Overview
APE Balance
0 APE
APE Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
6527110 | 26 days ago | Contract Creation | 0 APE |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
ERC165Facet
Compiler Version
v0.8.23+commit.f704f362
Optimization Enabled:
Yes with 1000000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
//SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import {IERC165Register} from "./IERC165Register.sol"; import {ERC165Lib} from "./ERC165Lib.sol"; import {AccessControlRecursiveLib} from "../access/AccessControlRecursiveLib.sol"; contract ERC165Facet is IERC165Register { function supportsInterface(bytes4 interfaceId) external view returns (bool) { return ERC165Lib._supportsInterface(interfaceId); } function registerInterface(bytes4 interfaceId, bool supported) external { ERC165Lib._registerInterface(interfaceId, supported); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
//SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import {AccessControlRecursiveLib} from "../access/AccessControlRecursiveLib.sol"; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import {IERC165Register} from "./IERC165Register.sol"; library ERC165Lib { bytes32 internal constant ERC165_ROLE = bytes32(IERC165Register.registerInterface.selector); bytes32 constant ERC165_STORAGE = keccak256(abi.encode(uint256(keccak256("erc165.storage")) - 1)) & ~bytes32(uint256(0xff)); /// @custom:storage-location erc7201:erc165.storage struct ERC165Storage { mapping(bytes32 interfaceId => bool) _supportedInterfaces; } function getData() internal pure returns (ERC165Storage storage ds) { bytes32 position = ERC165_STORAGE; assembly { ds.slot := position } } function _init() internal { __unsafe_registerInterface(type(IERC165).interfaceId, true); } function _registerInterface(bytes4 interfaceId, bool supported) internal { AccessControlRecursiveLib._checkRoleRecursive(ERC165Lib.ERC165_ROLE, msg.sender); __unsafe_registerInterface(interfaceId, supported); } function __unsafe_registerInterface(bytes4 interfaceId, bool supported) internal { getData()._supportedInterfaces[interfaceId] = supported; } function _supportsInterface(bytes4 interfaceId) internal view returns (bool) { return getData()._supportedInterfaces[interfaceId]; } }
//SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; /** * @dev IERC165 contract that stores its interface id support data. This is usually not * recommended due to gas overhead but is required when using an upgradeable Diamond contract. */ interface IERC165Register is IERC165 { function registerInterface(bytes4 interfaceId, bool supported) external; }
// SPDX-License-Identifier: MIT // Originally from // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol) /** * We updated the AccessControl to be a library that can then be used in AccessControlFacet */ pragma solidity ^0.8.20; import {IAccessControl} from "./IAccessControl.sol"; /** * @dev Library module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ library AccessControlLib { /** * @dev The `account` is missing a role. */ error AccessControlUnauthorizedAccount(address account, bytes32 neededRole); /** * @dev The caller of a function is not the expected one. * * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}. */ error AccessControlBadConfirmation(); /** * @dev Cannot assign `NULL_ROLE` */ error AccessControlCannotSetNullRole(); /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role). * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); bytes32 constant DEFAULT_ADMIN_ROLE = 0x00; /** * The original OpenZeppelin AccessControl contract defines roles that each have an * `adminRole`. This is useful as a common pattern is to have the `grantRole` function * gated to addresses that have the `adminRole` of the role that is being currently granted. * * By default, roles have `adminRole` of `0x00` (since the storage is just empty). This is * also the `DEFAULT_ADMIN_ROLE`. In general, this is quite practical since we can assign * `DEFAULT_ADMIN_ROLE` to one address which can then distribute required roles. If we * visualize the relationship between roles and their `adminRole` as a tree structure we * realize that the root of this tree is ALWAYS the `adminRole`. * * DEFAULT_ADMIN_ROLE * / \ * RoleA RoleB * / * RoleC * * In other words, `DEFAULT_ADMIN_ROLE` is the indirect admin of ALL roles since it can * always assign itself the required roles. In this example, admin could * `grantRole(RoleA, msg.sender)`. The AccessControlRecursive module implements similar * recursive logic to support the same business logic in more scalable fashion. * * Having the admin be able to manage roles is usually good but we have a problem however. * How can we assign roles and freeze them, making sure that no one can re-assign the role * to other addresses? Only two solutions are possible: * 1. Renouce the `DEFAULT_ADMIN_ROLE` * 2. Add a `NULL_ROLE`, make it never assignable, and set that as the roles new `adminRole` * * Solution 1 is the simplest, but has the main drawback that by relinquishing the * `DEFAULT_ADMIN_ROLE` (forever), we lose the flexibility of being able to assign new roles, * especially roles with new identifiers. * We define `NULL_ROLE` as the `0xFF..F` (bytes32), in contrast with `0x00`. * */ bytes32 constant NULL_ROLE = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; //https://eips.ethereum.org/EIPS/eip-7201 bytes32 constant ACCESS_CONTROL_STORAGE = keccak256(abi.encode(uint256(keccak256("owlprotocol.