Overview
APE Balance
0 APE
APE Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
0x60806040 | 448488 | 31 days ago | IN | 0 APE | 0.01170981 |
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x0B19823E...92e9f645E The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
JumpRateModel
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.19; import "./InterestRateModel.sol"; import "./SafeMath.sol"; /** * @title Moonwell's JumpRateModel Contract * @author Compound * @author Moonwell */ contract JumpRateModel is InterestRateModel { using SafeMath for uint; event NewInterestParams( uint baseRatePerTimestamp, uint multiplierPerTimestamp, uint jumpMultiplierPerTimestamp, uint kink ); /** * @notice The approximate number of timestamps per year that is assumed by the interest rate model */ uint public constant timestampsPerYear = 60 * 60 * 24 * 365; /** * @notice The multiplier of utilization rate that gives the slope of the interest rate */ uint public multiplierPerTimestamp; /** * @notice The base interest rate which is the y-intercept when utilization rate is 0 */ uint public baseRatePerTimestamp; /** * @notice The multiplierPerTimestamp after hitting a specified utilization point */ uint public jumpMultiplierPerTimestamp; /** * @notice The utilization point at which the jump multiplier is applied */ uint public kink; /// @dev we know that we do not need to use safemath, however safemath is still used for safety /// and to not modify existing code. /** * @notice Construct an interest rate model * @param baseRatePerYear The approximate target base APR, as a mantissa (scaled by 1e18) * @param multiplierPerYear The rate of increase in interest rate wrt utilization (scaled by 1e18) * @param jumpMultiplierPerYear The multiplierPerTimestamp after hitting a specified utilization point * @param kink_ The utilization point at which the jump multiplier is applied */ constructor( uint baseRatePerYear, uint multiplierPerYear, uint jumpMultiplierPerYear, uint kink_ ) { baseRatePerTimestamp = baseRatePerYear .mul(1e18) .div(timestampsPerYear) .div(1e18); multiplierPerTimestamp = multiplierPerYear .mul(1e18) .div(timestampsPerYear) .div(1e18); jumpMultiplierPerTimestamp = jumpMultiplierPerYear .mul(1e18) .div(timestampsPerYear) .div(1e18); kink = kink_; emit NewInterestParams( baseRatePerTimestamp, multiplierPerTimestamp, jumpMultiplierPerTimestamp, kink ); } /** * @notice Calculates the utilization rate of the market: `borrows / (cash + borrows - reserves)` * @param cash The amount of cash in the market * @param borrows The amount of borrows in the market * @param reserves The amount of reserves in the market (currently unused) * @return The utilization rate as a mantissa between [0, 1e18] */ function utilizationRate( uint cash, uint borrows, uint reserves ) public pure returns (uint) { // Utilization rate is 0 when there are no borrows if (borrows == 0) { return 0; } return borrows.mul(1e18).div(cash.add(borrows).sub(reserves)); } /** * @notice Calculates the current borrow rate per timestamp, with the error code expected by the market * @param cash The amount of cash in the market * @param borrows The amount of borrows in the market * @param reserves The amount of reserves in the market * @return The borrow rate percentage per timestamp as a mantissa (scaled by 1e18) */ function getBorrowRate( uint cash, uint borrows, uint reserves ) public view override returns (uint) { uint util = utilizationRate(cash, borrows, reserves); if (util <= kink) { return util.mul(multiplierPerTimestamp).div(1e18).add( baseRatePerTimestamp ); } else { uint normalRate = kink.mul(multiplierPerTimestamp).div(1e18).add( baseRatePerTimestamp ); uint excessUtil = util.sub(kink); return excessUtil.mul(jumpMultiplierPerTimestamp).div(1e18).add( normalRate ); } } /** * @notice Calculates the current supply rate per timestamp * @param cash The amount of cash in the market * @param borrows The amount of borrows in the market * @param reserves The amount of reserves in the market * @param reserveFactorMantissa The current reserve factor for the market * @return The supply rate percentage per timestamp as a mantissa (scaled by 1e18) */ function getSupplyRate( uint cash, uint borrows, uint reserves, uint reserveFactorMantissa ) public view override returns (uint) { uint oneMinusReserveFactor = uint(1e18).sub(reserveFactorMantissa); uint borrowRate = getBorrowRate(cash, borrows, reserves); uint rateToPool = borrowRate.mul(oneMinusReserveFactor).div(1e18); return utilizationRate(cash, borrows, reserves).mul(rateToPool).div(1e18); } }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.19; /** * @title Moonwell's InterestRateModel Interface * @author Moonwell */ abstract contract InterestRateModel { /// @notice Indicator that this is an InterestRateModel contract (for inspection) bool public constant isInterestRateModel = true; /** * @notice Calculates the current borrow interest rate per timestamp * @param cash The total amount of cash the market has * @param borrows The total amount of borrows the market has outstanding * @param reserves The total amount of reserves the market has * @return The borrow rate per timestamp (as a percentage, and scaled by 1e18) */ function getBorrowRate( uint cash, uint borrows, uint reserves ) external view virtual returns (uint); /** * @notice Calculates the current supply interest rate per timestamp * @param cash The total amount of cash the market has * @param borrows The total amount of borrows the market has outstanding * @param reserves The total amount of reserves the market has * @param reserveFactorMantissa The current reserve factor the market has * @return The supply rate per timestamp (as a percentage, and scaled by 1e18) */ function getSupplyRate( uint cash, uint borrows, uint reserves, uint reserveFactorMantissa ) external view virtual returns (uint); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.19; // From