
} else {
// Otherwise, apply fraction to both and interpolated final amount.
amount = _locateCurrentAmount(
_getFraction(numerator, denominator, startAmount),
_getFraction(numerator, denominator, endAmount),
startTime,
endTime,
roundUp
);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
/**
* @title AmountDerivationErrors
* @author 0age
* @notice AmountDerivationErrors contains errors related to amount derivation.
*/
interface AmountDerivationErrors {
/**
* @dev Revert with an error when attempting to apply a fraction as part of
* a partial fill that does not divide the target amount cleanly.
*/
error InexactFraction();
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { Side, ItemType } from "./ConsiderationEnums.sol";
import {
OfferItem,
ConsiderationItem,
ReceivedItem,
OrderParameters,
Fulfillment,
FulfillmentComponent,
Execution,
Order,
AdvancedOrder,
CriteriaResolver
} from "./ConsiderationStructs.sol";
import { OrderFulfiller } from "./OrderFulfiller.sol";
import { FulfillmentApplier } from "./FulfillmentApplier.sol";
import "./ConsiderationConstants.sol";
/**
* @title OrderCombiner
* @author 0age
* @notice OrderCombiner contains logic for fulfilling combinations of orders,
* either by matching offer items to consideration items or by
* fulfilling orders where available.
*/
contract OrderCombiner is OrderFulfiller, FulfillmentApplier {
/**
* @dev Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController) OrderFulfiller(conduitController) {}
/**
* @notice Internal function to attempt to fill a group of orders, fully or
* partially, with an arbitrary number of items for offer and
* consideration per order alongside criteria resolvers containing
* specific token identifiers and associated proofs. Any order that
* is not currently active, has already been fully filled, or has
* been cancelled will be omitted. Remaining offer and consideration
* items will then be aggregated where possible as indicated by the
* supplied offer and consideration component arrays and aggregated
* items will be transferred to the fulfiller or to each intended
* recipient, respectively. Note that a failing item transfer or an
* issue with order formatting will cause the entire batch to fail.
*
* @param advancedOrders The orders to fulfill along with the
* fraction of those orders to attempt to
* fill. Note that both the offerer and the
* fulfiller must first approve this
* contract (or a conduit if indicated by
* the order) to transfer any relevant
* tokens on their behalf and that
* contracts must implement
* `onERC1155Received` in order to receive
* ERC1155 tokens as consideration. Also
* note that all offer and consideration
* components must have no remainder after
* multiplication of the respective amount
* with the supplied fraction for an
* order's partial fill amount to be
* considered valid.
* @param criteriaResolvers An array where each element contains a
* reference to a specific offer or
* consideration, a token identifier, and a
* proof that the supplied token identifier
* is contained in the merkle root held by
* the item in question's criteria element.
* Note that an empty criteria indicates
* that any (transferable) token
* identifier on the token in question is
* valid and that no associated proof needs
* to be supplied.
* @param offerFulfillments An array of FulfillmentComponent arrays
* indicating which offer items to attempt
* to aggregate when preparing executions.
* @param considerationFulfillments An array of FulfillmentComponent arrays
* indicating which consideration items to
* attempt to aggregate when preparing
* executions.
* @param fulfillerConduitKey A bytes32 value indicating what conduit,
* if any, to source the fulfiller's token
* approvals from. The zero hash signifies
* that no conduit should be used (and
* direct approvals set on Consideration).
* @param recipient The intended recipient for all received
* items.
* @param maximumFulfilled The maximum number of orders to fulfill.
*
* @return availableOrders An array of booleans indicating if each order
* with an index corresponding to the index of the
* returned boolean was fulfillable or not.
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function _fulfillAvailableAdvancedOrders(
AdvancedOrder[] memory advancedOrders,
CriteriaResolver[] memory criteriaResolvers,
FulfillmentComponent[][] calldata offerFulfillments,
FulfillmentComponent[][] calldata considerationFulfillments,
bytes32 fulfillerConduitKey,
address recipient,
uint256 maximumFulfilled
)
internal
returns (bool[] memory availableOrders, Execution[] memory executions)
{
// Validate orders, apply amounts, & determine if they utilize conduits.
_validateOrdersAndPrepareToFulfill(
advancedOrders,
criteriaResolvers,
false, // Signifies that invalid orders should NOT revert.
maximumFulfilled,
recipient
);
// Aggregate used offer and consideration items and execute transfers.
(availableOrders, executions) = _executeAvailableFulfillments(
advancedOrders,
offerFulfillments,
considerationFulfillments,
fulfillerConduitKey,
recipient
);
// Return order fulfillment details and executions.
return (availableOrders, executions);
}
/**
* @dev Internal function to validate a group of orders, update their
* statuses, reduce amounts by their previously filled fractions, apply
* criteria resolvers, and emit OrderFulfilled events.
*
* @param advancedOrders The advanced orders to validate and reduce by
* their previously filled amounts.
* @param criteriaResolvers An array where each element contains a reference
* to a specific order as well as that order's
* offer or consideration, a token identifier, and
* a proof that the supplied token identifier is
* contained in the order's merkle root. Note that
* a root of zero indicates that any transferable
* token identifier is valid and that no proof
* needs to be supplied.
* @param revertOnInvalid A boolean indicating whether to revert on any
* order being invalid; setting this to false will
* instead cause the invalid order to be skipped.
* @param maximumFulfilled The maximum number of orders to fulfill.
* @param recipient The intended recipient for all received items.
*/
function _validateOrdersAndPrepareToFulfill(
AdvancedOrder[] memory advancedOrders,
CriteriaResolver[] memory criteriaResolvers,
bool revertOnInvalid,
uint256 maximumFulfilled,
address recipient
) internal {
// Ensure this function cannot be triggered during a reentrant call.
_setReentrancyGuard();
// Read length of orders array and place on the stack.
uint256 totalOrders = advancedOrders.length;
// Track the order hash for each order being fulfilled.
bytes32[] memory orderHashes = new bytes32[](totalOrders);
// Override orderHashes length to zero after memory has been allocated.
assembly {
mstore(orderHashes, 0)
}
// Declare an error buffer indicating status of any native offer items.
// {00} == 0 => In a match function, no native offer items: allow.
// {01} == 1 => In a match function, some native offer items: allow.
// {10} == 2 => Not in a match function, no native offer items: allow.
// {11} == 3 => Not in a match function, some native offer items: THROW.
uint256 invalidNativeOfferItemErrorBuffer;
// Use assembly to set the value for the second bit of the error buffer.
assembly {
// Use the second bit of the error buffer to indicate whether the
// current function is not matchAdvancedOrders or matchOrders.
invalidNativeOfferItemErrorBuffer := shl(
1,
gt(
// Take the remainder of the selector modulo a magic value.
mod(
shr(NumBitsAfterSelector, calldataload(0)),
NonMatchSelector_MagicModulus
),
// Check if remainder is higher than the greatest remainder
// of the two match selectors modulo the magic value.
NonMatchSelector_MagicRemainder
)
)
}
// Skip overflow checks as all for loops are indexed starting at zero.
unchecked {
// Iterate over each order.
for (uint256 i = 0; i < totalOrders; ++i) {
// Retrieve the current order.
AdvancedOrder memory advancedOrder = advancedOrders[i];
// Determine if max number orders have already been fulfilled.
if (maximumFulfilled == 0) {
// Mark fill fraction as zero as the order will not be used.
advancedOrder.numerator = 0;
// Update the length of the orderHashes array.
assembly {
mstore(orderHashes, add(i, 1))
}
// Continue iterating through the remaining orders.
continue;
}
// Validate it, update status, and determine fraction to fill.