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff)); struct RoleData { mapping(address account => bool) hasRole; bytes32 adminRole; } /// @custom:storage-location erc7201:owlprotocol.storage.AccessControl struct AccessControlStorage { mapping(bytes32 role => RoleData) roles; } function getData() internal pure returns (AccessControlStorage storage ds) { bytes32 position = ACCESS_CONTROL_STORAGE; assembly { ds.slot := position } } /** * @dev Returns `true` if `account` has been granted `role`. */ function _hasRole(bytes32 role, address account) internal view returns (bool) { return getData().roles[role].hasRole[account]; } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()` * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier. */ function _checkRole(bytes32 role) internal view { _checkRole(role, msg.sender); } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account` * is missing `role`. */ function _checkRole(bytes32 role, address account) internal view { if (!_hasRole(role, account)) { revert IAccessControl.AccessControlUnauthorizedAccount(account, role); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function _getRoleAdmin(bytes32 role) internal view returns (bytes32) { //`NULL_ROLE`'s adminRole is always itself if (role == NULL_ROLE) { return NULL_ROLE; } return getData().roles[role].adminRole; } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. * * May emit a {RoleRevoked} event. */ function _renounceRole(bytes32 role, address callerConfirmation) internal { if (callerConfirmation != msg.sender) { revert IAccessControl.AccessControlBadConfirmation(); } //use __unsafe here, no permissions check as removing self from role __unsafe_revokeRole(role, callerConfirmation); } function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal { _checkRole(AccessControlLib._getRoleAdmin(role), msg.sender); __unsafe_setRoleAdmin(role, adminRole); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function __unsafe_setRoleAdmin(bytes32 role, bytes32 adminRole) internal { //Cannot set `NULL_ROLE` adminRole (it is always itself) if (role == NULL_ROLE) { revert AccessControlCannotSetNullRole(); } //You MAY set `NULL_ROLE` as a role's `adminRole` however bytes32 previousAdminRole = _getRoleAdmin(role); getData().roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } function _grantRole(bytes32 role, address account) internal returns (bool) { _checkRole(AccessControlLib._getRoleAdmin(role), msg.sender); return __unsafe_grantRole(role, account); } /** * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function __unsafe_grantRole(bytes32 role, address account) internal returns (bool) { //Cannot assign `NULL_ROLE` to ANY address if (role == NULL_ROLE) { revert AccessControlCannotSetNullRole(); } if (!_hasRole(role, account)) { getData().roles[role].hasRole[account] = true; emit RoleGranted(role, account, msg.sender); return true; } else { return false; } } function _revokeRole(bytes32 role, address account) internal returns (bool) { _checkRole(AccessControlLib._getRoleAdmin(role), msg.sender); return __unsafe_revokeRole(role, account); } /** * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function __unsafe_revokeRole(bytes32 role, address account) internal returns (bool) { if (_hasRole(role, account)) { getData().roles[role].hasRole[account] = false; emit RoleRevoked(role, account, msg.sender); return true; } else { return false; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import {Strings} from "@openzeppelin/contracts/utils/Strings.sol"; import {AccessControlLib} from "./AccessControlLib.sol"; /** * @dev Library module that allows nested role checks. If an address has a role (PARENT) that is the admin of another role (CHILD), * it is assumed to also have that role (CHILD) since it can at any time grant itself such role. */ library AccessControlRecursiveLib { /** Recursive Role Checks */ /** * @dev Returns `true` if `account` has been granted `role` or `role`'s admin. */ function _hasRoleRecursive(bytes32 role, address account) internal view returns (bool) { //This terminates early and avoids gas overflow with infinite recursion if (role == AccessControlLib.NULL_ROLE) return false; if (role == AccessControlLib.DEFAULT_ADMIN_ROLE) return AccessControlLib._hasRole(role, account); return AccessControlLib._hasRole(role, account) || _hasRoleRecursive(AccessControlLib._getRoleAdmin(role), account); } /** * @dev Revert with a standard message if `_msgSender()` is missing `role` or `role`'s admin. * Overriding this function changes the behavior of the {onlyRole} modifier. * * Format of the revert message is described in {_checkRole}. * * _Available since v4.6._ */ function _checkRoleRecursive(bytes32 role) internal view { _checkRoleRecursive(role, msg.sender); } /** * @dev Revert with a standard message if `account` is missing `role` or `role`'s admin. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ */ function _checkRoleRecursive(bytes32 role, address account) internal view { if (!