Overview
APE Balance
0 APE
APE Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 720 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Enter Markets | 4783808 | 3 days ago | IN | 0 APE | 0.00376002 | ||||
Enter Markets | 4742139 | 3 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 4736044 | 3 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 4734200 | 4 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 4732327 | 4 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 4650077 | 4 days ago | IN | 0 APE | 0.00376002 | ||||
Enter Markets | 4631974 | 5 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 4544021 | 6 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 4422083 | 7 days ago | IN | 0 APE | 0.00332533 | ||||
Exit Market | 4422052 | 7 days ago | IN | 0 APE | 0.00180522 | ||||
Exit Market | 4422048 | 7 days ago | IN | 0 APE | 0.00443957 | ||||
Enter Markets | 4309000 | 8 days ago | IN | 0 APE | 0.00332533 | ||||
Enter Markets | 4308992 | 8 days ago | IN | 0 APE | 0.00088685 | ||||
Enter Markets | 4308989 | 8 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 4219125 | 10 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 4200030 | 10 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 4184605 | 11 days ago | IN | 0 APE | 0.00376002 | ||||
Exit Market | 4121510 | 12 days ago | IN | 0 APE | 0.00495805 | ||||
Enter Markets | 4077479 | 12 days ago | IN | 0 APE | 0.00212819 | ||||
Enter Markets | 3994797 | 13 days ago | IN | 0 APE | 0.00256286 | ||||
Enter Markets | 3990548 | 13 days ago | IN | 0 APE | 0.00088685 | ||||
Enter Markets | 3990544 | 13 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 3841237 | 15 days ago | IN | 0 APE | 0.00088685 | ||||
Enter Markets | 3841220 | 15 days ago | IN | 0 APE | 0.00256288 | ||||
Enter Markets | 3754337 | 16 days ago | IN | 0 APE | 0.00088685 |
Loading...
Loading
Contract Name:
Unitroller
Compiler Version
v0.5.17+commit.d19bba13
Contract Source Code (Solidity Standard Json-Input format)
pragma solidity ^0.5.16; import "./ErrorReporter.sol"; import "./ComptrollerStorage.sol"; /** * @title ComptrollerCore * @dev Storage for the comptroller is at this address, while execution is delegated to the `comptrollerImplementation`. * CTokens should reference this contract as their comptroller. */ contract Unitroller is UnitrollerAdminStorage, ComptrollerErrorReporter { /** * @notice Emitted when pendingComptrollerImplementation is changed */ event NewPendingImplementation(address oldPendingImplementation, address newPendingImplementation); /** * @notice Emitted when pendingComptrollerImplementation is accepted, which means comptroller implementation is updated */ event NewImplementation(address oldImplementation, address newImplementation); /** * @notice Emitted when pendingAdmin is changed */ event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin); /** * @notice Emitted when pendingAdmin is accepted, which means admin is updated */ event NewAdmin(address oldAdmin, address newAdmin); constructor() public { // Set admin to caller admin = msg.sender; } /*** Admin Functions ***/ function _setPendingImplementation(address newPendingImplementation) public returns (uint256) { if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_OWNER_CHECK); } address oldPendingImplementation = pendingComptrollerImplementation; pendingComptrollerImplementation = newPendingImplementation; emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation); return uint256(Error.NO_ERROR); } /** * @notice Accepts new implementation of comptroller. msg.sender must be pendingImplementation * @dev Admin function for new implementation to accept it's role as implementation * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptImplementation() public returns (uint256) { // Check caller is pendingImplementation and pendingImplementation ≠ address(0) if (msg.sender != pendingComptrollerImplementation || pendingComptrollerImplementation == address(0)) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK); } // Save current values for inclusion in log address oldImplementation = comptrollerImplementation; address oldPendingImplementation = pendingComptrollerImplementation; comptrollerImplementation = pendingComptrollerImplementation; pendingComptrollerImplementation = address(0); emit NewImplementation(oldImplementation, comptrollerImplementation); emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation); return uint256(Error.NO_ERROR); } /** * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @param newPendingAdmin New pending admin. * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setPendingAdmin(address newPendingAdmin) public returns (uint256) { // Check caller = admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK); } // Save current value, if any, for inclusion in log address oldPendingAdmin = pendingAdmin; // Store pendingAdmin with value newPendingAdmin pendingAdmin = newPendingAdmin; // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin) emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin); return uint256(Error.NO_ERROR); } /** * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin * @dev Admin function for pending admin to accept role and update admin * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptAdmin() public returns (uint256) { // Check caller is pendingAdmin and pendingAdmin ≠ address(0) if (msg.sender != pendingAdmin || msg.sender == address(0)) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK); } // Save current values for inclusion in log address oldAdmin = admin; address oldPendingAdmin = pendingAdmin; // Store admin with value pendingAdmin admin = pendingAdmin; // Clear the pending value pendingAdmin = address(0); emit NewAdmin(oldAdmin, admin); emit NewPendingAdmin(oldPendingAdmin, pendingAdmin); return uint256(Error.NO_ERROR); } /** * @notice This view function is for aligning with EIP-1967 interface * @return The comptroller implementation */ function implementation() public view returns (address) { return comptrollerImplementation; } /** * @dev Delegates execution to an implementation contract. * It returns to the external caller whatever the implementation returns * or forwards reverts. */ function() external payable { // delegate all other functions to current implementation (bool success, ) = comptrollerImplementation.delegatecall(msg.data); assembly { let free_mem_ptr := mload(0x40) returndatacopy(free_mem_ptr, 0, returndatasize) switch success case 0 { revert(free_mem_ptr, returndatasize) } default { return(free_mem_ptr, returndatasize) } } } }
pragma solidity ^0.5.16; import "./ComptrollerInterface.sol"; import "./CTokenInterfaces.sol"; import "./ErrorReporter.sol"; import "./Exponential.sol"; import "./EIP20Interface.sol"; import "./EIP20NonStandardInterface.sol"; import "./InterestRateModel.sol"; /** * @title Compound's CToken Contract * @notice Abstract base for CTokens * @author Compound */ contract CToken is CTokenInterface, Exponential, TokenErrorReporter { /** * @notice Initialize the money market * @param comptroller_ The address of the Comptroller * @param interestRateModel_ The address of the interest rate model * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18 * @param name_ EIP-20 name of this token * @param symbol_ EIP-20 symbol of this token * @param decimals_ EIP-20 decimal precision of this token */ function initialize( ComptrollerInterface comptroller_, InterestRateModel interestRateModel_, uint256 initialExchangeRateMantissa_, string memory name_, string memory symbol_, uint8 decimals_ ) public { require(msg.sender == admin, "admin only"); require(accrualBlockNumber == 0 && borrowIndex == 0, "initialized"); // Set initial exchange rate initialExchangeRateMantissa = initialExchangeRateMantissa_; require(initialExchangeRateMantissa > 0, "invalid exchange rate"); // Set the comptroller uint256 err = _setComptroller(comptroller_); require(err == uint256(Error.NO_ERROR), "set comptroller failed"); // Initialize block number and borrow index (block number mocks depend on comptroller being set) accrualBlockNumber = getBlockNumber(); borrowIndex = mantissaOne; // Set the interest rate model (depends on block number / borrow index) err = _setInterestRateModelFresh(interestRateModel_); require(err == uint256(Error.NO_ERROR), "set IRM failed"); name = name_; symbol = symbol_; decimals = decimals_; // The counter starts true to prevent changing it from zero to non-zero (i.e. smaller cost/refund) _notEntered = true; } /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external nonReentrant returns (bool) { return transferTokens(msg.sender, msg.sender, dst, amount) == uint256(Error.NO_ERROR); } /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom( address src, address dst, uint256 amount ) external nonReentrant returns (bool) { return transferTokens(msg.sender, src, dst, amount) == uint256(Error.NO_ERROR); } /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (-1 means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool) { address src = msg.sender; transferAllowances[src][spender] = amount; emit Approval(src, spender, amount); return true; } /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view returns (uint256) { return transferAllowances[owner][spender]; } /** * @notice Get the token balance of the `owner` * @param owner The address of the account to query * @return The number of tokens owned by `owner` */ function balanceOf(address owner) external view returns (uint256) { return accountTokens[owner]; } /** * @notice Get the underlying balance of the `owner` * @dev This also accrues interest in a transaction * @param owner The address of the account to query * @return The amount of underlying owned by `owner` */ function balanceOfUnderlying(address owner) external returns (uint256) { Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()}); return mul_ScalarTruncate(exchangeRate, accountTokens[owner]); } /** * @notice Get a snapshot of the account's balances, and the cached exchange rate * @dev This is used by comptroller to more efficiently perform liquidity checks. * @param account Address of the account to snapshot * @return (possible error, token balance, borrow balance, exchange rate mantissa) */ function getAccountSnapshot(address account) external view returns ( uint256, uint256, uint256, uint256 ) { uint256 cTokenBalance = getCTokenBalanceInternal(account); uint256 borrowBalance = borrowBalanceStoredInternal(account); uint256 exchangeRateMantissa = exchangeRateStoredInternal(); return (uint256(Error.NO_ERROR), cTokenBalance, borrowBalance, exchangeRateMantissa); } /** * @dev Function to simply retrieve block number * This exists mainly for inheriting test contracts to stub this result. */ function getBlockNumber() internal view returns (uint256) { return block.timestamp; } /** * @notice Returns the current per-block borrow interest rate for this cToken * @return The borrow interest rate per block, scaled by 1e18 */ function borrowRatePerBlock() external view returns (uint256) { return interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves); } /** * @notice Returns the current per-block