(
bytes32 orderHash,
uint256 numerator,
uint256 denominator
) = _validateOrderAndUpdateStatus(
advancedOrder,
criteriaResolvers,
revertOnInvalid,
orderHashes
);
// Update the length of the orderHashes array.
assembly {
mstore(orderHashes, add(i, 1))
}
// Do not track hash or adjust prices if order is not fulfilled.
if (numerator == 0) {
// Mark fill fraction as zero if the order is not fulfilled.
advancedOrder.numerator = 0;
// Continue iterating through the remaining orders.
continue;
}
// Otherwise, track the order hash in question.
orderHashes[i] = orderHash;
// Decrement the number of fulfilled orders.
// Skip underflow check as the condition before
// implies that maximumFulfilled > 0.
maximumFulfilled--;
// Place the start time for the order on the stack.
uint256 startTime = advancedOrder.parameters.startTime;
// Place the end time for the order on the stack.
uint256 endTime = advancedOrder.parameters.endTime;
// Retrieve array of offer items for the order in question.
OfferItem[] memory offer = advancedOrder.parameters.offer;
// Read length of offer array and place on the stack.
uint256 totalOfferItems = offer.length;
// Iterate over each offer item on the order.
for (uint256 j = 0; j < totalOfferItems; ++j) {
// Retrieve the offer item.
OfferItem memory offerItem = offer[j];
assembly {
// If the offer item is for the native token, set the
// first bit of the error buffer to true.
invalidNativeOfferItemErrorBuffer := or(
invalidNativeOfferItemErrorBuffer,
iszero(mload(offerItem))
)
}
// Apply order fill fraction to offer item end amount.
uint256 endAmount = _getFraction(
numerator,
denominator,
offerItem.endAmount
);
// Reuse same fraction if start and end amounts are equal.
if (offerItem.startAmount == offerItem.endAmount) {
// Apply derived amount to both start and end amount.
offerItem.startAmount = endAmount;
} else {
// Apply order fill fraction to offer item start amount.
offerItem.startAmount = _getFraction(
numerator,
denominator,
offerItem.startAmount
);
}
// Update end amount in memory to match the derived amount.
offerItem.endAmount = endAmount;
// Adjust offer amount using current time; round down.
offerItem.startAmount = _locateCurrentAmount(
offerItem.startAmount,
offerItem.endAmount,
startTime,
endTime,
false // round down
);
}
// Retrieve array of consideration items for order in question.
ConsiderationItem[] memory consideration = (
advancedOrder.parameters.consideration
);
// Read length of consideration array and place on the stack.
uint256 totalConsiderationItems = consideration.length;
// Iterate over each consideration item on the order.
for (uint256 j = 0; j < totalConsiderationItems; ++j) {
// Retrieve the consideration item.
ConsiderationItem memory considerationItem = (
consideration[j]
);
// Apply fraction to consideration item end amount.
uint256 endAmount = _getFraction(
numerator,
denominator,
considerationItem.endAmount
);
// Reuse same fraction if start and end amounts are equal.
if (
considerationItem.startAmount ==
considerationItem.endAmount
) {
// Apply derived amount to both start and end amount.
considerationItem.startAmount = endAmount;
} else {
// Apply fraction to consideration item start amount.
considerationItem.startAmount = _getFraction(
numerator,
denominator,
considerationItem.startAmount
);
}
// Update end amount in memory to match the derived amount.
considerationItem.endAmount = endAmount;
// Adjust consideration amount using current time; round up.
considerationItem.startAmount = (
_locateCurrentAmount(
considerationItem.startAmount,
considerationItem.endAmount,
startTime,
endTime,
true // round up
)
);
// Utilize assembly to manually "shift" the recipient value.
assembly {
// Write recipient to endAmount, as endAmount is not
// used from this point on and can be repurposed to fit
// the layout of a ReceivedItem.
mstore(
add(
considerationItem,
ReceivedItem_recipient_offset // old endAmount
),
mload(
add(
considerationItem,
ConsiderationItem_recipient_offset
)
)
)
}
}
}
}
// If the first bit is set, a native offer item was encountered. If the
// second bit is set in the error buffer, the current function is not
// matchOrders or matchAdvancedOrders. If the value is three, both the
// first and second bits were set; in that case, revert with an error.
if (invalidNativeOfferItemErrorBuffer == 3) {
revert InvalidNativeOfferItem();
}
// Apply criteria resolvers to each order as applicable.
_applyCriteriaResolvers(advancedOrders, criteriaResolvers);
// Emit an event for each order signifying that it has been fulfilled.
// Skip overflow checks as all for loops are indexed starting at zero.
unchecked {
// Iterate over each order.
for (uint256 i = 0; i < totalOrders; ++i) {
// Do not emit an event if no order hash is present.
if (orderHashes[i] == bytes32(0)) {
continue;
}
// Retrieve parameters for the order in question.
OrderParameters memory orderParameters = (
advancedOrders[i].parameters
);
// Emit an OrderFulfilled event.
_emitOrderFulfilledEvent(
orderHashes[i],
orderParameters.offerer,
orderParameters.zone,
recipient,
orderParameters.offer,
orderParameters.consideration
);
}
}
}
/**
* @dev Internal function to fulfill a group of validated orders, fully or
* partially, with an arbitrary number of items for offer and
* consideration per order and to execute transfers. Any order that is
* not currently active, has already been fully filled, or has been
* cancelled will be omitted. Remaining offer and consideration items
* will then be aggregated where possible as indicated by the supplied
* offer and consideration component arrays and aggregated items will
* be transferred to the fulfiller or to each intended recipient,
* respectively. Note that a failing item transfer or an issue with
* order formatting will cause the entire batch to fail.
*
* @param advancedOrders The orders to fulfill along with the
* fraction of those orders to attempt to
* fill. Note that both the offerer and the
* fulfiller must first approve this
* contract (or the conduit if indicated by
* the order) to transfer any relevant
* tokens on their behalf and that
* contracts must implement
* `onERC1155Received` in order to receive
* ERC1155 tokens as consideration. Also
* note that all offer and consideration
* components must have no remainder after
* multiplication of the respective amount
* with the supplied fraction for an
* order's partial fill amount to be
* considered valid.
* @param offerFulfillments An array of FulfillmentComponent arrays
* indicating which offer items to attempt
* to aggregate when preparing executions.
* @param considerationFulfillments An array of FulfillmentComponent arrays
* indicating which consideration items to
* attempt to aggregate when preparing
* executions.
* @param fulfillerConduitKey A bytes32 value indicating what conduit,
* if any, to source the fulfiller's token
* approvals from. The zero hash signifies
* that no conduit should be used, with
* direct approvals set on Consideration.
* @param recipient The intended recipient for all received
* items.
*
* @return availableOrders An array of booleans indicating if each order
* with an index corresponding to the index of the
* returned boolean was fulfillable or not.
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function _executeAvailableFulfillments(
AdvancedOrder[] memory advancedOrders,
FulfillmentComponent[][] memory offerFulfillments,
FulfillmentComponent[][] memory considerationFulfillments,
bytes32 fulfillerConduitKey,
address recipient
)
internal
returns (bool[] memory availableOrders, Execution[] memory executions)
{
// Retrieve length of offer fulfillments array and place on the stack.
uint256 totalOfferFulfillments = offerFulfillments.length;
// Retrieve length of consideration fulfillments array & place on stack.
uint256 totalConsiderationFulfillments = (
considerationFulfillments.length
);
// Allocate an execution for each offer and consideration fulfillment.
executions = new Execution[](
totalOfferFulfillments + totalConsiderationFulfillments
);
// Skip overflow checks as all for loops are indexed starting at zero.
unchecked {
// Track number of filtered executions.
uint256 totalFilteredExecutions = 0;
// Iterate over each offer fulfillment.
for (uint256 i = 0; i < totalOfferFulfillments; ++i) {
/// Retrieve the offer fulfillment components in question.
FulfillmentComponent[] memory components = (
offerFulfillments[i]
);
// Derive aggregated execution corresponding with fulfillment.