_hasRoleRecursive(role, account)) { revert( string( abi.encodePacked( "AccessControlRecursive: account ", Strings.toHexString(account), " is missing role (or recursive adminRole of)", Strings.toHexString(uint256(role), 32) ) ) ); } } function _setRoleAdminRecursive(bytes32 role, bytes32 adminRole) internal { _checkRoleRecursive(AccessControlLib._getRoleAdmin(role), msg.sender); AccessControlLib.__unsafe_setRoleAdmin(role, adminRole); } function _grantRoleRecursive(bytes32 role, address account) internal returns (bool) { _checkRoleRecursive(AccessControlLib._getRoleAdmin(role), msg.sender); return AccessControlLib.__unsafe_grantRole(role, account); } function _revokeRoleRecursive(bytes32 role, address account) internal returns (bool) { _checkRoleRecursive(AccessControlLib._getRoleAdmin(role), msg.sender); return AccessControlLib.__unsafe_revokeRole(role, account); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol) pragma solidity ^0.8.20; /** * @dev External interface of AccessControl declared to support ERC-165 detection. */ interface IAccessControl { /** * @dev The `account` is missing a role. */ error AccessControlUnauthorizedAccount(address account, bytes32 neededRole); /** * @dev The caller of a function is not the expected one. * * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}. */ error AccessControlBadConfirmation(); /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role). * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. * Requirements: * * - the caller must have ``role``'s admin role. */ function setRoleAdmin(bytes32 role, bytes32 adminRole) external; /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external returns (bool); /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external returns (bool); /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. */ function renounceRole(bytes32 role, address callerConfirmation) external; }
{ "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 1000000 }, "evmVersion": "paris", "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"length","type":"uint256"}],"name":"StringsInsufficientHexLength","type":"error"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"},{"internalType":"bool","name":"supported","type":"bool"}],"name":"registerInterface","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
6080806040523461001657610936908161001c8239f35b600080fdfe60406080815260048036101561001457600080fd5b600091823560e01c806301ffc9a7146105c15763b19e8af81461003657600080fd5b346105bd57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126105bd5761006c61063f565b6024928335938415158095036105b9577fb19e8af800000000000000000000000000000000000000000000000000000000916100a83384610741565b15610111575050507fffffffff000000000000000000000000000000000000000000000000000000006100d96106be565b9116845260205282209060ff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00835416911617905580f35b845167ffffffffffffffff945092879033606086018781118782101761058e578852602a8652602086019188368437865115610563576030835386519160019260011015610538576078602189015360295b8381116104a1575061046c5780895191608083018381108b821117610441578b526042835260208301936060368637835115610416576030855383516001101561041657607860218501536041905b80821161035257505061031d5750916102639493918993608b999a51968793610208602086019b7f416363657373436f6e74726f6c5265637572736976653a206163636f756e74208d525180928988019061071e565b8401917f206973206d697373696e6720726f6c6520286f72207265637572736976652061878401527f646d696e526f6c65206f662900000000000000000000000000000000000000006060840152518093606c84019061071e565b0103604c810185527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe09788910116840197848910908911176102f2575060449593601f936020899794886102e995527f08c379a000000000000000000000000000000000000000000000000000000000895288015251928380928801528787019061071e565b01168101030190fd5b806041847f4e487b710000000000000000000000000000000000000000000000000000000088945252fd5b856020886044938d51937fe22e27eb000000000000000000000000000000000000000000000000000000008552840152820152fd5b9091600f811660108110156103eb577f3031323334353637383961626364656600000000000000000000000000000000901a61038e848761081e565b53881c9180156103c0577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff01906101b2565b898860118b7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8a8960328c7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b888760328a7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b888760418a7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b88517fe22e27eb0000000000000000000000000000000000000000000000000000000081523381870152601481880152604490fd5b90600f81166010811015610416577f3031323334353637383961626364656600000000000000000000000000000000901a6104dc838b61081e565b53861c90801561050d577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff01610163565b87866011897f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b86856032887f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b85846032877f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b85846041877f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8580fd5b8280fd5b83823461063b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261063b5760ff8160209361060061063f565b7fffffffff000000000000000000000000000000000000000000000000000000006106296106be565b91168252855220541690519015158152f35b5080fd5b600435907fffffffff000000000000000000000000000000000000000000000000000000008216820361066e57565b600080fd5b6040810190811067ffffffffffffffff82111761068f57