supply interest rate for this cToken * @return The supply interest rate per block, scaled by 1e18 */ function supplyRatePerBlock() external view returns (uint256) { return interestRateModel.getSupplyRate(getCashPrior(), totalBorrows, totalReserves, reserveFactorMantissa); } /** * @notice Returns the estimated per-block borrow interest rate for this cToken after some change * @return The borrow interest rate per block, scaled by 1e18 */ function estimateBorrowRatePerBlockAfterChange(uint256 change, bool repay) external view returns (uint256) { uint256 cashPriorNew; uint256 totalBorrowsNew; if (repay) { cashPriorNew = add_(getCashPrior(), change); totalBorrowsNew = sub_(totalBorrows, change); } else { cashPriorNew = sub_(getCashPrior(), change); totalBorrowsNew = add_(totalBorrows, change); } return interestRateModel.getBorrowRate(cashPriorNew, totalBorrowsNew, totalReserves); } /** * @notice Returns the estimated per-block supply interest rate for this cToken after some change * @return The supply interest rate per block, scaled by 1e18 */ function estimateSupplyRatePerBlockAfterChange(uint256 change, bool repay) external view returns (uint256) { uint256 cashPriorNew; uint256 totalBorrowsNew; if (repay) { cashPriorNew = add_(getCashPrior(), change); totalBorrowsNew = sub_(totalBorrows, change); } else { cashPriorNew = sub_(getCashPrior(), change); totalBorrowsNew = add_(totalBorrows, change); } return interestRateModel.getSupplyRate(cashPriorNew, totalBorrowsNew, totalReserves, reserveFactorMantissa); } /** * @notice Returns the current total borrows plus accrued interest * @return The total borrows with interest */ function totalBorrowsCurrent() external nonReentrant returns (uint256) { accrueInterest(); return totalBorrows; } /** * @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex * @param account The address whose balance should be calculated after updating borrowIndex * @return The calculated balance */ function borrowBalanceCurrent(address account) external nonReentrant returns (uint256) { accrueInterest(); return borrowBalanceStored(account); } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return The calculated balance */ function borrowBalanceStored(address account) public view returns (uint256) { return borrowBalanceStoredInternal(account); } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return the calculated balance or 0 if error code is non-zero */ function borrowBalanceStoredInternal(address account) internal view returns (uint256) { /* Get borrowBalance and borrowIndex */ BorrowSnapshot storage borrowSnapshot = accountBorrows[account]; /* If borrowBalance = 0 then borrowIndex is likely also 0. * Rather than failing the calculation with a division by 0, we immediately return 0 in this case. */ if (borrowSnapshot.principal == 0) { return 0; } /* Calculate new borrow balance using the interest index: * recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex */ uint256 principalTimesIndex = mul_(borrowSnapshot.principal, borrowIndex); uint256 result = div_(principalTimesIndex, borrowSnapshot.interestIndex); return result; } /** * @notice Accrue interest then return the up-to-date exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateCurrent() public nonReentrant returns (uint256) { accrueInterest(); return exchangeRateStored(); } /** * @notice Calculates the exchange rate from the underlying to the CToken * @dev This function does not accrue interest before calculating the exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateStored() public view returns (uint256) { return exchangeRateStoredInternal(); } /** * @notice Calculates the exchange rate from the underlying to the CToken * @dev This function does not accrue interest before calculating the exchange rate * @return calculated exchange rate scaled by 1e18 */ function exchangeRateStoredInternal() internal view returns (uint256) { uint256 _totalSupply = totalSupply; if (_totalSupply == 0) { /* * If there are no tokens minted: * exchangeRate = initialExchangeRate */ return initialExchangeRateMantissa; } else { /* * Otherwise: * exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply */ uint256 totalCash = getCashPrior(); uint256 cashPlusBorrowsMinusReserves = sub_(add_(totalCash, totalBorrows), totalReserves); uint256 exchangeRate = div_(cashPlusBorrowsMinusReserves, Exp({mantissa: _totalSupply})); return exchangeRate; } } /** * @notice Get cash balance of this cToken in the underlying asset * @return The quantity of underlying asset owned by this contract */ function getCash() external view returns (uint256) { return getCashPrior(); } /** * @notice Applies accrued interest to total borrows and reserves * @dev This calculates interest accrued from the last checkpointed block * up to the current block and writes new checkpoint to storage. */ function accrueInterest() public returns (uint256) { /* Remember the initial block number */ uint256 currentBlockNumber = getBlockNumber(); uint256 accrualBlockNumberPrior = accrualBlockNumber; /* Short-circuit accumulating 0 interest */ if (accrualBlockNumberPrior == currentBlockNumber) { return uint256(Error.NO_ERROR); } /* Read the previous values out of storage */ uint256 cashPrior = getCashPrior(); uint256 borrowsPrior = totalBorrows; uint256 reservesPrior = totalReserves; uint256 borrowIndexPrior = borrowIndex; /* Calculate the current borrow interest rate */ uint256 borrowRateMantissa = interestRateModel.getBorrowRate(cashPrior, borrowsPrior, reservesPrior); require(borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate too high"); /* Calculate the number of blocks elapsed since the last accrual */ uint256 blockDelta = sub_(currentBlockNumber, accrualBlockNumberPrior); /* * Calculate the interest accumulated into borrows and reserves and the new index: * simpleInterestFactor = borrowRate * blockDelta * interestAccumulated = simpleInterestFactor * totalBorrows * totalBorrowsNew = interestAccumulated + totalBorrows * totalReservesNew = interestAccumulated * reserveFactor + totalReserves * borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex */ Exp memory simpleInterestFactor = mul_(Exp({mantissa: borrowRateMantissa}), blockDelta); uint256 interestAccumulated = mul_ScalarTruncate(simpleInterestFactor, borrowsPrior); uint256 totalBorrowsNew = add_(interestAccumulated, borrowsPrior); uint256 totalReservesNew = mul_ScalarTruncateAddUInt( Exp({mantissa: reserveFactorMantissa}), interestAccumulated, reservesPrior ); uint256 borrowIndexNew = mul_ScalarTruncateAddUInt(simpleInterestFactor, borrowIndexPrior, borrowIndexPrior); ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the previously calculated values into storage */ accrualBlockNumber = currentBlockNumber; borrowIndex = borrowIndexNew; totalBorrows = totalBorrowsNew; totalReserves = totalReservesNew; /* We emit an AccrueInterest event */ emit AccrueInterest(cashPrior, interestAccumulated, borrowIndexNew, totalBorrowsNew); return uint256(Error.NO_ERROR); } /** * @notice Sender supplies assets into the market and receives cTokens in exchange * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param mintAmount The amount of the underlying asset to supply * @param isNative The amount is in native or not * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount. */ function mintInternal(uint256 mintAmount, bool isNative) internal nonReentrant returns (uint256, uint256) { accrueInterest(); // mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to return mintFresh(msg.sender, mintAmount, isNative); } /** * @notice Sender redeems cTokens in exchange for the underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemTokens The number of cTokens to redeem into underlying * @param isNative The amount is in native or not * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemInternal(uint256 redeemTokens, bool isNative) internal nonReentrant returns (uint256) { accrueInterest(); // redeemFresh emits redeem-specific logs on errors, so we don't need to return redeemFresh(msg.sender, redeemTokens, 0, isNative); } /** * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemAmount The amount of underlying to receive from redeeming cTokens * @param isNative The amount is in native or not * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemUnderlyingInternal(uint256 redeemAmount, bool isNative) internal nonReentrant returns (uint256) { accrueInterest(); // redeemFresh emits redeem-specific logs on errors, so we don't need to return redeemFresh(msg.sender, 0, redeemAmount, isNative); } /** * @notice Sender borrows assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow * @param isNative The amount is in native or not * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function borrowInternal(uint256 borrowAmount, bool isNative) internal nonReentrant returns (uint256) { accrueInterest(); // borrowFresh emits borrow-specific logs on errors, so we don't need to return borrowFresh(msg.sender, borrowAmount, isNative); } struct BorrowLocalVars { MathError mathErr; uint256 accountBorrows; uint256 accountBorrowsNew; uint256 totalBorrowsNew; } /** * @notice Users borrow assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow * @param isNative The amount is in native or not * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function borrowFresh( address payable borrower, uint256 borrowAmount, bool isNative ) internal returns (uint256) { /* Fail if borrow not allowed */ require(comptroller.borrowAllowed(address(this), borrower, borrowAmount) == 0, "rejected"); /* Verify market's block number equals current block number */ require(accrualBlockNumber == getBlockNumber(), "market is stale"); /* Reverts if protocol has insufficient cash */ require(getCashPrior() >= borrowAmount, "insufficient cash"); BorrowLocalVars memory vars; /* * We calculate the new borrower and total borrow balances, failing on overflow: * accountBorrowsNew = accountBorrows + borrowAmount * totalBorrowsNew = totalBorrows + borrowAmount */ vars.accountBorrows = borrowBalanceStoredInternal(borrower); vars.accountBorrowsNew = add_(vars.accountBorrows, borrowAmount); vars.totalBorrowsNew = add_(totalBorrows, borrowAmount); ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = vars.accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = vars.totalBorrowsNew; /* * We invoke doTransferOut for the borrower and the borrowAmount. * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken borrowAmount less of cash. * doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. */ doTransferOut(borrower, borrowAmount, isNative); /* We emit a Borrow event */ emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew); /* We call the defense hook */ comptroller.borrowVerify(address(this), borrower, borrowAmount); return uint256(Error.NO_ERROR); } /** * @notice Sender repays their own borrow * @param repayAmount The amount to repay * @param isNative The amount is in native or not * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount. */ function repayBorrowInternal(uint256 repayAmount, bool isNative) internal nonReentrant returns (uint256, uint256) { accrueInterest(); // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to