Execution memory execution = _aggregateAvailable(
advancedOrders,
Side.OFFER,
components,
fulfillerConduitKey,
recipient
);
// If offerer and recipient on the execution are the same...
if (execution.item.recipient == execution.offerer) {
// Increment total filtered executions.
++totalFilteredExecutions;
} else {
// Otherwise, assign the execution to the executions array.
executions[i - totalFilteredExecutions] = execution;
}
}
// Iterate over each consideration fulfillment.
for (uint256 i = 0; i < totalConsiderationFulfillments; ++i) {
/// Retrieve consideration fulfillment components in question.
FulfillmentComponent[] memory components = (
considerationFulfillments[i]
);
// Derive aggregated execution corresponding with fulfillment.
Execution memory execution = _aggregateAvailable(
advancedOrders,
Side.CONSIDERATION,
components,
fulfillerConduitKey,
address(0) // unused
);
// If offerer and recipient on the execution are the same...
if (execution.item.recipient == execution.offerer) {
// Increment total filtered executions.
++totalFilteredExecutions;
} else {
// Otherwise, assign the execution to the executions array.
executions[
i + totalOfferFulfillments - totalFilteredExecutions
] = execution;
}
}
// If some number of executions have been filtered...
if (totalFilteredExecutions != 0) {
// reduce the total length of the executions array.
assembly {
mstore(
executions,
sub(mload(executions), totalFilteredExecutions)
)
}
}
}
// Revert if no orders are available.
if (executions.length == 0) {
revert NoSpecifiedOrdersAvailable();
}
// Perform final checks and return.
availableOrders = _performFinalChecksAndExecuteOrders(
advancedOrders,
executions
);
return (availableOrders, executions);
}
/**
* @dev Internal function to perform a final check that each consideration
* item for an arbitrary number of fulfilled orders has been met and to
* trigger associated executions, transferring the respective items.
*
* @param advancedOrders The orders to check and perform executions for.
* @param executions An array of elements indicating the sequence of
* transfers to perform when fulfilling the given
* orders.
*
* @return availableOrders An array of booleans indicating if each order
* with an index corresponding to the index of the
* returned boolean was fulfillable or not.
*/
function _performFinalChecksAndExecuteOrders(
AdvancedOrder[] memory advancedOrders,
Execution[] memory executions
) internal returns (bool[] memory availableOrders) {
// Retrieve the length of the advanced orders array and place on stack.
uint256 totalOrders = advancedOrders.length;
// Initialize array for tracking available orders.
availableOrders = new bool[](totalOrders);
// Skip overflow checks as all for loops are indexed starting at zero.
unchecked {
// Iterate over orders to ensure all considerations are met.
for (uint256 i = 0; i < totalOrders; ++i) {
// Retrieve the order in question.
AdvancedOrder memory advancedOrder = advancedOrders[i];
// Skip consideration item checks for order if not fulfilled.
if (advancedOrder.numerator == 0) {
// Note: orders do not need to be marked as unavailable as a
// new memory region has been allocated. Review carefully if
// altering compiler version or managing memory manually.
continue;
}
// Mark the order as available.
availableOrders[i] = true;
// Retrieve consideration items to ensure they are fulfilled.
ConsiderationItem[] memory consideration = (
advancedOrder.parameters.consideration
);
// Read length of consideration array and place on the stack.
uint256 totalConsiderationItems = consideration.length;
// Iterate over each consideration item to ensure it is met.
for (uint256 j = 0; j < totalConsiderationItems; ++j) {
// Retrieve remaining amount on the consideration item.
uint256 unmetAmount = consideration[j].startAmount;
// Revert if the remaining amount is not zero.
if (unmetAmount != 0) {
revert ConsiderationNotMet(i, j, unmetAmount);
}
}
}
}
// Put ether value supplied by the caller on the stack.
uint256 etherRemaining = msg.value;
// Initialize an accumulator array. From this point forward, no new
// memory regions can be safely allocated until the accumulator is no
// longer being utilized, as the accumulator operates in an open-ended
// fashion from this memory pointer; existing memory may still be
// accessed and modified, however.
bytes memory accumulator = new bytes(AccumulatorDisarmed);
// Retrieve the length of the executions array and place on stack.
uint256 totalExecutions = executions.length;
// Iterate over each execution.
for (uint256 i = 0; i < totalExecutions; ) {
// Retrieve the execution and the associated received item.
Execution memory execution = executions[i];
ReceivedItem memory item = execution.item;
// If execution transfers native tokens, reduce value available.
if (item.itemType == ItemType.NATIVE) {
// Ensure that sufficient native tokens are still available.
if (item.amount > etherRemaining) {
revert InsufficientEtherSupplied();
}
// Skip underflow check as amount is less than ether remaining.
unchecked {
etherRemaining -= item.amount;
}
}
// Transfer the item specified by the execution.
_transfer(
item,
execution.offerer,
execution.conduitKey,
accumulator
);
// Skip overflow check as for loop is indexed starting at zero.
unchecked {
++i;
}
}
// Trigger any remaining accumulated transfers via call to the conduit.
_triggerIfArmed(accumulator);
// If any ether remains after fulfillments, return it to the caller.
if (etherRemaining != 0) {
_transferEth(payable(msg.sender), etherRemaining);
}
// Clear the reentrancy guard.
_clearReentrancyGuard();
// Return the array containing available orders.
return (availableOrders);
}
/**
* @dev Internal function to match an arbitrary number of full or partial
* orders, each with an arbitrary number of items for offer and
* consideration, supplying criteria resolvers containing specific
* token identifiers and associated proofs as well as fulfillments
* allocating offer components to consideration components.
*
* @param advancedOrders The advanced orders to match. Note that both the
* offerer and fulfiller on each order must first
* approve this contract (or their conduit if
* indicated by the order) to transfer any relevant
* tokens on their behalf and each consideration
* recipient must implement `onERC1155Received` in
* order to receive ERC1155 tokens. Also note that
* the offer and consideration components for each
* order must have no remainder after multiplying
* the respective amount with the supplied fraction
* in order for the group of partial fills to be
* considered valid.
* @param criteriaResolvers An array where each element contains a reference
* to a specific order as well as that order's
* offer or consideration, a token identifier, and
* a proof that the supplied token identifier is
* contained in the order's merkle root. Note that
* an empty root indicates that any (transferable)
* token identifier is valid and that no associated
* proof needs to be supplied.
* @param fulfillments An array of elements allocating offer components
* to consideration components. Note that each
* consideration component must be fully met in
* order for the match operation to be valid.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function _matchAdvancedOrders(
AdvancedOrder[] memory advancedOrders,
CriteriaResolver[] memory criteriaResolvers,
Fulfillment[] calldata fulfillments
) internal returns (Execution[] memory executions) {
// Validate orders, update order status, and determine item amounts.
_validateOrdersAndPrepareToFulfill(
advancedOrders,
criteriaResolvers,
true, // Signifies that invalid orders should revert.
advancedOrders.length,
address(0) // OrderFulfilled event has no recipient when matching.
);
// Fulfill the orders using the supplied fulfillments.
return _fulfillAdvancedOrders(advancedOrders, fulfillments);
}
/**
* @dev Internal function to fulfill an arbitrary number of orders, either
* full or partial, after validating, adjusting amounts, and applying
* criteria resolvers.
*
* @param advancedOrders The orders to match, including a fraction to
* attempt to fill for each order.
* @param fulfillments An array of elements allocating offer
* components to consideration components. Note
* that the final amount of each consideration
* component must be zero for a match operation to
* be considered valid.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function _fulfillAdvancedOrders(
AdvancedOrder[] memory advancedOrders,
Fulfillment[] calldata fulfillments
) internal returns (Execution[] memory executions) {
// Retrieve fulfillments array length and place on the stack.
uint256 totalFulfillments = fulfillments.length;
// Allocate executions by fulfillment and apply them to each execution.
executions = new Execution[](totalFulfillments);
// Skip overflow checks as all for loops are indexed starting at zero.
unchecked {
// Track number of filtered executions.
uint256 totalFilteredExecutions = 0;
// Iterate over each fulfillment.
for (uint256 i = 0; i < totalFulfillments; ++i) {
/// Retrieve the fulfillment in question.