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0060405160208101907f8f7e2d929645ca415c0682921b343d96410da360ea90cf9706c3d0606a2b233182526020815261071781610673565b5190201690565b60005b8381106107315750506000910152565b8181015183820152602001610721565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82146108175781156107d2576107776108a7565b8260005260205260ff6107ae8260406000209073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b54169182156107bc57505090565b6107cf92506107ca9061085e565b610741565b90565b6108129060ff926107e16108a7565b9060005260205260406000209073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b541690565b5050600090565b90815181101561082f570160200190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8082146108a2575061088f6108a7565b9060005260205260016040600020015490565b905090565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0060405160208101907fd1321ee61a876da401624339757acb6ccd44461db2a32f606a86a30b761f18138252602081526107178161067356fea264697066735822122074a73315f10d339174ac232d589742f7382ecdfb6bb7661481e75d66c8d63c0664736f6c63430008170033
Deployed Bytecode
0x60406080815260048036101561001457600080fd5b600091823560e01c806301ffc9a7146105c15763b19e8af81461003657600080fd5b346105bd57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126105bd5761006c61063f565b6024928335938415158095036105b9577fb19e8af800000000000000000000000000000000000000000000000000000000916100a83384610741565b15610111575050507fffffffff000000000000000000000000000000000000000000000000000000006100d96106be565b9116845260205282209060ff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00835416911617905580f35b845167ffffffffffffffff945092879033606086018781118782101761058e578852602a8652602086019188368437865115610563576030835386519160019260011015610538576078602189015360295b8381116104a1575061046c5780895191608083018381108b821117610441578b526042835260208301936060368637835115610416576030855383516001101561041657607860218501536041905b80821161035257505061031d5750916102639493918993608b999a51968793610208602086019b7f416363657373436f6e74726f6c5265637572736976653a206163636f756e74208d525180928988019061071e565b8401917f206973206d697373696e6720726f6c6520286f72207265637572736976652061878401527f646d696e526f6c65206f662900000000000000000000000000000000000000006060840152518093606c84019061071e565b0103604c810185527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe09788910116840197848910908911176102f2575060449593601f936020899794886102e995527f08c379a000000000000000000000000000000000000000000000000000000000895288015251928380928801528787019061071e565b01168101030190fd5b806041847f4e487b710000000000000000000000000000000000000000000000000000000088945252fd5b856020886044938d51937fe22e27eb000000000000000000000000000000000000000000000000000000008552840152820152fd5b9091600f811660108110156103eb577f3031323334353637383961626364656600000000000000000000000000000000901a61038e848761081e565b53881c9180156103c0577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff01906101b2565b898860118b7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8a8960328c7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b888760328a7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b888760418a7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b88517fe22e27eb0000000000000000000000000000000000000000000000000000000081523381870152601481880152604490fd5b90600f81166010811015610416577f3031323334353637383961626364656600000000000000000000000000000000901a6104dc838b61081e565b53861c90801561050d577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff01610163565b87866011897f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b86856032887f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b85846032877f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b85846041877f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8580fd5b8280fd5b83823461063b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261063b5760ff8160209361060061063f565b7fffffffff000000000000000000000000000000000000000000000000000000006106296106be565b91168252855220541690519015158152f35b5080fd5b600435907fffffffff000000000000000000000000000000000000000000000000000000008216820361066e57565b600080fd5b6040810190811067ffffffffffffffff82111761068f57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0060405160208101907f8f7e2d929645ca415c0682921b343d96410da360ea90cf9706c3d0606a2b233182526020815261071781610673565b5190201690565b60005b8381106107315750506000910152565b8181015183820152602001610721565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82146108175781156107d2576107776108a7565b8260005260205260ff6107ae8260406000209073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b54169182156107bc57505090565b6107cf92506107ca9061085e565b610741565b90565b6108129060ff926107e16108a7565b9060005260205260406000209073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b541690565b5050600090565b90815181101561082f570160200190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8082146108a2575061088f6108a7565b9060005260205260016040600020015490565b905090565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0060405160208101907fd1321ee61a876da401624339757acb6ccd44461db2a32f606a86a30b761f18138252602081526107178161067356fea264697066735822122074a73315f10d339174ac232d589742f7382ecdfb6bb7661481e75d66c8d63c0664736f6c63430008170033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.