return repayBorrowFresh(msg.sender, msg.sender, repayAmount, isNative); } /** * @notice Sender repays a borrow belonging to borrower * @param borrower the account with the debt being payed off * @param repayAmount The amount to repay * @param isNative The amount is in native or not * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount. */ function repayBorrowBehalfInternal( address borrower, uint256 repayAmount, bool isNative ) internal nonReentrant returns (uint256, uint256) { accrueInterest(); // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to return repayBorrowFresh(msg.sender, borrower, repayAmount, isNative); } struct RepayBorrowLocalVars { Error err; MathError mathErr; uint256 repayAmount; uint256 borrowerIndex; uint256 accountBorrows; uint256 accountBorrowsNew; uint256 totalBorrowsNew; uint256 actualRepayAmount; } /** * @notice Borrows are repaid by another user (possibly the borrower). * @param payer the account paying off the borrow * @param borrower the account with the debt being payed off * @param repayAmount the amount of underlying tokens being returned * @param isNative The amount is in native or not * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount. */ function repayBorrowFresh( address payer, address borrower, uint256 repayAmount, bool isNative ) internal returns (uint256, uint256) { /* Fail if repayBorrow not allowed */ require(comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount) == 0, "rejected"); /* Verify market's block number equals current block number */ require(accrualBlockNumber == getBlockNumber(), "market is stale"); RepayBorrowLocalVars memory vars; /* We remember the original borrowerIndex for verification purposes */ vars.borrowerIndex = accountBorrows[borrower].interestIndex; /* We fetch the amount the borrower owes, with accumulated interest */ vars.accountBorrows = borrowBalanceStoredInternal(borrower); /* If repayAmount == -1, repayAmount = accountBorrows */ if (repayAmount == uint256(-1)) { vars.repayAmount = vars.accountBorrows; } else { vars.repayAmount = repayAmount; } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the payer and the repayAmount * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken holds an additional repayAmount of cash. * doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred. * it returns the amount actually transferred, in case of a fee. */ vars.actualRepayAmount = doTransferIn(payer, vars.repayAmount, isNative); /* * We calculate the new borrower and total borrow balances, failing on underflow: * accountBorrowsNew = accountBorrows - actualRepayAmount * totalBorrowsNew = totalBorrows - actualRepayAmount */ vars.accountBorrowsNew = sub_(vars.accountBorrows, vars.actualRepayAmount); vars.totalBorrowsNew = sub_(totalBorrows, vars.actualRepayAmount); /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = vars.accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = vars.totalBorrowsNew; /* We emit a RepayBorrow event */ emit RepayBorrow(payer, borrower, vars.actualRepayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew); /* We call the defense hook */ comptroller.repayBorrowVerify(address(this), payer, borrower, vars.actualRepayAmount, vars.borrowerIndex); return (uint256(Error.NO_ERROR), vars.actualRepayAmount); } /** * @notice The sender liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this cToken to be liquidated * @param repayAmount The amount of the underlying borrowed asset to repay * @param cTokenCollateral The market in which to seize collateral from the borrower * @param isNative The amount is in native or not * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount. */ function liquidateBorrowInternal( address borrower, uint256 repayAmount, CTokenInterface cTokenCollateral, bool isNative ) internal nonReentrant returns (uint256, uint256) { accrueInterest(); require(cTokenCollateral.accrueInterest() == uint256(Error.NO_ERROR), "accrue interest failed"); // liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to return liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral, isNative); } struct LiquidateBorrowLocalVars { uint256 repayBorrowError; uint256 actualRepayAmount; uint256 amountSeizeError; uint256 seizeTokens; } /** * @notice The liquidator liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this cToken to be liquidated * @param liquidator The address repaying the borrow and seizing collateral * @param cTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay * @param isNative The amount is in native or not * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount. */ function liquidateBorrowFresh( address liquidator, address borrower, uint256 repayAmount, CTokenInterface cTokenCollateral, bool isNative ) internal returns (uint256, uint256) { /* Fail if liquidate not allowed */ require( comptroller.liquidateBorrowAllowed( address(this), address(cTokenCollateral), liquidator, borrower, repayAmount ) == 0, "rejected" ); /* Verify market's block number equals current block number */ require(accrualBlockNumber == getBlockNumber(), "market is stale"); /* Verify cTokenCollateral market's block number equals current block number */ require(cTokenCollateral.accrualBlockNumber() == getBlockNumber(), "market is stale"); /* Fail if borrower = liquidator */ require(borrower != liquidator, "invalid account pair"); /* Fail if repayAmount = 0 or repayAmount = -1 */ require(repayAmount > 0 && repayAmount != uint256(-1), "invalid amount"); LiquidateBorrowLocalVars memory vars; /* Fail if repayBorrow fails */ (vars.repayBorrowError, vars.actualRepayAmount) = repayBorrowFresh(liquidator, borrower, repayAmount, isNative); require(vars.repayBorrowError == uint256(Error.NO_ERROR), "repay borrow failed"); ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We calculate the number of collateral tokens that will be seized */ (vars.amountSeizeError, vars.seizeTokens) = comptroller.liquidateCalculateSeizeTokens( address(this), address(cTokenCollateral), vars.actualRepayAmount ); require(vars.amountSeizeError == uint256(Error.NO_ERROR), "calculate seize amount failed"); /* Revert if borrower collateral token balance < seizeTokens */ require(cTokenCollateral.balanceOf(borrower) >= vars.seizeTokens, "seize too much"); // If this is also the collateral, run seizeInternal to avoid re-entrancy, otherwise make an external call uint256 seizeError; if (address(cTokenCollateral) == address(this)) { seizeError = seizeInternal(address(this), liquidator, borrower, vars.seizeTokens); } else { seizeError = cTokenCollateral.seize(liquidator, borrower, vars.seizeTokens); } /* Revert if seize tokens fails (since we cannot be sure of side effects) */ require(seizeError == uint256(Error.NO_ERROR), "token seizure failed"); /* We emit a LiquidateBorrow event */ emit LiquidateBorrow(liquidator, borrower, vars.actualRepayAmount, address(cTokenCollateral), vars.seizeTokens); /* We call the defense hook */ comptroller.liquidateBorrowVerify( address(this), address(cTokenCollateral), liquidator, borrower, vars.actualRepayAmount, vars.seizeTokens ); return (uint256(Error.NO_ERROR), vars.actualRepayAmount); } /** * @notice Transfers collateral tokens (this market) to the liquidator. * @dev Will fail unless called by another cToken during the process of liquidation. * Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter. * @param liquidator The account receiving seized collateral * @param borrower The account having collateral seized * @param seizeTokens The number of cTokens to seize * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function seize( address liquidator, address borrower, uint256 seizeTokens ) external nonReentrant returns (uint256) { return seizeInternal(msg.sender, liquidator, borrower, seizeTokens); } /*** Admin Functions ***/ /** * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @param newPendingAdmin New pending admin. * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setPendingAdmin(address payable newPendingAdmin) external returns (uint256) { // Check caller = admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK); } // Save current value, if any, for inclusion in log address oldPendingAdmin = pendingAdmin; // Store pendingAdmin with value newPendingAdmin pendingAdmin = newPendingAdmin; // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin) emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin); return uint256(Error.NO_ERROR); } /** * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin * @dev Admin function for pending admin to accept role and update admin * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptAdmin() external returns (uint256) { // Check caller is pendingAdmin and pendingAdmin ≠ address(0) if (msg.sender != pendingAdmin || msg.sender == address(0)) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK); } // Save current values for inclusion in log address oldAdmin = admin; address oldPendingAdmin = pendingAdmin; // Store admin with value pendingAdmin admin = pendingAdmin; // Clear the pending value pendingAdmin = address(0); emit NewAdmin(oldAdmin, admin); emit NewPendingAdmin(oldPendingAdmin, pendingAdmin); return uint256(Error.NO_ERROR); } /** * @notice Sets a new comptroller for the market * @dev Admin function to set a new comptroller * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setComptroller(ComptrollerInterface newComptroller) public returns (uint256) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_COMPTROLLER_OWNER_CHECK); } ComptrollerInterface oldComptroller = comptroller; // Ensure invoke comptroller.isComptroller() returns true require(newComptroller.isComptroller(), "not comptroller"); // Set market's comptroller to newComptroller comptroller = newComptroller; // Emit NewComptroller(oldComptroller, newComptroller) emit NewComptroller(oldComptroller, newComptroller); return uint256(Error.NO_ERROR); } /** * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh * @dev Admin function to accrue interest and set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactor(uint256 newReserveFactorMantissa) external nonReentrant returns (uint256) { accrueInterest(); // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to. return _setReserveFactorFresh(newReserveFactorMantissa); } /** * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual) * @dev Admin function to set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactorFresh(uint256 newReserveFactorMantissa) internal returns (uint256) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK); } // Verify market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK); } // Check newReserveFactor ≤ maxReserveFactor if (newReserveFactorMantissa > reserveFactorMaxMantissa) { return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK); } uint256 oldReserveFactorMantissa = reserveFactorMantissa; reserveFactorMantissa = newReserveFactorMantissa; emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa); return uint256(Error.NO_ERROR); } /** * @notice Accrues interest and reduces reserves by transferring from msg.sender * @param addAmount Amount of addition to reserves * @param isNative The amount