Fulfillment calldata fulfillment = fulfillments[i];
// Derive the execution corresponding with the fulfillment.
Execution memory execution = _applyFulfillment(
advancedOrders,
fulfillment.offerComponents,
fulfillment.considerationComponents
);
// If offerer and recipient on the execution are the same...
if (execution.item.recipient == execution.offerer) {
// Increment total filtered executions.
++totalFilteredExecutions;
} else {
// Otherwise, assign the execution to the executions array.
executions[i - totalFilteredExecutions] = execution;
}
}
// If some number of executions have been filtered...
if (totalFilteredExecutions != 0) {
// reduce the total length of the executions array.
assembly {
mstore(
executions,
sub(mload(executions), totalFilteredExecutions)
)
}
}
}
// Perform final checks and execute orders.
_performFinalChecksAndExecuteOrders(advancedOrders, executions);
// Return the executions array.
return (executions);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import {
ConsiderationInterface
} from "../interfaces/ConsiderationInterface.sol";
import {
OrderComponents,
BasicOrderParameters,
OrderParameters,
Order,
AdvancedOrder,
OrderStatus,
CriteriaResolver,
Fulfillment,
FulfillmentComponent,
Execution
} from "./ConsiderationStructs.sol";
import { OrderCombiner } from "./OrderCombiner.sol";
/**
* @title Consideration
* @author 0age
* @custom:coauthor d1ll0n
* @custom:coauthor transmissions11
* @custom:version 1.1
* @notice Consideration is a generalized ETH/ERC20/ERC721/ERC1155 marketplace.
* It minimizes external calls to the greatest extent possible and
* provides lightweight methods for common routes as well as more
* flexible methods for composing advanced orders or groups of orders.
* Each order contains an arbitrary number of items that may be spent
* (the "offer") along with an arbitrary number of items that must be
* received back by the indicated recipients (the "consideration").
*/
contract Consideration is ConsiderationInterface, OrderCombiner {
/**
* @notice Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController) OrderCombiner(conduitController) {}
/**
* @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by
* supplying Ether (or other native tokens), ERC20 tokens, an ERC721
* item, or an ERC1155 item as consideration. Six permutations are
* supported: Native token to ERC721, Native token to ERC1155, ERC20
* to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to
* ERC20 (with native tokens supplied as msg.value). For an order to
* be eligible for fulfillment via this method, it must contain a
* single offer item (though that item may have a greater amount if
* the item is not an ERC721). An arbitrary number of "additional
* recipients" may also be supplied which will each receive native
* tokens or ERC20 items from the fulfiller as consideration. Refer
* to the documentation for a more comprehensive summary of how to
* utilize this method and what orders are compatible with it.
*
* @param parameters Additional information on the fulfilled order. Note
* that the offerer and the fulfiller must first approve
* this contract (or their chosen conduit if indicated)
* before any tokens can be transferred. Also note that
* contract recipients of ERC1155 consideration items must
* implement `onERC1155Received` in order to receive those
* items.
*
* @return fulfilled A boolean indicating whether the order has been
* successfully fulfilled.
*/
function fulfillBasicOrder(BasicOrderParameters calldata parameters)
external
payable
override
returns (bool fulfilled)
{
// Validate and fulfill the basic order.
fulfilled = _validateAndFulfillBasicOrder(parameters);
}
/**
* @notice Fulfill an order with an arbitrary number of items for offer and
* consideration. Note that this function does not support
* criteria-based orders or partial filling of orders (though
* filling the remainder of a partially-filled order is supported).
*
* @param order The order to fulfill. Note that both the
* offerer and the fulfiller must first approve
* this contract (or the corresponding conduit if
* indicated) to transfer any relevant tokens on
* their behalf and that contracts must implement
* `onERC1155Received` to receive ERC1155 tokens
* as consideration.
* @param fulfillerConduitKey A bytes32 value indicating what conduit, if
* any, to source the fulfiller's token approvals
* from. The zero hash signifies that no conduit
* should be used (and direct approvals set on
* Consideration).
*
* @return fulfilled A boolean indicating whether the order has been
* successfully fulfilled.
*/
function fulfillOrder(Order calldata order, bytes32 fulfillerConduitKey)
external
payable
override
returns (bool fulfilled)
{
// Convert order to "advanced" order, then validate and fulfill it.
fulfilled = _validateAndFulfillAdvancedOrder(
_convertOrderToAdvanced(order),
new CriteriaResolver[](0), // No criteria resolvers supplied.
fulfillerConduitKey,
msg.sender
);
}
/**
* @notice Fill an order, fully or partially, with an arbitrary number of
* items for offer and consideration alongside criteria resolvers
* containing specific token identifiers and associated proofs.
*
* @param advancedOrder The order to fulfill along with the fraction
* of the order to attempt to fill. Note that
* both the offerer and the fulfiller must first
* approve this contract (or their conduit if
* indicated by the order) to transfer any
* relevant tokens on their behalf and that
* contracts must implement `onERC1155Received`
* to receive ERC1155 tokens as consideration.
* Also note that all offer and consideration
* components must have no remainder after
* multiplication of the respective amount with
* the supplied fraction for the partial fill to
* be considered valid.
* @param criteriaResolvers An array where each element contains a
* reference to a specific offer or
* consideration, a token identifier, and a proof
* that the supplied token identifier is
* contained in the merkle root held by the item
* in question's criteria element. Note that an
* empty criteria indicates that any
* (transferable) token identifier on the token
* in question is valid and that no associated
* proof needs to be supplied.
* @param fulfillerConduitKey A bytes32 value indicating what conduit, if
* any, to source the fulfiller's token approvals
* from. The zero hash signifies that no conduit
* should be used (and direct approvals set on
* Consideration).
* @param recipient The intended recipient for all received items,
* with `address(0)` indicating that the caller
* should receive the items.
*
* @return fulfilled A boolean indicating whether the order has been
* successfully fulfilled.
*/
function fulfillAdvancedOrder(
AdvancedOrder calldata advancedOrder,
CriteriaResolver[] calldata criteriaResolvers,
bytes32 fulfillerConduitKey,
address recipient
) external payable override returns (bool fulfilled) {
// Validate and fulfill the order.
fulfilled = _validateAndFulfillAdvancedOrder(
advancedOrder,
criteriaResolvers,
fulfillerConduitKey,
recipient == address(0) ? msg.sender : recipient
);
}
/**
* @notice Attempt to fill a group of orders, each with an arbitrary number
* of items for offer and consideration. Any order that is not
* currently active, has already been fully filled, or has been
* cancelled will be omitted. Remaining offer and consideration
* items will then be aggregated where possible as indicated by the
* supplied offer and consideration component arrays and aggregated
* items will be transferred to the fulfiller or to each intended
* recipient, respectively. Note that a failing item transfer or an
* issue with order formatting will cause the entire batch to fail.
* Note that this function does not support criteria-based orders or
* partial filling of orders (though filling the remainder of a
* partially-filled order is supported).
*
* @param orders The orders to fulfill. Note that both
* the offerer and the fulfiller must first
* approve this contract (or the
* corresponding conduit if indicated) to
* transfer any relevant tokens on their
* behalf and that contracts must implement
* `onERC1155Received` to receive ERC1155
* tokens as consideration.
* @param offerFulfillments An array of FulfillmentComponent arrays
* indicating which offer items to attempt
* to aggregate when preparing executions.
* @param considerationFulfillments An array of FulfillmentComponent arrays
* indicating which consideration items to
* attempt to aggregate when preparing
* executions.
* @param fulfillerConduitKey A bytes32 value indicating what conduit,
* if any, to source the fulfiller's token
* approvals from. The zero hash signifies
* that no conduit should be used (and
* direct approvals set on Consideration).