https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol // Subject to the MIT license. /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the addition of two unsigned integers, reverting with custom message on overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, errorMessage); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on underflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot underflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction underflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on underflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot underflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, errorMessage); return c; } /** * @dev Returns the integer division of two unsigned integers. * Reverts on division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. * Reverts with custom message on division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
{ "optimizer": { "enabled": true, "runs": 200 }, "evmVersion": "paris", "viaIR": false, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"uint256","name":"baseRatePerYear","type":"uint256"},{"internalType":"uint256","name":"multiplierPerYear","type":"uint256"},{"internalType":"uint256","name":"jumpMultiplierPerYear","type":"uint256"},{"internalType":"uint256","name":"kink_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"baseRatePerTimestamp","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"multiplierPerTimestamp","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"jumpMultiplierPerTimestamp","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"kink","type":"uint256"}],"name":"NewInterestParams","type":"event"},{"inputs":[],"name":"baseRatePerTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"cash","type":"uint256"},{"internalType":"uint256","name":"borrows","type":"uint256"},{"internalType":"uint256","name":"reserves","type":"uint256"}],"name":"getBorrowRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"cash","type":"uint256"},{"internalType":"uint256","name":"borrows","type":"uint256"},{"internalType":"uint256","name":"reserves","type":"uint256"},{"internalType":"uint256","name":"reserveFactorMantissa","type":"uint256"}],"name":"getSupplyRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isInterestRateModel","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"jumpMultiplierPerTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"kink","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"multiplierPerTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"timestampsPerYear","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"cash","type":"uint256"},{"internalType":"uint256","name":"borrows","type":"uint256"},{"internalType":"uint256","name":"reserves","type":"uint256"}],"name":"utilizationRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"}]
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100935760003560e01c806340bc0af41161006657806340bc0af4146100ea5780636c2df6a7146100f35780636e71e2d8146100fc578063b81688161461010f578063fd2da3391461012257600080fd5b80630c5748611461009857806315f24053146100b65780632191f92a146100c957806326c394f7146100e1575b600080fd5b6100a36301e1338081565b6040519081526020015b60405180910390f35b6100a36100c4366004610482565b61012b565b6100d1600181565b60405190151581526020016100ad565b6100a360025481565b6100a360015481565b6100a360005481565b6100a361010a366004610482565b6101f7565b6100a361011d3660046104ae565b61023a565b6100a360035481565b6000806101398585856101f7565b9050600354811161017f57610177600154610171670de0b6b3a764000061016b600054866102a790919063ffffffff16565b90610337565b90610379565b9150506101f0565b60006101aa600154610171670de0b6b3a764000061016b6000546003546102a790919063ffffffff16565b905060006101c3600354846103d890919063ffffffff16565b90506101ea82610171670de0b6b3a764000061016b600254866102a790919063ffffffff16565b93505050505b9392505050565b600082600003610209575060006101f0565b6102326102208361021a8787610379565b906103d8565b61016b85670de0b6b3a76400006102a7565b949350505050565b60008061024f670de0b6b3a7640000846103d8565b9050600061025e87878761012b565b90506000610278670de0b6b3a764000061016b84866102a7565b905061029b670de0b6b3a764000061016b836102958c8c8c6101f7565b906102a7565b98975050505050505050565b6000826000036102b957506000610331565b60006102c583856104f6565b9050826102d2858361050d565b1461032e5760405162461bcd60e51b815260206004820152602160248201527f536166654d6174683a206d756c7469706c69636174696f6e206f766572666c6f6044820152607760f81b60648201526084015b60405180910390fd5b90505b92915050565b600061032e83836040518060400160405280601a81526020017f536166654d6174683a206469766973696f6e206279207a65726f00000000000081525061041a565b600080610386838561052f565b90508381101561032e5760405162461bcd60e51b815260206004820152601b60248201527f536166654d6174683a206164646974696f6e206f766572666c6f7700000000006044820152606401610325565b600061032e83836040518060400160405280601f81526020017f536166654d6174683a207375627472616374696f6e20756e646572666c6f7700815250610451565b6000818361043b5760405162461bcd60e51b81526004016103259190610542565b506000610448848661050d565b95945050505050565b600081848411156104755760405162461bcd60e51b81526004016103259190610542565b5060006104488486610590565b60008060006060848603121561049757600080fd5b505081359360208301359350604090920135919050565b600080600080608085870312156104c457600080fd5b5050823594602084013594506040840135936060013592509050565b634e487b7160e01b600052601160045260246000fd5b8082028115828204841417610331576103316104e0565b60008261052a57634e487b7160e01b600052601260045260246000fd5b500490565b80820180821115610331576103316104e0565b600060208083528351808285015260005b8181101561056f57858101830151858201604001528201610553565b506000604082860101526040601f19601f8301168501019250505092915050565b81810381811115610331576103316104e056fea264697066735822122015e24d40f894a14d40d51df16f34b9d85dbc120c8052eac8a37d19a8a0611e7164736f6c63430008130033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.