is in native or not * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _addReservesInternal(uint256 addAmount, bool isNative) internal nonReentrant returns (uint256) { accrueInterest(); // _addReservesFresh emits reserve-addition-specific logs on errors, so we don't need to. (uint256 error, ) = _addReservesFresh(addAmount, isNative); return error; } /** * @notice Add reserves by transferring from caller * @dev Requires fresh interest accrual * @param addAmount Amount of addition to reserves * @param isNative The amount is in native or not * @return (uint, uint) An error code (0=success, otherwise a failure (see ErrorReporter.sol for details)) and the actual amount added, net token fees */ function _addReservesFresh(uint256 addAmount, bool isNative) internal returns (uint256, uint256) { // totalReserves + actualAddAmount uint256 totalReservesNew; uint256 actualAddAmount; // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { return (fail(Error.MARKET_NOT_FRESH, FailureInfo.ADD_RESERVES_FRESH_CHECK), actualAddAmount); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the caller and the addAmount * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken holds an additional addAmount of cash. * doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred. * it returns the amount actually transferred, in case of a fee. */ actualAddAmount = doTransferIn(msg.sender, addAmount, isNative); totalReservesNew = add_(totalReserves, actualAddAmount); // Store reserves[n+1] = reserves[n] + actualAddAmount totalReserves = totalReservesNew; /* Emit NewReserves(admin, actualAddAmount, reserves[n+1]) */ emit ReservesAdded(msg.sender, actualAddAmount, totalReservesNew); /* Return (NO_ERROR, actualAddAmount) */ return (uint256(Error.NO_ERROR), actualAddAmount); } /** * @notice Accrues interest and reduces reserves by transferring to admin * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReserves(uint256 reduceAmount) external nonReentrant returns (uint256) { accrueInterest(); // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to. return _reduceReservesFresh(reduceAmount); } /** * @notice Reduces reserves by transferring to admin * @dev Requires fresh interest accrual * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReservesFresh(uint256 reduceAmount) internal returns (uint256) { // totalReserves - reduceAmount uint256 totalReservesNew; // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK); } // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK); } // Fail gracefully if protocol has insufficient underlying cash if (getCashPrior() < reduceAmount) { return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE); } // Check reduceAmount ≤ reserves[n] (totalReserves) if (reduceAmount > totalReserves) { return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) totalReservesNew = sub_(totalReserves, reduceAmount); // Store reserves[n+1] = reserves[n] - reduceAmount totalReserves = totalReservesNew; // doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. // Restrict reducing reserves in wrapped token. Implementations except `CWrappedNative` won't use parameter `isNative`. doTransferOut(admin, reduceAmount, false); emit ReservesReduced(admin, reduceAmount, totalReservesNew); return uint256(Error.NO_ERROR); } /** * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh * @dev Admin function to accrue interest and update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint256) { accrueInterest(); // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to. return _setInterestRateModelFresh(newInterestRateModel); } /** * @notice updates the interest rate model (*requires fresh interest accrual) * @dev Admin function to update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint256) { // Used to store old model for use in the event that is emitted on success InterestRateModel oldInterestRateModel; // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK); } // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK); } // Track the market's current interest rate model oldInterestRateModel = interestRateModel; // Ensure invoke newInterestRateModel.isInterestRateModel() returns true require(newInterestRateModel.isInterestRateModel(), "invalid IRM"); // Set the interest rate model to newInterestRateModel interestRateModel = newInterestRateModel; // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel) emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel); return uint256(Error.NO_ERROR); } /*** Safe Token ***/ /** * @notice Gets balance of this contract in terms of the underlying * @dev This excludes the value of the current message, if any * @return The quantity of underlying owned by this contract */ function getCashPrior() internal view returns (uint256); /** * @dev Performs a transfer in, reverting upon failure. Returns the amount actually transferred to the protocol, in case of a fee. * This may revert due to insufficient balance or insufficient allowance. */ function doTransferIn( address from, uint256 amount, bool isNative ) internal returns (uint256); /** * @dev Performs a transfer out, ideally returning an explanatory error code upon failure rather than reverting. * If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract. * If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions. */ function doTransferOut( address payable to, uint256 amount, bool isNative ) internal; /** * @notice Transfer `tokens` tokens from `src` to `dst` by `spender` * @dev Called by both `transfer` and `transferFrom` internally */ function transferTokens( address spender, address src, address dst, uint256 tokens ) internal returns (uint256); /** * @notice Get the account's cToken balances */ function getCTokenBalanceInternal(address account) internal view returns (uint256); /** * @notice User supplies assets into the market and receives cTokens in exchange * @dev Assumes interest has already been accrued up to the current block */ function mintFresh( address minter, uint256 mintAmount, bool isNative ) internal returns (uint256, uint256); /** * @notice User redeems cTokens in exchange for the underlying asset * @dev Assumes interest has already been accrued up to the current block */ function redeemFresh( address payable redeemer, uint256 redeemTokensIn, uint256 redeemAmountIn, bool isNative ) internal returns (uint256); /** * @notice Transfers collateral tokens (this market) to the liquidator. * @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken. * Its absolutely critical to use msg.sender as the seizer cToken and not a parameter. */ function seizeInternal( address seizerToken, address liquidator, address borrower, uint256 seizeTokens ) internal returns (uint256); /*** Reentrancy Guard ***/ /** * @dev Prevents a contract from calling itself, directly or indirectly. */ modifier nonReentrant() { require(_notEntered, "re-entered"); _notEntered = false; _; _notEntered = true; // get a gas-refund post-Istanbul } }
pragma solidity ^0.5.16; import "./ComptrollerInterface.sol"; import "./InterestRateModel.sol"; import "./ERC3156FlashBorrowerInterface.sol"; contract CTokenStorage { /** * @dev Guard variable for re-entrancy checks */ bool internal _notEntered; /** * @notice EIP-20 token name for this token */ string public name; /** * @notice EIP-20 token symbol for this token */ string public symbol; /** * @notice EIP-20 token decimals for this token */ uint8 public decimals; /** * @notice Maximum borrow rate that can ever be applied (.0005% / block) */ uint256 internal constant borrowRateMaxMantissa = 0.0005e16; /** * @notice Maximum fraction of interest that can be set aside for reserves */ uint256 internal constant reserveFactorMaxMantissa = 1e18; /** * @notice Administrator for this contract */ address payable public admin; /** * @notice Pending administrator for this contract */ address payable public pendingAdmin; /** * @notice Contract which oversees inter-cToken operations */ ComptrollerInterface public comptroller; /** * @notice Model which tells what the current interest rate should be */ InterestRateModel public interestRateModel; /** * @notice Initial exchange rate used when minting the first CTokens (used when totalSupply = 0) */ uint256 internal initialExchangeRateMantissa; /** * @notice Fraction of interest currently set aside for reserves */ uint256 public reserveFactorMantissa; /** * @notice Block number that interest was last accrued at */ uint256 public accrualBlockNumber; /** * @notice Accumulator of the total earned interest rate since the opening of the market */ uint256 public borrowIndex; /** * @notice Total amount of outstanding borrows of the underlying in this market */ uint256 public totalBorrows; /** * @notice Total amount of reserves of the underlying held in this market */ uint256 public totalReserves; /** * @notice Total number of tokens in circulation */ uint256 public totalSupply; /** * @notice Official record of token balances for each account */ mapping(address => uint256) internal accountTokens; /** * @notice Approved token transfer amounts on behalf of others */ mapping(address => mapping(address => uint256)) internal transferAllowances; /** * @notice Container for borrow balance information * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action * @member interestIndex Global borrowIndex as of the most recent balance-changing action */ struct BorrowSnapshot { uint256 principal; uint256 interestIndex; } /** * @notice Mapping of account addresses to outstanding borrow balances */ mapping(address => BorrowSnapshot) internal accountBorrows; } contract CErc20Storage { /** * @notice Underlying asset for this CToken */ address public underlying; /** * @notice Implementation address for this contract */ address public implementation; } contract CSupplyCapStorage { /** * @notice Internal cash counter for this CToken. Should equal underlying.balanceOf(address(this)) for CERC20. */ uint256 public internalCash; } contract CCollateralCapStorage { /** * @notice Total number of tokens used as collateral in circulation. */ uint256 public totalCollateralTokens; /** * @notice Record of token balances which could be treated as collateral for each account. * If collateral cap is not set, the value should be equal to accountTokens. */ mapping(address => uint256) public accountCollateralTokens; /** * @notice Check if accountCollateralTokens have been initialized. */ mapping(address => bool) public isCollateralTokenInit; /** * @notice Collateral cap for this CToken, zero for no cap. */ uint256 public collateralCap; } /*** Interface ***/ contract CTokenInterface is CTokenStorage { /** * @notice Indicator that this is a CToken contract (for inspection) */ bool public constant isCToken = true; /*** Market Events ***/ /** * @notice Event emitted when interest is accrued */ event AccrueInterest(uint256 cashPrior, uint256 interestAccumulated, uint256 borrowIndex, uint256 totalBorrows); /** * @notice Event emitted when tokens are minted */ event Mint(address minter, uint256 mintAmount, uint256 mintTokens); /** * @notice Event emitted when tokens are redeemed */ event Redeem(address redeemer, uint256 redeemAmount, uint256 redeemTokens); /** * @notice