* @param maximumFulfilled The maximum number of orders to fulfill.
*
* @return availableOrders An array of booleans indicating if each order
* with an index corresponding to the index of the
* returned boolean was fulfillable or not.
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function fulfillAvailableOrders(
Order[] calldata orders,
FulfillmentComponent[][] calldata offerFulfillments,
FulfillmentComponent[][] calldata considerationFulfillments,
bytes32 fulfillerConduitKey,
uint256 maximumFulfilled
)
external
payable
override
returns (bool[] memory availableOrders, Execution[] memory executions)
{
// Convert orders to "advanced" orders and fulfill all available orders.
return
_fulfillAvailableAdvancedOrders(
_convertOrdersToAdvanced(orders), // Convert to advanced orders.
new CriteriaResolver[](0), // No criteria resolvers supplied.
offerFulfillments,
considerationFulfillments,
fulfillerConduitKey,
msg.sender,
maximumFulfilled
);
}
/**
* @notice Attempt to fill a group of orders, fully or partially, with an
* arbitrary number of items for offer and consideration per order
* alongside criteria resolvers containing specific token
* identifiers and associated proofs. Any order that is not
* currently active, has already been fully filled, or has been
* cancelled will be omitted. Remaining offer and consideration
* items will then be aggregated where possible as indicated by the
* supplied offer and consideration component arrays and aggregated
* items will be transferred to the fulfiller or to each intended
* recipient, respectively. Note that a failing item transfer or an
* issue with order formatting will cause the entire batch to fail.
*
* @param advancedOrders The orders to fulfill along with the
* fraction of those orders to attempt to
* fill. Note that both the offerer and the
* fulfiller must first approve this
* contract (or their conduit if indicated
* by the order) to transfer any relevant
* tokens on their behalf and that
* contracts must implement
* `onERC1155Received` in order to receive
* ERC1155 tokens as consideration. Also
* note that all offer and consideration
* components must have no remainder after
* multiplication of the respective amount
* with the supplied fraction for an
* order's partial fill amount to be
* considered valid.
* @param criteriaResolvers An array where each element contains a
* reference to a specific offer or
* consideration, a token identifier, and a
* proof that the supplied token identifier
* is contained in the merkle root held by
* the item in question's criteria element.
* Note that an empty criteria indicates
* that any (transferable) token
* identifier on the token in question is
* valid and that no associated proof needs
* to be supplied.
* @param offerFulfillments An array of FulfillmentComponent arrays
* indicating which offer items to attempt
* to aggregate when preparing executions.
* @param considerationFulfillments An array of FulfillmentComponent arrays
* indicating which consideration items to
* attempt to aggregate when preparing
* executions.
* @param fulfillerConduitKey A bytes32 value indicating what conduit,
* if any, to source the fulfiller's token
* approvals from. The zero hash signifies
* that no conduit should be used (and
* direct approvals set on Consideration).
* @param recipient The intended recipient for all received
* items, with `address(0)` indicating that
* the caller should receive the items.
* @param maximumFulfilled The maximum number of orders to fulfill.
*
* @return availableOrders An array of booleans indicating if each order
* with an index corresponding to the index of the
* returned boolean was fulfillable or not.
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function fulfillAvailableAdvancedOrders(
AdvancedOrder[] memory advancedOrders,
CriteriaResolver[] calldata criteriaResolvers,
FulfillmentComponent[][] calldata offerFulfillments,
FulfillmentComponent[][] calldata considerationFulfillments,
bytes32 fulfillerConduitKey,
address recipient,
uint256 maximumFulfilled
)
external
payable
override
returns (bool[] memory availableOrders, Execution[] memory executions)
{
// Fulfill all available orders.
return
_fulfillAvailableAdvancedOrders(
advancedOrders,
criteriaResolvers,
offerFulfillments,
considerationFulfillments,
fulfillerConduitKey,
recipient == address(0) ? msg.sender : recipient,
maximumFulfilled
);
}
/**
* @notice Match an arbitrary number of orders, each with an arbitrary
* number of items for offer and consideration along with a set of
* fulfillments allocating offer components to consideration
* components. Note that this function does not support
* criteria-based or partial filling of orders (though filling the
* remainder of a partially-filled order is supported).
*
* @param orders The orders to match. Note that both the offerer
* and fulfiller on each order must first approve
* this contract (or their conduit if indicated by
* the order) to transfer any relevant tokens on
* their behalf and each consideration recipient
* must implement `onERC1155Received` in order to
* receive ERC1155 tokens.
* @param fulfillments An array of elements allocating offer components
* to consideration components. Note that each
* consideration component must be fully met in
* order for the match operation to be valid.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function matchOrders(
Order[] calldata orders,
Fulfillment[] calldata fulfillments
) external payable override returns (Execution[] memory executions) {
// Convert to advanced, validate, and match orders using fulfillments.
return
_matchAdvancedOrders(
_convertOrdersToAdvanced(orders),
new CriteriaResolver[](0), // No criteria resolvers supplied.
fulfillments
);
}
/**
* @notice Match an arbitrary number of full or partial orders, each with an
* arbitrary number of items for offer and consideration, supplying
* criteria resolvers containing specific token identifiers and
* associated proofs as well as fulfillments allocating offer
* components to consideration components.
*
* @param advancedOrders The advanced orders to match. Note that both the
* offerer and fulfiller on each order must first
* approve this contract (or their conduit if
* indicated by the order) to transfer any relevant
* tokens on their behalf and each consideration
* recipient must implement `onERC1155Received` in
* order to receive ERC1155 tokens. Also note that
* the offer and consideration components for each
* order must have no remainder after multiplying
* the respective amount with the supplied fraction
* in order for the group of partial fills to be
* considered valid.
* @param criteriaResolvers An array where each element contains a reference
* to a specific order as well as that order's
* offer or consideration, a token identifier, and
* a proof that the supplied token identifier is
* contained in the order's merkle root. Note that
* an empty root indicates that any (transferable)
* token identifier is valid and that no associated
* proof needs to be supplied.
* @param fulfillments An array of elements allocating offer components
* to consideration components. Note that each
* consideration component must be fully met in
* order for the match operation to be valid.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function matchAdvancedOrders(
AdvancedOrder[] memory advancedOrders,
CriteriaResolver[] calldata criteriaResolvers,
Fulfillment[] calldata fulfillments
) external payable override returns (Execution[] memory executions) {
// Validate and match the advanced orders using supplied fulfillments.
return
_matchAdvancedOrders(
advancedOrders,
criteriaResolvers,
fulfillments
);
}
/**
* @notice Cancel an arbitrary number of orders. Note that only the offerer
* or the zone of a given order may cancel it. Callers should ensure
* that the intended order was cancelled by calling `getOrderStatus`
* and confirming that `isCancelled` returns `true`.
*
* @param orders The orders to cancel.
*
* @return cancelled A boolean indicating whether the supplied orders have
* been successfully cancelled.
*/
function cancel(OrderComponents[] calldata orders)
external
override
returns (bool cancelled)
{
// Cancel the orders.
cancelled = _cancel(orders);
}
/**
* @notice Validate an arbitrary number of orders, thereby registering their
* signatures as valid and allowing the fulfiller to skip signature
* verification on fulfillment. Note that validated orders may still
* be unfulfillable due to invalid item amounts or other factors;
* callers should determine whether validated orders are fulfillable
* by simulating the fulfillment call prior to execution. Also note
* that anyone can validate a signed order, but only the offerer can
* validate an order without supplying a signature.
*
* @param orders The orders to validate.
*
* @return validated A boolean indicating whether the supplied orders have
* been successfully validated.
*/
function validate(Order[] calldata orders)
external
override
returns (bool validated)
{
// Validate the orders.
validated = _validate(orders);
}
/**
* @notice Cancel all orders from a given offerer with a given zone in bulk
* by incrementing a counter. Note that only the offerer may
* increment the counter.