Event emitted when underlying is borrowed */ event Borrow(address borrower, uint256 borrowAmount, uint256 accountBorrows, uint256 totalBorrows); /** * @notice Event emitted when a borrow is repaid */ event RepayBorrow( address payer, address borrower, uint256 repayAmount, uint256 accountBorrows, uint256 totalBorrows ); /** * @notice Event emitted when a borrow is liquidated */ event LiquidateBorrow( address liquidator, address borrower, uint256 repayAmount, address cTokenCollateral, uint256 seizeTokens ); /*** Admin Events ***/ /** * @notice Event emitted when pendingAdmin is changed */ event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin); /** * @notice Event emitted when pendingAdmin is accepted, which means admin is updated */ event NewAdmin(address oldAdmin, address newAdmin); /** * @notice Event emitted when comptroller is changed */ event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller); /** * @notice Event emitted when interestRateModel is changed */ event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel); /** * @notice Event emitted when the reserve factor is changed */ event NewReserveFactor(uint256 oldReserveFactorMantissa, uint256 newReserveFactorMantissa); /** * @notice Event emitted when the reserves are added */ event ReservesAdded(address benefactor, uint256 addAmount, uint256 newTotalReserves); /** * @notice Event emitted when the reserves are reduced */ event ReservesReduced(address admin, uint256 reduceAmount, uint256 newTotalReserves); /** * @notice EIP20 Transfer event */ event Transfer(address indexed from, address indexed to, uint256 amount); /** * @notice EIP20 Approval event */ event Approval(address indexed owner, address indexed spender, uint256 amount); /** * @notice Failure event */ event Failure(uint256 error, uint256 info, uint256 detail); /*** User Interface ***/ function transfer(address dst, uint256 amount) external returns (bool); function transferFrom( address src, address dst, uint256 amount ) external returns (bool); function approve(address spender, uint256 amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint256); function balanceOf(address owner) external view returns (uint256); function balanceOfUnderlying(address owner) external returns (uint256); function getAccountSnapshot(address account) external view returns ( uint256, uint256, uint256, uint256 ); function borrowRatePerBlock() external view returns (uint256); function supplyRatePerBlock() external view returns (uint256); function totalBorrowsCurrent() external returns (uint256); function borrowBalanceCurrent(address account) external returns (uint256); function borrowBalanceStored(address account) public view returns (uint256); function exchangeRateCurrent() public returns (uint256); function exchangeRateStored() public view returns (uint256); function getCash() external view returns (uint256); function accrueInterest() public returns (uint256); function seize( address liquidator, address borrower, uint256 seizeTokens ) external returns (uint256); /*** Admin Functions ***/ function _setPendingAdmin(address payable newPendingAdmin) external returns (uint256); function _acceptAdmin() external returns (uint256); function _setComptroller(ComptrollerInterface newComptroller) public returns (uint256); function _setReserveFactor(uint256 newReserveFactorMantissa) external returns (uint256); function _reduceReserves(uint256 reduceAmount) external returns (uint256); function _setInterestRateModel(InterestRateModel newInterestRateModel) public returns (uint256); } contract CErc20Interface is CErc20Storage { /*** User Interface ***/ function mint(uint256 mintAmount) external returns (uint256); function redeem(uint256 redeemTokens) external returns (uint256); function redeemUnderlying(uint256 redeemAmount) external returns (uint256); function borrow(uint256 borrowAmount) external returns (uint256); function repayBorrow(uint256 repayAmount) external returns (uint256); function repayBorrowBehalf(address borrower, uint256 repayAmount) external returns (uint256); function liquidateBorrow( address borrower, uint256 repayAmount, CTokenInterface cTokenCollateral ) external returns (uint256); function _addReserves(uint256 addAmount) external returns (uint256); } contract CCapableErc20Interface is CErc20Interface, CSupplyCapStorage { /** * @notice Flash loan fee ratio */ uint256 public constant flashFeeBips = 9; /*** Market Events ***/ /** * @notice Event emitted when a flashloan occurred */ event Flashloan(address indexed receiver, uint256 amount, uint256 totalFee, uint256 reservesFee); /*** User Interface ***/ function gulp() external; } contract CWrappedNativeInterface is CCapableErc20Interface { /*** User Interface ***/ function mintNative() external payable returns (uint256); function redeemNative(uint256 redeemTokens) external returns (uint256); function redeemUnderlyingNative(uint256 redeemAmount) external returns (uint256); function borrowNative(uint256 borrowAmount) external returns (uint256); function repayBorrowNative() external payable returns (uint256); function repayBorrowBehalfNative(address borrower) external payable returns (uint256); function liquidateBorrowNative(address borrower, CTokenInterface cTokenCollateral) external payable returns (uint256); function flashLoan( ERC3156FlashBorrowerInterface receiver, address initiator, uint256 amount, bytes calldata data ) external returns (bool); function _addReservesNative() external payable returns (uint256); function collateralCap() external view returns (uint256); function totalCollateralTokens() external view returns (uint256); } contract CCollateralCapErc20Interface is CCapableErc20Interface, CCollateralCapStorage { /*** Admin Events ***/ /** * @notice Event emitted when collateral cap is set */ event NewCollateralCap(address token, uint256 newCap); /** * @notice Event emitted when user collateral is changed */ event UserCollateralChanged(address account, uint256 newCollateralTokens); /*** User Interface ***/ function registerCollateral(address account) external returns (uint256); function unregisterCollateral(address account) external; function flashLoan( ERC3156FlashBorrowerInterface receiver, address initiator, uint256 amount, bytes calldata data ) external returns (bool); /*** Admin Functions ***/ function _setCollateralCap(uint256 newCollateralCap) external; } contract CDelegatorInterface { /** * @notice Emitted when implementation is changed */ event NewImplementation(address oldImplementation, address newImplementation); /** * @notice Called by the admin to update the implementation of the delegator * @param implementation_ The address of the new implementation for delegation * @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation * @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation */ function _setImplementation( address implementation_, bool allowResign, bytes memory becomeImplementationData ) public; } contract CDelegateInterface { /** * @notice Called by the delegator on a delegate to initialize it for duty * @dev Should revert if any issues arise which make it unfit for delegation * @param data The encoded bytes data for any initialization */ function _becomeImplementation(bytes memory data) public; /** * @notice Called by the delegator on a delegate to forfeit its responsibility */ function _resignImplementation() public; } /*** External interface ***/ /** * @title Flash loan receiver interface */ interface IFlashloanReceiver { function executeOperation( address sender, address underlying, uint256 amount, uint256 fee, bytes calldata params ) external; }
pragma solidity ^0.5.16; /** * @title Careful Math * @author Compound * @notice Derived from OpenZeppelin's SafeMath library * https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol */ contract CarefulMath { /** * @dev Possible error codes that we can return */ enum MathError { NO_ERROR, DIVISION_BY_ZERO, INTEGER_OVERFLOW, INTEGER_UNDERFLOW } /** * @dev Multiplies two numbers, returns an error on overflow. */ function mulUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) { if (a == 0) { return (MathError.NO_ERROR, 0); } uint256 c = a * b; if (c / a != b) { return (MathError.INTEGER_OVERFLOW, 0); } else { return (MathError.NO_ERROR, c); } } /** * @dev Integer division of two numbers, truncating the quotient. */ function divUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) { if (b == 0) { return (MathError.DIVISION_BY_ZERO, 0); } return (MathError.NO_ERROR, a / b); } /** * @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend). */ function subUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) { if (b <= a) { return (MathError.NO_ERROR, a - b); } else { return (MathError.INTEGER_UNDERFLOW, 0); } } /** * @dev Adds two numbers, returns an error on overflow. */ function addUInt(uint256 a, uint256 b) internal pure returns (MathError, uint256) { uint256 c = a + b; if (c >= a) { return (MathError.NO_ERROR, c); } else { return (MathError.INTEGER_OVERFLOW, 0); } } /** * @dev add a and b and then subtract c */ function addThenSubUInt( uint256 a, uint256 b, uint256 c ) internal pure returns (MathError, uint256) { (MathError err0, uint256 sum) = addUInt(a, b); if (err0 != MathError.NO_ERROR) { return (err0, 0); } return subUInt(sum, c); } }
pragma solidity ^0.5.16; import "./CToken.sol"; import "./ComptrollerStorage.sol"; contract ComptrollerInterface { /// @notice Indicator that this is a Comptroller contract (for inspection) bool public constant isComptroller = true; /*** Assets You Are In ***/ function enterMarkets(address[] calldata cTokens) external returns (uint256[] memory); function exitMarket(address cToken) external returns (uint256); /*** Policy Hooks ***/ function mintAllowed( address cToken, address minter, uint256 mintAmount ) external returns (uint256); function mintVerify( address cToken, address minter, uint256 mintAmount, uint256 mintTokens ) external; function redeemAllowed( address cToken, address redeemer, uint256 redeemTokens ) external returns (uint256); function redeemVerify( address cToken, address redeemer, uint256 redeemAmount, uint256 redeemTokens ) external; function borrowAllowed( address cToken, address borrower, uint256 borrowAmount ) external returns (uint256); function borrowVerify( address cToken, address borrower, uint256 borrowAmount ) external; function repayBorrowAllowed( address cToken, address payer, address borrower, uint256 repayAmount ) external returns (uint256); function repayBorrowVerify( address cToken, address payer, address borrower, uint256 repayAmount, uint256 borrowerIndex ) external; function liquidateBorrowAllowed( address cTokenBorrowed, address cTokenCollateral, address liquidator, address borrower, uint256 repayAmount ) external returns (uint256); function liquidateBorrowVerify( address cTokenBorrowed, address cTokenCollateral, address liquidator, address borrower, uint256 repayAmount, uint256 seizeTokens ) external; function seizeAllowed( address cTokenCollateral, address cTokenBorrowed, address liquidator, address borrower, uint256 seizeTokens ) external returns (uint256); function seizeVerify( address cTokenCollateral, address cTokenBorrowed, address liquidator, address borrower, uint256 seizeTokens ) external; function transferAllowed( address cToken, address src, address dst, uint256 transferTokens ) external returns (uint256); function transferVerify( address cToken, address src, address dst, uint256 transferTokens ) external; /*** Liquidity/Liquidation Calculations ***/ function liquidateCalculateSeizeTokens( address cTokenBorrowed, address cTokenCollateral, uint256 repayAmount ) external view returns (uint256, uint256); } interface ComptrollerInterfaceExtension { function checkMembership(address account, CToken cToken) external view returns (bool); function updateCTokenVersion(address cToken, ComptrollerV1Storage.Version version) external; function flashloanAllowed( address cToken, address receiver, uint256 amount, bytes calldata params ) external view returns (bool); function getAccountLiquidity(address account) external view returns ( uint256, uint256, uint256 ); function supplyCaps(address market) external view returns (uint256); }
pragma solidity ^0.5.16; import "./CToken.sol"; import "./PriceOracle/PriceOracle.sol"; contract UnitrollerAdminStorage { /** * @notice Administrator for this contract */ address public admin; /** * @notice Pending administrator for this contract */ address public pendingAdmin; /** * @notice Active brains of Unitroller */ address public comptrollerImplementation; /** * @notice Pending brains of Unitroller */ address public pendingComptrollerImplementation; } contract ComptrollerV1Storage is UnitrollerAdminStorage { /** * @notice Oracle which gives the price of any given asset */ PriceOracle public oracle; /** * @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow */ uint256 public closeFactorMantissa; /** * @notice Multiplier representing the discount on collateral that a liquidator receives */ uint256 public liquidationIncentiveMantissa; /** * @notice Per-account mapping of "assets you are in" */ mapping(address => CToken[]) public accountAssets; enum Version { VANILLA, COLLATERALCAP, WRAPPEDNATIVE } struct Market { /// @notice Whether or not this market is listed bool isListed; /** * @notice Multiplier representing the most one can borrow against their collateral in this market. * For instance, 0.9 to allow borrowing 90% of collateral value. * Must be between 0 and 1, and stored as a mantissa. */ uint256 collateralFactorMantissa; /// @notice Per-market mapping of "accounts in this asset" mapping(address => bool) accountMembership; /// @notice CToken version Version version; } /** * @notice Official mapping of cTokens -> Market metadata * @dev Used e.g. to determine if a market is supported */ mapping(address => Market) public markets; /** * @notice The Guardian can pause certain actions as a safety mechanism. * Actions which allow users to remove their own assets cannot be paused. * Liquidation / seizing / transfer can only be paused globally, not by market. */ address public guardian; bool public _mintGuardianPaused; bool public _borrowGuardianPaused; bool public transferGuardianPaused; bool public seizeGuardianPaused; mapping(address => bool) public mintGuardianPaused; mapping(address => bool) public borrowGuardianPaused; mapping(address => bool) public flashloanGuardianPaused; /// @notice A list of all markets CToken[] public allMarkets; /// @notice The borrowCapGuardian can set borrowCaps to any number for any market. Lowering the borrow cap could disable borrowing on the given market. /// @dev This storage is deprecated. address public borrowCapGuardian; /// @notice Borrow caps enforced by borrowAllowed for each cToken address. Defaults to zero which corresponds to unlimited borrowing. mapping(address => uint256) public borrowCaps; /// @notice The supplyCapGuardian can set supplyCaps to any number for any market. Lowering the supply cap could disable supplying to the given market. /// @dev This storage is deprecated. address public supplyCapGuardian; /// @notice Supply caps enforced by mintAllowed for each cToken address. Defaults to zero which corresponds to unlimited supplying. mapping(address => uint256) public supplyCaps; /// @notice creditLimits allowed specific protocols to borrow and repay specific markets without collateral. mapping(address => mapping(address => uint256)) public creditLimits; /// @notice liquidityMining the liquidity mining module that handles the LM rewards distribution. address public liquidityMining; /// @notice isMarketSoftDelisted records the market which has been soft delisted by us. mapping(address => bool) public isMarketSoftDelisted; /// @notice creditLimitManager is the role who is in charge of increasing the credit limit. address public creditLimitManager; /// @notice A list of all soft delisted markets address[] public softDelistedMarkets; }
pragma solidity ^0.5.16; /** * @title ERC 20 Token Standard Interface * https://eips.ethereum.org/EIPS/eip-20 */ interface EIP20Interface { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return The balance */ function balanceOf(address owner) external view returns (uint256 balance); /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external returns (bool success); /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom( address src, address dst, uint256 amount ) external returns (bool success); /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (-1 means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool success); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view returns (uint256 remaining); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); }
pragma solidity ^0.5.16; /** * @title EIP20NonStandardInterface * @dev Version of ERC20 with no return values for `transfer` and `transferFrom` * See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca */ interface EIP20NonStandardInterface { /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return The balance */ function balanceOf(address owner) external view returns (uint256 balance); /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transfer(address dst, uint256 amount) external; /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transferFrom( address src, address dst, uint256 amount ) external; /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool success); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent */ function allowance(address owner, address spender) external view returns (uint256 remaining); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); }
pragma solidity ^0.5.16; interface ERC3156FlashBorrowerInterface { /** * @dev Receive a flash loan. * @param initiator The initiator of the loan. * @param token The loan currency. * @param amount The amount of tokens lent. * @param fee The additional amount of tokens to repay. * @param data Arbitrary data structure, intended to contain user-defined parameters. * @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan" */ function onFlashLoan( address initiator, address token, uint256 amount, uint256 fee, bytes calldata data ) external returns (bytes32); }
pragma solidity ^0.5.16; contract ComptrollerErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, COMPTROLLER_MISMATCH, INSUFFICIENT_SHORTFALL, INSUFFICIENT_LIQUIDITY, INVALID_CLOSE_FACTOR, INVALID_COLLATERAL_FACTOR, INVALID_LIQUIDATION_INCENTIVE, MARKET_NOT_ENTERED, // no longer possible MARKET_NOT_LISTED, MARKET_ALREADY_LISTED, MATH_ERROR, NONZERO_BORROW_BALANCE, PRICE_ERROR, REJECTION, SNAPSHOT_ERROR, TOO_MANY_ASSETS, TOO_MUCH_REPAY } enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK, EXIT_MARKET_BALANCE_OWED, EXIT_MARKET_REJECTION, SET_CLOSE_FACTOR_OWNER_CHECK, SET_CLOSE_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_OWNER_CHECK, SET_COLLATERAL_FACTOR_NO_EXISTS, SET_COLLATERAL_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_WITHOUT_PRICE, SET_IMPLEMENTATION_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_VALIDATION, SET_MAX_ASSETS_OWNER_CHECK, SET_PENDING_ADMIN_OWNER_CHECK, SET_PENDING_IMPLEMENTATION_OWNER_CHECK, SET_PRICE_ORACLE_OWNER_CHECK, SUPPORT_MARKET_EXISTS, SUPPORT_MARKET_OWNER_CHECK, SET_PAUSE_GUARDIAN_OWNER_CHECK } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint256 error, uint256 info, uint256 detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint256) { emit Failure(uint256(err), uint256(info), 0); return uint256(err); } /** * @dev use this when reporting an opaque error from an upgradeable collaborator contract */ function failOpaque( Error err, FailureInfo info, uint256 opaqueError ) internal returns (uint256) { emit Failure(uint256(err), uint256(info), opaqueError); return uint256(err); } } contract TokenErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, BAD_INPUT, COMPTROLLER_REJECTION, COMPTROLLER_CALCULATION_ERROR, INTEREST_RATE_MODEL_ERROR, INVALID_ACCOUNT_PAIR, INVALID_CLOSE_AMOUNT_REQUESTED, INVALID_COLLATERAL_FACTOR, MATH_ERROR, MARKET_NOT_FRESH, MARKET_NOT_LISTED, TOKEN_INSUFFICIENT_ALLOWANCE, TOKEN_INSUFFICIENT_BALANCE, TOKEN_INSUFFICIENT_CASH, TOKEN_TRANSFER_IN_FAILED, TOKEN_TRANSFER_OUT_FAILED } /* * Note: FailureInfo (but not Error) is kept in alphabetical order * This is because FailureInfo grows significantly faster, and * the order of Error has some meaning, while the order of FailureInfo * is entirely arbitrary. */ enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED, BORROW_ACCRUE_INTEREST_FAILED, BORROW_CASH_NOT_AVAILABLE, BORROW_FRESHNESS_CHECK, BORROW_MARKET_NOT_LISTED, BORROW_COMPTROLLER_REJECTION, LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED, LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED, LIQUIDATE_COLLATERAL_FRESHNESS_CHECK, LIQUIDATE_COMPTROLLER_REJECTION, LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED, LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX, LIQUIDATE_CLOSE_AMOUNT_IS_ZERO, LIQUIDATE_FRESHNESS_CHECK, LIQUIDATE_LIQUIDATOR_IS_BORROWER, LIQUIDATE_REPAY_BORROW_FRESH_FAILED, LIQUIDATE_SEIZE_COMPTROLLER_REJECTION, LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER, LIQUIDATE_SEIZE_TOO_MUCH, MINT_ACCRUE_INTEREST_FAILED, MINT_COMPTROLLER_REJECTION, MINT_FRESHNESS_CHECK, MINT_TRANSFER_IN_FAILED, MINT_TRANSFER_IN_NOT_POSSIBLE, REDEEM_ACCRUE_INTEREST_FAILED, REDEEM_COMPTROLLER_REJECTION, REDEEM_FRESHNESS_CHECK, REDEEM_TRANSFER_OUT_NOT_POSSIBLE, REDUCE_RESERVES_ACCRUE_INTEREST_FAILED, REDUCE_RESERVES_ADMIN_CHECK, REDUCE_RESERVES_CASH_NOT_AVAILABLE, REDUCE_RESERVES_FRESH_CHECK, REDUCE_RESERVES_VALIDATION, REPAY_BEHALF_ACCRUE_INTEREST_FAILED, REPAY_BORROW_ACCRUE_INTEREST_FAILED, REPAY_BORROW_COMPTROLLER_REJECTION, REPAY_BORROW_FRESHNESS_CHECK, REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE, SET_COLLATERAL_FACTOR_OWNER_CHECK, SET_COLLATERAL_FACTOR_VALIDATION, SET_COMPTROLLER_OWNER_CHECK, SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED, SET_INTEREST_RATE_MODEL_FRESH_CHECK, SET_INTEREST_RATE_MODEL_OWNER_CHECK, SET_MAX_ASSETS_OWNER_CHECK, SET_ORACLE_MARKET_NOT_LISTED, SET_PENDING_ADMIN_OWNER_CHECK, SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED, SET_RESERVE_FACTOR_ADMIN_CHECK, SET_RESERVE_FACTOR_FRESH_CHECK, SET_RESERVE_FACTOR_BOUNDS_CHECK, TRANSFER_COMPTROLLER_REJECTION, TRANSFER_NOT_ALLOWED, ADD_RESERVES_ACCRUE_INTEREST_FAILED, ADD_RESERVES_FRESH_CHECK, ADD_RESERVES_TRANSFER_IN_NOT_POSSIBLE } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint256 error, uint256 info, uint256 detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint256) { emit Failure(uint256(err), uint256(info), 0); return uint256(err); } /** * @dev use this when reporting an opaque error from an upgradeable collaborator contract */ function failOpaque( Error err, FailureInfo info, uint256 opaqueError ) internal returns (uint256) { emit Failure(uint256(err), uint256(info), opaqueError); return uint256(err); } }