*
* @return newCounter The new counter.
*/
function incrementCounter() external override returns (uint256 newCounter) {
// Increment current counter for the supplied offerer.
newCounter = _incrementCounter();
}
/**
* @notice Retrieve the order hash for a given order.
*
* @param order The components of the order.
*
* @return orderHash The order hash.
*/
function getOrderHash(OrderComponents calldata order)
external
view
override
returns (bytes32 orderHash)
{
// Derive order hash by supplying order parameters along with counter.
orderHash = _deriveOrderHash(
OrderParameters(
order.offerer,
order.zone,
order.offer,
order.consideration,
order.orderType,
order.startTime,
order.endTime,
order.zoneHash,
order.salt,
order.conduitKey,
order.consideration.length
),
order.counter
);
}
/**
* @notice Retrieve the status of a given order by hash, including whether
* the order has been cancelled or validated and the fraction of the
* order that has been filled.
*
* @param orderHash The order hash in question.
*
* @return isValidated A boolean indicating whether the order in question
* has been validated (i.e. previously approved or
* partially filled).
* @return isCancelled A boolean indicating whether the order in question
* has been cancelled.
* @return totalFilled The total portion of the order that has been filled
* (i.e. the "numerator").
* @return totalSize The total size of the order that is either filled or
* unfilled (i.e. the "denominator").
*/
function getOrderStatus(bytes32 orderHash)
external
view
override
returns (
bool isValidated,
bool isCancelled,
uint256 totalFilled,
uint256 totalSize
)
{
// Retrieve the order status using the order hash.
return _getOrderStatus(orderHash);
}
/**
* @notice Retrieve the current counter for a given offerer.
*
* @param offerer The offerer in question.
*
* @return counter The current counter.
*/
function getCounter(address offerer)
external
view
override
returns (uint256 counter)
{
// Return the counter for the supplied offerer.
counter = _getCounter(offerer);
}
/**
* @notice Retrieve configuration information for this contract.
*
* @return version The contract version.
* @return domainSeparator The domain separator for this contract.
* @return conduitController The conduit Controller set for this contract.
*/
function information()
external
view
override
returns (
string memory version,
bytes32 domainSeparator,
address conduitController
)
{
// Return the information for this contract.
return _information();
}
/**
* @notice Retrieve the name of this contract.
*
* @return contractName The name of this contract.
*/
function name()
external
pure
override
returns (string memory contractName)
{
// Return the name of the contract.
contractName = _name();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import {
BasicOrderParameters,
OrderComponents,
Fulfillment,
FulfillmentComponent,
Execution,
Order,
AdvancedOrder,
OrderStatus,
CriteriaResolver
} from "../lib/ConsiderationStructs.sol";
/**
* @title ConsiderationInterface
* @author 0age
* @custom:version 1.1
* @notice Consideration is a generalized ETH/ERC20/ERC721/ERC1155 marketplace.
* It minimizes external calls to the greatest extent possible and
* provides lightweight methods for common routes as well as more
* flexible methods for composing advanced orders.
*
* @dev ConsiderationInterface contains all external function interfaces for
* Consideration.
*/
interface ConsiderationInterface {
/**
* @notice Fulfill an order offering an ERC721 token by supplying Ether (or
* the native token for the given chain) as consideration for the
* order. An arbitrary number of "additional recipients" may also be
* supplied which will each receive native tokens from the fulfiller
* as consideration.
*
* @param parameters Additional information on the fulfilled order. Note
* that the offerer must first approve this contract (or
* their preferred conduit if indicated by the order) for
* their offered ERC721 token to be transferred.
*
* @return fulfilled A boolean indicating whether the order has been
* successfully fulfilled.
*/
function fulfillBasicOrder(BasicOrderParameters calldata parameters)
external
payable
returns (bool fulfilled);
/**
* @notice Fulfill an order with an arbitrary number of items for offer and
* consideration. Note that this function does not support
* criteria-based orders or partial filling of orders (though
* filling the remainder of a partially-filled order is supported).
*
* @param order The order to fulfill. Note that both the
* offerer and the fulfiller must first approve
* this contract (or the corresponding conduit if
* indicated) to transfer any relevant tokens on
* their behalf and that contracts must implement
* `onERC1155Received` to receive ERC1155 tokens
* as consideration.
* @param fulfillerConduitKey A bytes32 value indicating what conduit, if
* any, to source the fulfiller's token approvals
* from. The zero hash signifies that no conduit
* should be used, with direct approvals set on
* Consideration.
*
* @return fulfilled A boolean indicating whether the order has been
* successfully fulfilled.
*/
function fulfillOrder(Order calldata order, bytes32 fulfillerConduitKey)
external
payable
returns (bool fulfilled);
/**
* @notice Fill an order, fully or partially, with an arbitrary number of
* items for offer and consideration alongside criteria resolvers
* containing specific token identifiers and associated proofs.
*
* @param advancedOrder The order to fulfill along with the fraction
* of the order to attempt to fill. Note that
* both the offerer and the fulfiller must first
* approve this contract (or their preferred
* conduit if indicated by the order) to transfer
* any relevant tokens on their behalf and that
* contracts must implement `onERC1155Received`
* to receive ERC1155 tokens as consideration.
* Also note that all offer and consideration
* components must have no remainder after
* multiplication of the respective amount with
* the supplied fraction for the partial fill to
* be considered valid.
* @param criteriaResolvers An array where each element contains a
* reference to a specific offer or
* consideration, a token identifier, and a proof
* that the supplied token identifier is
* contained in the merkle root held by the item
* in question's criteria element. Note that an
* empty criteria indicates that any
* (transferable) token identifier on the token
* in question is valid and that no associated
* proof needs to be supplied.
* @param fulfillerConduitKey A bytes32 value indicating what conduit, if
* any, to source the fulfiller's token approvals
* from. The zero hash signifies that no conduit
* should be used, with direct approvals set on
* Consideration.
* @param recipient The intended recipient for all received items,
* with `address(0)` indicating that the caller
* should receive the items.
*
* @return fulfilled A boolean indicating whether the order has been
* successfully fulfilled.
*/
function fulfillAdvancedOrder(
AdvancedOrder calldata advancedOrder,
CriteriaResolver[] calldata criteriaResolvers,
bytes32 fulfillerConduitKey,
address recipient
) external payable returns (bool fulfilled);
/**
* @notice Attempt to fill a group of orders, each with an arbitrary number
* of items for offer and consideration. Any order that is not
* currently active, has already been fully filled, or has been
* cancelled will be omitted. Remaining offer and consideration
* items will then be aggregated where possible as indicated by the
* supplied offer and consideration component arrays and aggregated
* items will be transferred to the fulfiller or to each intended
* recipient, respectively. Note that a failing item transfer or an
* issue with order formatting will cause the entire batch to fail.
* Note that this function does not support criteria-based orders or
* partial filling of orders (though filling the remainder of a
* partially-filled order is supported).
*
* @param orders The orders to fulfill. Note that both
* the offerer and the fulfiller must first
* approve this contract (or the
* corresponding conduit if indicated) to
* transfer any relevant tokens on their
* behalf and that contracts must implement
* `onERC1155Received` to receive ERC1155
* tokens as consideration.
* @param offerFulfillments An array of FulfillmentComponent arrays
* indicating which offer items to attempt
* to aggregate when preparing executions.
* @param considerationFulfillments An array of FulfillmentComponent arrays
* indicating which consideration items to
* attempt to aggregate when preparing
* executions.
* @param fulfillerConduitKey A bytes32 value indicating what conduit,
* if any, to source the fulfiller's token
* approvals from. The zero hash signifies
* that no conduit should be used, with
* direct approvals set on this contract.
* @param maximumFulfilled The maximum number of orders to fulfill.
*
* @return availableOrders An array of booleans indicating if each order
* with an index corresponding to the index of the
* returned boolean was fulfillable or not.
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function fulfillAvailableOrders(
Order[] calldata orders,
FulfillmentComponent[][] calldata offerFulfillments,
FulfillmentComponent[][] calldata considerationFulfillments,
bytes32 fulfillerConduitKey,
uint256 maximumFulfilled
)
external
payable
returns (bool[] memory availableOrders, Execution[] memory executions);
/**
* @notice Attempt to fill a group of orders, fully or partially, with an
* arbitrary number of items for offer and consideration per order
* alongside criteria resolvers containing specific token
* identifiers and associated proofs. Any order that is not
* currently active, has already been fully filled, or has been
* cancelled will be omitted. Remaining offer and consideration
* items will then be aggregated where possible as indicated by the
* supplied offer and consideration component arrays and aggregated
* items will be transferred to the fulfiller or to each intended
* recipient, respectively. Note that a failing item transfer or an
* issue with order formatting will cause the entire batch to fail.
*
* @param advancedOrders The orders to fulfill along with the
* fraction of those orders to attempt to
* fill. Note that both the offerer and the
* fulfiller must first approve this
* contract (or their preferred conduit if
* indicated by the order) to transfer any
* relevant tokens on their behalf and that
* contracts must implement
* `onERC1155Received` to enable receipt of
* ERC1155 tokens as consideration. Also
* note that all offer and consideration
* components must have no remainder after
* multiplication of the respective amount
* with the supplied fraction for an
* order's partial fill amount to be
* considered valid.
* @param criteriaResolvers An array where each element contains a
* reference to a specific offer or
* consideration, a token identifier, and a
* proof that the supplied token identifier
* is contained in the merkle root held by
* the item in question's criteria element.
* Note that an empty criteria indicates
* that any (transferable) token
* identifier on the token in question is
* valid and that no associated proof needs
* to be supplied.
* @param offerFulfillments An array of FulfillmentComponent arrays
* indicating which offer items to attempt
* to aggregate when preparing executions.
* @param considerationFulfillments An array of FulfillmentComponent arrays
* indicating which consideration items to
* attempt to aggregate when preparing
* executions.
* @param fulfillerConduitKey A bytes32 value indicating what conduit,
* if any, to source the fulfiller's token
* approvals from. The zero hash signifies
* that no conduit should be used, with
* direct approvals set on this contract.
* @param recipient The intended recipient for all received
* items, with `address(0)` indicating that
* the caller should receive the items.
* @param maximumFulfilled The maximum number of orders to fulfill.
*
* @return availableOrders An array of booleans indicating if each order
* with an index corresponding to the index of the
* returned boolean was fulfillable or not.
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function fulfillAvailableAdvancedOrders(
AdvancedOrder[] calldata advancedOrders,
CriteriaResolver[] calldata criteriaResolvers,
FulfillmentComponent[][] calldata offerFulfillments,
FulfillmentComponent[][] calldata considerationFulfillments,
bytes32 fulfillerConduitKey,
address recipient,
uint256 maximumFulfilled
)
external
payable
returns (bool[] memory availableOrders, Execution[] memory executions);
/**
* @notice Match an arbitrary number of orders, each with an arbitrary
* number of items for offer and consideration along with as set of
* fulfillments allocating offer components to consideration
* components. Note that this function does not support
* criteria-based or partial filling of orders (though filling the
* remainder of a partially-filled order is supported).
*
* @param orders The orders to match. Note that both the offerer and
* fulfiller on each order must first approve this
* contract (or their conduit if indicated by the order)
* to transfer any relevant tokens on their behalf and
* each consideration recipient must implement
* `onERC1155Received` to enable ERC1155 token receipt.
* @param fulfillments An array of elements allocating offer components to
* consideration components. Note that each
* consideration component must be fully met for the
* match operation to be valid.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function matchOrders(
Order[] calldata orders,
Fulfillment[] calldata fulfillments
) external payable returns (Execution[] memory executions);
/**
* @notice Match an arbitrary number of full or partial orders, each with an
* arbitrary number of items for offer and consideration, supplying
* criteria resolvers containing specific token identifiers and
* associated proofs as well as fulfillments allocating offer
* components to consideration components.
*
* @param orders The advanced orders to match. Note that both the
* offerer and fulfiller on each order must first
* approve this contract (or a preferred conduit if
* indicated by the order) to transfer any relevant
* tokens on their behalf and each consideration
* recipient must implement `onERC1155Received` in
* order to receive ERC1155 tokens. Also note that
* the offer and consideration components for each
* order must have no remainder after multiplying
* the respective amount with the supplied fraction
* in order for the group of partial fills to be
* considered valid.
* @param criteriaResolvers An array where each element contains a reference
* to a specific order as well as that order's
* offer or consideration, a token identifier, and
* a proof that the supplied token identifier is
* contained in the order's merkle root. Note that
* an empty root indicates that any (transferable)
* token identifier is valid and that no associated
* proof needs to be supplied.
* @param fulfillments An array of elements allocating offer components
* to consideration components. Note that each
* consideration component must be fully met in
* order for the match operation to be valid.
*
* @return executions An array of elements indicating the sequence of
* transfers performed as part of matching the given
* orders.
*/
function matchAdvancedOrders(
AdvancedOrder[] calldata orders,
CriteriaResolver[] calldata criteriaResolvers,
Fulfillment[] calldata fulfillments
) external payable returns (Execution[] memory executions);
/**
* @notice Cancel an arbitrary number of orders. Note that only the offerer
* or the zone of a given order may cancel it. Callers should ensure
* that the intended order was cancelled by calling `getOrderStatus`
* and confirming that `isCancelled` returns `true`.
*
* @param orders The orders to cancel.
*
* @return cancelled A boolean indicating whether the supplied orders have
* been successfully cancelled.
*/
function cancel(OrderComponents[] calldata orders)
external
returns (bool cancelled);
/**
* @notice Validate an arbitrary number of orders, thereby registering their
* signatures as valid and allowing the fulfiller to skip signature
* verification on fulfillment. Note that validated orders may still
* be unfulfillable due to invalid item amounts or other factors;
* callers should determine whether validated orders are fulfillable
* by simulating the fulfillment call prior to execution. Also note
* that anyone can validate a signed order, but only the offerer can
* validate an order without supplying a signature.
*
* @param orders The orders to validate.
*
* @return validated A boolean indicating whether the supplied orders have
* been successfully validated.
*/
function validate(Order[] calldata orders)
external
returns (bool validated);
/**
* @notice Cancel all orders from a given offerer with a given zone in bulk
* by incrementing a counter. Note that only the offerer may
* increment the counter.
*
* @return newCounter The new counter.
*/
function incrementCounter() external returns (uint256 newCounter);
/**
* @notice Retrieve the order hash for a given order.
*
* @param order The components of the order.
*
* @return orderHash The order hash.
*/
function getOrderHash(OrderComponents calldata order)
external
view
returns (bytes32 orderHash);
/**
* @notice Retrieve the status of a given order by hash, including whether
* the order has been cancelled or validated and the fraction of the
* order that has been filled.
*
* @param orderHash The order hash in question.
*
* @return isValidated A boolean indicating whether the order in question
* has been validated (i.e. previously approved or
* partially filled).
* @return isCancelled A boolean indicating whether the order in question
* has been cancelled.
* @return totalFilled The total portion of the order that has been filled
* (i.e. the "numerator").
* @return totalSize The total size of the order that is either filled or
* unfilled (i.e. the "denominator").
*/
function getOrderStatus(bytes32 orderHash)
external
view
returns (
bool isValidated,
bool isCancelled,
uint256 totalFilled,
uint256 totalSize
);
/**
* @notice Retrieve the current counter for a given offerer.
*
* @param offerer The offerer in question.
*
* @return counter The current counter.
*/
function getCounter(address offerer)
external
view
returns (uint256 counter);
/**
* @notice Retrieve configuration information for this contract.