pragma solidity ^0.5.16; import "./CarefulMath.sol"; /** * @title Exponential module for storing fixed-precision decimals * @author Compound * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places. * Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is: * `Exp({mantissa: 5100000000000000000})`. */ contract Exponential is CarefulMath { uint256 constant expScale = 1e18; uint256 constant doubleScale = 1e36; uint256 constant halfExpScale = expScale / 2; uint256 constant mantissaOne = expScale; struct Exp { uint256 mantissa; } struct Double { uint256 mantissa; } /** * @dev Creates an exponential from numerator and denominator values. * Note: Returns an error if (`num` * 10e18) > MAX_INT, * or if `denom` is zero. */ function getExp(uint256 num, uint256 denom) internal pure returns (MathError, Exp memory) { (MathError err0, uint256 scaledNumerator) = mulUInt(num, expScale); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } (MathError err1, uint256 rational) = divUInt(scaledNumerator, denom); if (err1 != MathError.NO_ERROR) { return (err1, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: rational})); } /** * @dev Adds two exponentials, returning a new exponential. */ function addExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) { (MathError error, uint256 result) = addUInt(a.mantissa, b.mantissa); return (error, Exp({mantissa: result})); } /** * @dev Subtracts two exponentials, returning a new exponential. */ function subExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) { (MathError error, uint256 result) = subUInt(a.mantissa, b.mantissa); return (error, Exp({mantissa: result})); } /** * @dev Multiply an Exp by a scalar, returning a new Exp. */ function mulScalar(Exp memory a, uint256 scalar) internal pure returns (MathError, Exp memory) { (MathError err0, uint256 scaledMantissa) = mulUInt(a.mantissa, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa})); } /** * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer. */ function mulScalarTruncate(Exp memory a, uint256 scalar) internal pure returns (MathError, uint256) { (MathError err, Exp memory product) = mulScalar(a, scalar); if (err != MathError.NO_ERROR) { return (err, 0); } return (MathError.NO_ERROR, truncate(product)); } /** * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer. */ function mulScalarTruncateAddUInt( Exp memory a, uint256 scalar, uint256 addend ) internal pure returns (MathError, uint256) { (MathError err, Exp memory product) = mulScalar(a, scalar); if (err != MathError.NO_ERROR) { return (err, 0); } return addUInt(truncate(product), addend); } /** * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer. */ function mul_ScalarTruncate(Exp memory a, uint256 scalar) internal pure returns (uint256) { Exp memory product = mul_(a, scalar); return truncate(product); } /** * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer. */ function mul_ScalarTruncateAddUInt( Exp memory a, uint256 scalar, uint256 addend ) internal pure returns (uint256) { Exp memory product = mul_(a, scalar); return add_(truncate(product), addend); } /** * @dev Divide an Exp by a scalar, returning a new Exp. */ function divScalar(Exp memory a, uint256 scalar) internal pure returns (MathError, Exp memory) { (MathError err0, uint256 descaledMantissa) = divUInt(a.mantissa, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa})); } /** * @dev Divide a scalar by an Exp, returning a new Exp. */ function divScalarByExp(uint256 scalar, Exp memory divisor) internal pure returns (MathError, Exp memory) { /* We are doing this as: getExp(mulUInt(expScale, scalar), divisor.mantissa) How it works: Exp = a / b; Scalar = s; `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale` */ (MathError err0, uint256 numerator) = mulUInt(expScale, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return getExp(numerator, divisor.mantissa); } /** * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer. */ function divScalarByExpTruncate(uint256 scalar, Exp memory divisor) internal pure returns (MathError, uint256) { (MathError err, Exp memory fraction) = divScalarByExp(scalar, divisor); if (err != MathError.NO_ERROR) { return (err, 0); } return (MathError.NO_ERROR, truncate(fraction)); } /** * @dev Divide a scalar by an Exp, returning a new Exp. */ function div_ScalarByExp(uint256 scalar, Exp memory divisor) internal pure returns (Exp memory) { /* We are doing this as: getExp(mulUInt(expScale, scalar), divisor.mantissa) How it works: Exp = a / b; Scalar = s; `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale` */ uint256 numerator = mul_(expScale, scalar); return Exp({mantissa: div_(numerator, divisor)}); } /** * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer. */ function div_ScalarByExpTruncate(uint256 scalar, Exp memory divisor) internal pure returns (uint256) { Exp memory fraction = div_ScalarByExp(scalar, divisor); return truncate(fraction); } /** * @dev Multiplies two exponentials, returning a new exponential. */ function mulExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) { (MathError err0, uint256 doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } // We add half the scale before dividing so that we get rounding instead of truncation. // See "Listing 6" and text above it at https://accu.org/index.php/journals/1717 // Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18. (MathError err1, uint256 doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct); if (err1 != MathError.NO_ERROR) { return (err1, Exp({mantissa: 0})); } (MathError err2, uint256 product) = divUInt(doubleScaledProductWithHalfScale, expScale); // The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero. assert(err2 == MathError.NO_ERROR); return (MathError.NO_ERROR, Exp({mantissa: product})); } /** * @dev Multiplies two exponentials given their mantissas, returning a new exponential. */ function mulExp(uint256 a, uint256 b) internal pure returns (MathError, Exp memory) { return mulExp(Exp({mantissa: a}), Exp({mantissa: b})); } /** * @dev Multiplies three exponentials, returning a new exponential. */ function mulExp3( Exp memory a, Exp memory b, Exp memory c ) internal pure returns (MathError, Exp memory) { (MathError err, Exp memory ab) = mulExp(a, b); if (err != MathError.NO_ERROR) { return (err, ab); } return mulExp(ab, c); } /** * @dev Divides two exponentials, returning a new exponential. * (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b, * which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa) */ function divExp(Exp memory a, Exp memory b) internal pure returns (MathError, Exp memory) { return getExp(a.mantissa, b.mantissa); } /** * @dev Truncates the given exp to a whole number value. * For example, truncate(Exp{mantissa: 15 * expScale}) = 15 */ function truncate(Exp memory exp) internal pure returns (uint256) { // Note: We are not using careful math here as we're performing a division that cannot fail return exp.mantissa / expScale; } /** * @dev Checks if first Exp is less than second Exp. */ function lessThanExp(Exp memory left, Exp memory right) internal pure returns (bool) { return left.mantissa < right.mantissa; } /** * @dev Checks if left Exp <= right Exp. */ function lessThanOrEqualExp(Exp memory left, Exp memory right) internal pure returns (bool) { return left.mantissa <= right.mantissa; } /** * @dev returns true if Exp is exactly zero */ function isZeroExp(Exp memory value) internal pure returns (bool) { return value.mantissa == 0; } function safe224(uint256 n, string memory errorMessage) internal pure returns (uint224) { require(n < 2**224, errorMessage); return uint224(n); } function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) { require(n < 2**32, errorMessage); return uint32(n); } function add_(Exp memory a, Exp memory b) internal pure returns (Exp memory) { return Exp({mantissa: add_(a.mantissa, b.mantissa)}); } function add_(Double memory a, Double memory b) internal pure returns (Double memory) { return Double({mantissa: add_(a.mantissa, b.mantissa)}); } function add_(uint256 a, uint256 b) internal pure returns (uint256) { return add_(a, b, "addition overflow"); } function add_( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, errorMessage); return c; } function sub_(Exp memory a, Exp memory b) internal pure returns (Exp memory) { return Exp({mantissa: sub_(a.mantissa, b.mantissa)}); } function sub_(Double memory a, Double memory b) internal pure returns (Double memory) { return Double({mantissa: sub_(a.mantissa, b.mantissa)}); } function sub_(uint256 a, uint256 b) internal pure returns (uint256) { return sub_(a, b, "subtraction underflow"); } function sub_( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } function mul_(Exp memory a, Exp memory b) internal pure returns (Exp memory) { return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale}); } function mul_(Exp memory a, uint256 b) internal pure returns (Exp memory) { return Exp({mantissa: mul_(a.mantissa, b)}); } function mul_(uint256 a, Exp memory b) internal pure returns (uint256) { return mul_(a, b.mantissa) / expScale; } function mul_(Double memory a, Double memory b) internal pure returns (Double memory) { return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale}); } function mul_(Double memory a, uint256 b) internal pure returns (Double memory) { return Double({mantissa: mul_(a.mantissa, b)}); } function mul_(uint256 a, Double memory b) internal pure returns (uint256) { return mul_(a, b.mantissa) / doubleScale; } function mul_(uint256 a, uint256 b) internal pure returns (uint256) { return mul_(a, b, "multiplication overflow"); } function mul_( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { if (a == 0 || b == 0) { return 0; } uint256 c = a * b; require(c / a == b, errorMessage); return c; } function div_(Exp memory a, Exp memory b) internal pure returns (Exp memory) { return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)}); } function div_(Exp memory a, uint256 b) internal pure returns (Exp memory) { return Exp({mantissa: div_(a.mantissa, b)}); } function div_(uint256 a, Exp memory b) internal pure returns (uint256) { return div_(mul_(a, expScale), b.mantissa); } function div_(Double memory a, Double memory b) internal pure returns (Double memory) { return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)}); } function div_(Double memory a, uint256 b) internal pure returns (Double memory) { return Double({mantissa: div_(a.mantissa, b)}); } function div_(uint256 a, Double memory b) internal pure returns (uint256) { return div_(mul_(a, doubleScale), b.mantissa); } function div_(uint256 a, uint256 b) internal pure returns (uint256) { return div_(a, b, "divide by zero"); } function div_( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } function fraction(uint256 a, uint256 b) internal pure returns (Double memory) { return Double({mantissa: div_(mul_(a, doubleScale), b)}); } // implementation from https://github.com/Uniswap/uniswap-lib/commit/99f3f28770640ba1bb1ff460ac7c5292fb8291a0 // original implementation: https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMath64x64.sol#L687 function sqrt(uint256 x) internal pure returns (uint256) { if (x == 0) return 0; uint256 xx = x; uint256 r = 1; if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; } if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; } if (xx >= 0x100000000) { xx >>= 32; r <<= 16; } if (xx >= 0x10000) { xx >>= 16; r <<= 8; } if (xx >= 0x100) { xx >>= 8; r <<= 4; } if (xx >= 0x10) { xx >>= 4; r <<= 2; } if (xx >= 0x8) { r <<= 1; } r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; // Seven iterations should be enough uint256 r1 = x / r; return (r < r1 ? r : r1); } }
pragma solidity ^0.5.16; /** * @title Compound's InterestRateModel Interface * @author Compound */ contract InterestRateModel { /// @notice Indicator that this is an InterestRateModel contract (for inspection) bool public constant isInterestRateModel = true; /** * @notice Calculates the current borrow interest rate per block * @param cash The total amount of cash the market has * @param borrows The total amount of borrows the market has outstanding * @param reserves The total amount of reserves the market has * @return The borrow rate per block (as a percentage, and scaled by 1e18) */ function getBorrowRate( uint256 cash, uint256 borrows, uint256 reserves ) external view returns (uint256); /** * @notice Calculates the current supply interest rate per block * @param cash The total amount of cash the market has * @param borrows The total amount of borrows the market has outstanding * @param reserves The total amount of reserves the market has * @param reserveFactorMantissa The current reserve factor the market has * @return The supply rate per block (as a percentage, and scaled by 1e18) */ function getSupplyRate( uint256 cash, uint256 borrows, uint256 reserves, uint256 reserveFactorMantissa ) external view returns (uint256); }
pragma solidity ^0.5.16; import "../CToken.sol"; contract PriceOracle { /** * @notice Get the underlying price of a cToken asset * @param cToken The cToken to get the underlying price of * @return The underlying asset price mantissa (scaled by 1e18). * Zero means the price is unavailable. */ function getUnderlyingPrice(CToken cToken) external view returns (uint256); }
{ "evmVersion": "istanbul", "libraries": {}, "metadata": { "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 200 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"error","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"info","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"detail","type":"uint256"}],"name":"Failure","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldAdmin","type":"address"},{"indexed":false,"internalType":"address","name":"newAdmin","type":"address"}],"name":"NewAdmin","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldImplementation","type":"address"},{"indexed":false,"internalType":"address","name":"newImplementation","type":"address"}],"name":"NewImplementation","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldPendingAdmin","type":"address"},{"indexed":false,"internalType":"address","name":"newPendingAdmin","type":"address"}],"name":"NewPendingAdmin","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldPendingImplementation","type":"address"},{"indexed":false,"internalType":"address","name":"newPendingImplementation","type":"address"}],"name":"NewPendingImplementation","type":"event"},{"payable":true,"stateMutability":"payable","type":"fallback"},{"constant":false,"inputs":[],"name":"_acceptAdmin","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"_acceptImplementation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"newPendingAdmin","type":"address"}],"name":"_setPendingAdmin","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"newPendingImplementation","type":"address"}],"name":"_setPendingImplementation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"admin","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"comptrollerImplementation","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"implementation","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"pendingAdmin","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"pendingComptrollerImplementation","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b50600080546001600160a01b03191633179055610613806100326000396000f3fe6080604052600436106100865760003560e01c8063c1e8033411610059578063c1e80334146101a9578063dcfbc0c7146101be578063e992a041146101d3578063e9c714f214610206578063f851a4401461021b57610086565b806326782247146101095780635c60da1b1461013a578063b71d1a0c1461014f578063bb82aa5e14610194575b6002546040516000916001600160a01b031690829036908083838082843760405192019450600093509091505080830381855af49150503d80600081146100e9576040519150601f19603f3d011682016040523d82523d6000602084013e6100ee565b606091505b505090506040513d6000823e818015610105573d82f35b3d82fd5b34801561011557600080fd5b5061011e610230565b604080516001600160a01b039092168252519081900360200190f35b34801561014657600080fd5b5061011e61023f565b34801561015b57600080fd5b506101826004803603602081101561017257600080fd5b50356001600160a01b031661024f565b60408051918252519081900360200190f35b3480156101a057600080fd5b5061011e6102e0565b3480156101b557600080fd5b506101826102ef565b3480156101ca57600080fd5b5061011e6103e9565b3480156101df57600080fd5b50610182600480360360208110156101f657600080fd5b50356001600160a01b03166103f8565b34801561021257600080fd5b5061018261047c565b34801561022757600080fd5b5061011e610562565b6001546001600160a01b031681565b6002546001600160a01b03165b90565b600080546001600160a01b031633146102755761026e6001600e610571565b90506102db565b600180546001600160a01b038481166001600160a01b0319831681179093556040805191909216808252602082019390935281517fca4f2f25d0898edd99413412fb94012f9e54ec8142f9b093e7720646a95b16a9929181900390910190a160005b9150505b919050565b6002546001600160a01b031681565b6003546000906001600160a01b03163314158061031557506003546001600160a01b0316155b1561032c57610325600180610571565b905061024c565b60028054600380546001600160a01b038082166001600160a01b031980861682179687905590921690925560408051938316808552949092166020840152815190927fd604de94d45953f9138079ec1b82d533cb2160c906d1076d1f7ed54befbca97a92908290030190a1600354604080516001600160a01b038085168252909216602083015280517fe945ccee5d701fc83f9b8aa8ca94ea4219ec1fcbd4f4cab4f0ea57c5c3e1d8159281900390910190a160005b9250505090565b6003546001600160a01b031681565b600080546001600160a01b031633146104175761026e6001600f610571565b600380546001600160a01b038481166001600160a01b0319831617928390556040805192821680845293909116602083015280517fe945ccee5d701fc83f9b8aa8ca94ea4219ec1fcbd4f4cab4f0ea57c5c3e1d8159281900390910190a160006102d7565b6001546000906001600160a01b031633141580610497575033155b156104a85761032560016000610571565b60008054600180546001600160a01b038082166001600160a01b031980861682179687905590921690925560408051938316808552949092166020840152815190927ff9ffabca9c8276e99321725bcb43fb076a6c66a54b7f21c4e8146d8519b417dc92908290030190a1600154604080516001600160a01b038085168252909216602083015280517fca4f2f25d0898edd99413412fb94012f9e54ec8142f9b093e7720646a95b16a99281900390910190a160006103e2565b6000546001600160a01b031681565b60007f45b96fe442630264581b197e84bbada861235052c5a1aadfff9ea4e40a969aa08360118111156105a057fe5b8360138111156105ac57fe5b604080519283526020830191909152600082820152519081900360600190a18260118111156105d757fe5b939250505056fea265627a7a72315820cf4e39441061eeb722c3d151fcd2843c770a354943d894a034481513e56bb1dc64736f6c63430005110032
Deployed Bytecode
0x6080604052600436106100865760003560e01c8063c1e8033411610059578063c1e80334146101a9578063dcfbc0c7146101be578063e992a041146101d3578063e9c714f214610206578063f851a4401461021b57610086565b806326782247146101095780635c60da1b1461013a578063b71d1a0c1461014f578063bb82aa5e14610194575b6002546040516000916001600160a01b031690829036908083838082843760405192019450600093509091505080830381855af49150503d80600081146100e9576040519150601f19603f3d011682016040523d82523d6000602084013e6100ee565b606091505b505090506040513d6000823e818015610105573d82f35b3d82fd5b34801561011557600080fd5b5061011e610230565b604080516001600160a01b039092168252519081900360200190f35b34801561014657600080fd5b5061011e61023f565b34801561015b57600080fd5b506101826004803603602081101561017257600080fd5b50356001600160a01b031661024f565b60408051918252519081900360200190f35b3480156101a057600080fd5b5061011e6102e0565b3480156101b557600080fd5b506101826102ef565b3480156101ca57600080fd5b5061011e6103e9565b3480156101df57600080fd5b50610182600480360360208110156101f657600080fd5b50356001600160a01b03166103f8565b34801561021257600080fd5b5061018261047c565b34801561022757600080fd5b5061011e610562565b6001546001600160a01b031681565b6002546001600160a01b03165b90565b600080546001600160a01b031633146102755761026e6001600e610571565b90506102db565b600180546001600160a01b038481166001600160a01b0319831681179093556040805191909216808252602082019390935281517fca4f2f25d0898edd99413412fb94012f9e54ec8142f9b093e7720646a95b16a9929181900390910190a160005b9150505b919050565b6002546001600160a01b031681565b6003546000906001600160a01b03163314158061031557506003546001600160a01b0316155b1561032c57610325600180610571565b905061024c565b60028054600380546001600160a01b038082166001600160a01b031980861682179687905590921690925560408051938316808552949092166020840152815190927fd604de94d45953f9138079ec1b82d533cb2160c906d1076d1f7ed54befbca97a92908290030190a1600354604080516001600160a01b038085168252909216602083015280517fe945ccee5d701fc83f9b8aa8ca94ea4219ec1fcbd4f4cab4f0ea57c5c3e1d8159281900390910190a160005b9250505090565b6003546001600160a01b031681565b600080546001600160a01b031633146104175761026e6001600f610571565b600380546001600160a01b038481166001600160a01b0319831617928390556040805192821680845293909116602083015280517fe945ccee5d701fc83f9b8aa8ca94ea4219ec1fcbd4f4cab4f0ea57c5c3e1d8159281900390910190a160006102d7565b6001546000906001600160a01b031633141580610497575033155b156104a85761032560016000610571565b60008054600180546001600160a01b038082166001600160a01b031980861682179687905590921690925560408051938316808552949092166020840152815190927ff9ffabca9c8276e99321725bcb43fb076a6c66a54b7f21c4e8146d8519b417dc92908290030190a1600154604080516001600160a01b038085168252909216602083015280517fca4f2f25d0898edd99413412fb94012f9e54ec8142f9b093e7720646a95b16a99281900390910190a160006103e2565b6000546001600160a01b031681565b60007f45b96fe442630264581b197e84bbada861235052c5a1aadfff9ea4e40a969aa08360118111156105a057fe5b8360138111156105ac57fe5b604080519283526020830191909152600082820152519081900360600190a18260118111156105d757fe5b939250505056fea265627a7a72315820cf4e39441061eeb722c3d151fcd2843c770a354943d894a034481513e56bb1dc64736f6c63430005110032
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.