*
* @return version The contract version.
* @return domainSeparator The domain separator for this contract.
* @return conduitController The conduit Controller set for this contract.
*/
function information()
external
view
returns (
string memory version,
bytes32 domainSeparator,
address conduitController
);
/**
* @notice Retrieve the name of this contract.
*
* @return contractName The name of this contract.
*/
function name() external view returns (string memory contractName);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import { Consideration } from "./lib/Consideration.sol";
/**
* @title Seaport
* @custom:version 1.1
* @author 0age (0age.eth)
* @custom:coauthor d1ll0n (d1ll0n.eth)
* @custom:coauthor transmissions11 (t11s.eth)
* @custom:contributor Kartik (slokh.eth)
* @custom:contributor LeFevre (lefevre.eth)
* @custom:contributor Joseph Schiarizzi (CupOJoseph.eth)
* @custom:contributor Aspyn Palatnick (stuckinaboot.eth)
* @custom:contributor James Wenzel (emo.eth)
* @custom:contributor Stephan Min (stephanm.eth)
* @custom:contributor Ryan Ghods (ralxz.eth)
* @custom:contributor hack3r-0m (hack3r-0m.eth)
* @custom:contributor Diego Estevez (antidiego.eth)
* @custom:contributor Chomtana (chomtana.eth)
* @custom:contributor Saw-mon and Natalie (sawmonandnatalie.eth)
* @custom:contributor 0xBeans (0xBeans.eth)
* @custom:contributor 0x4non (punkdev.eth)
* @custom:contributor Laurence E. Day (norsefire.eth)
* @custom:contributor vectorized.eth (vectorized.eth)
* @custom:contributor karmacoma (karmacoma.eth)
* @custom:contributor horsefacts (horsefacts.eth)
* @custom:contributor UncarvedBlock (uncarvedblock.eth)
* @custom:contributor Zoraiz Mahmood (zorz.eth)
* @custom:contributor William Poulin (wpoulin.eth)
* @custom:contributor Rajiv Patel-O'Connor (rajivpoc.eth)
* @custom:contributor tserg (tserg.eth)
* @custom:contributor cygaar (cygaar.eth)
* @custom:contributor Meta0xNull (meta0xnull.eth)
* @custom:contributor gpersoon (gpersoon.eth)
* @custom:contributor Matt Solomon (msolomon.eth)
* @custom:contributor Weikang Song (weikangs.eth)
* @custom:contributor zer0dot (zer0dot.eth)
* @custom:contributor Mudit Gupta (mudit.eth)
* @custom:contributor leonardoalt (leoalt.eth)
* @custom:contributor cmichel (cmichel.eth)
* @custom:contributor PraneshASP (pranesh.eth)
* @custom:contributor JasperAlexander (jasperalexander.eth)
* @custom:contributor Ellahi (ellahi.eth)
* @custom:contributor zaz (1zaz1.eth)
* @custom:contributor berndartmueller (berndartmueller.eth)
* @custom:contributor dmfxyz (dmfxyz.eth)
* @custom:contributor daltoncoder (dontkillrobots.eth)
* @custom:contributor 0xf4ce (0xf4ce.eth)
* @custom:contributor phaze (phaze.eth)
* @custom:contributor hrkrshnn (hrkrshnn.eth)
* @custom:contributor axic (axic.eth)
* @custom:contributor leastwood (leastwood.eth)
* @custom:contributor 0xsanson (sanson.eth)
* @custom:contributor blockdev (blockd3v.eth)
* @custom:contributor fiveoutofnine (fiveoutofnine.eth)
* @custom:contributor shuklaayush (shuklaayush.eth)
* @custom:contributor 0xPatissier
* @custom:contributor pcaversaccio
* @custom:contributor David Eiber
* @custom:contributor csanuragjain
* @custom:contributor sach1r0
* @custom:contributor twojoy0
* @custom:contributor ori_dabush
* @custom:contributor Daniel Gelfand
* @custom:contributor okkothejawa
* @custom:contributor FlameHorizon
* @custom:contributor vdrg
* @custom:contributor dmitriia
* @custom:contributor bokeh-eth
* @custom:contributor asutorufos
* @custom:contributor rfart(rfa)
* @custom:contributor Riley Holterhus
* @custom:contributor big-tech-sux
* @notice Seaport is a generalized ETH/ERC20/ERC721/ERC1155 marketplace. It
* minimizes external calls to the greatest extent possible and provides
* lightweight methods for common routes as well as more flexible
* methods for composing advanced orders or groups of orders. Each order
* contains an arbitrary number of items that may be spent (the "offer")
* along with an arbitrary number of items that must be received back by
* the indicated recipients (the "consideration").
*/
contract Seaport is Consideration {
/**
* @notice Derive and set hashes, reference chainId, and associated domain
* separator during deployment.
*
* @param conduitController A contract that deploys conduits, or proxies
* that may optionally be used to transfer approved
* ERC20/721/1155 tokens.
*/
constructor(address conduitController) Consideration(conduitController) {}
/**
* @dev Internal pure function to retrieve and return the name of this
* contract.
*
* @return The name of this contract.
*/
function _name() internal pure override returns (string memory) {
// Return the name of the contract.
assembly {
mstore(0x20, 0x20)
mstore(0x47, 0x07536561706f7274)
return(0x20, 0x60)
}
}
/**
* @dev Internal pure function to retrieve the name of this contract as a
* string that will be used to derive the name hash in the constructor.
*
* @return The name of this contract as a string.
*/
function _nameString() internal pure override returns (string memory) {
// Return the name of the contract.
return "Seaport";
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { ZoneInterface } from "../interfaces/ZoneInterface.sol";
import {
AdvancedOrder,
CriteriaResolver
} from "../lib/ConsiderationStructs.sol";
contract TestZone is ZoneInterface {
function isValidOrder(
bytes32 orderHash,
address caller,
address offerer,
bytes32 zoneHash
) external pure override returns (bytes4 validOrderMagicValue) {
orderHash;
caller;
offerer;
if (zoneHash == bytes32(uint256(1))) {
revert("Revert on zone hash 1");
} else if (zoneHash == bytes32(uint256(2))) {
assembly {
revert(0, 0)
}
}
validOrderMagicValue = zoneHash != bytes32(uint256(3))
? ZoneInterface.isValidOrder.selector
: bytes4(0xffffffff);
}
function isValidOrderIncludingExtraData(
bytes32 orderHash,
address caller,
AdvancedOrder calldata order,
bytes32[] calldata priorOrderHashes,
CriteriaResolver[] calldata criteriaResolvers
) external pure override returns (bytes4 validOrderMagicValue) {
orderHash;
caller;
order;
priorOrderHashes;
criteriaResolvers;
if (order.extraData.length == 4) {
revert("Revert on extraData length 4");
} else if (order.extraData.length == 5) {
assembly {
revert(0, 0)
}
}
validOrderMagicValue = order.parameters.zoneHash != bytes32(uint256(3))
? ZoneInterface.isValidOrder.selector
: bytes4(0xffffffff);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;
import { IERC721Receiver } from "../interfaces/IERC721Receiver.sol";
contract ERC721ReceiverMock is IERC721Receiver {
enum Error {
None,
RevertWithMessage,
RevertWithoutMessage,
Panic
}
bytes4 private immutable _retval;
Error private immutable _error;
event Received(
address operator,
address from,
uint256 tokenId,
bytes data,
uint256 gas
);
constructor(bytes4 retval, Error error) {
_retval = retval;
_error = error;
}
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes memory data
) public override returns (bytes4) {
if (_error == Error.RevertWithMessage) {
revert("ERC721ReceiverMock: reverting");
} else if (_error == Error.RevertWithoutMessage) {
revert();
} else if (_error == Error.Panic) {
uint256 a = uint256(0) / uint256(0);
a;
}
emit Received(operator, from, tokenId, data, gasleft());
return _retval;
}
}