Overview
APE Balance
0 APE
APE Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
2587059 | 81 days ago | Contract Creation | 0 APE |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
EOARegistry
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 777 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../interfaces/IEOARegistry.sol"; import "@openzeppelin/contracts/utils/introspection/ERC165.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; /** * @title EOARegistry * @author Limit Break, Inc. * @notice A registry that may be used globally by any smart contract that limits contract interactions to verified EOA addresses only. * @dev Take care and carefully consider whether or not to use this. Restricting operations to EOA only accounts can break Defi composability, * so if Defi composability is an objective, this is not a good option. Be advised that in the future, EOA accounts might not be a thing * but this is yet to be determined. See https://eips.ethereum.org/EIPS/eip-4337 for more information. */ contract EOARegistry is ERC165, IEOARegistry { /// @dev A pre-cached signed message hash used for gas-efficient signature recovery bytes32 immutable private signedMessageHash; /// @dev The plain text message to sign for signature verification string constant public MESSAGE_TO_SIGN = "EOA"; /// @dev Mapping of accounts that to signature verification status mapping (address => bool) private eoaSignatureVerified; /// @dev Emitted whenever a user verifies that they are an EOA by submitting their signature. event VerifiedEOASignature(address indexed account); constructor() { signedMessageHash = ECDSA.toEthSignedMessageHash(bytes(MESSAGE_TO_SIGN)); } /// @notice Allows a user to verify an ECDSA signature to definitively prove they are an EOA account. // Any user can submit a signature for any other user. /// /// Postconditions: /// --------------- /// The verified signature mapping has been updated to `true` for the caller. /// /// @param signature The signature supplied as a bytes array by an EOA to verify their address is an EOA. function verifySignature(bytes calldata signature) external { address signer = ECDSA.recover(signedMessageHash, signature); eoaSignatureVerified[signer] = true; emit VerifiedEOASignature(signer); } /// @notice Allows a user to verify an ECDSA signature to definitively prove they are an EOA account. /// This version is passed the v, r, s components of the signature, and is slightly more gas efficient than /// calculating the v, r, s components on-chain. Any user can submit a signature for any other user. /// /// Postconditions: /// --------------- /// The verified signature mapping has been updated to `true` for the caller. /// /// @param v The signature v component supplied by an EOA to verify their address is an EOA. /// @param r The signature r component supplied by an EOA to verify their address is an EOA. /// @param s The signature s component supplied by an EOA to verify their address is an EOA. function verifySignatureVRS(uint8 v, bytes32 r, bytes32 s) external { address signer = ECDSA.recover(signedMessageHash, v, r, s); eoaSignatureVerified[signer] = true; emit VerifiedEOASignature(signer); } /// @notice Returns true if the specified account has verified a signature on this registry, false otherwise. /// /// @param account The address to check to see if it has verified as an EOA. function isVerifiedEOA(address account) public view override returns (bool) { return eoaSignatureVerified[account]; } /// @dev ERC-165 interface support /// /// @param interfaceId The identifier of the interface to check if this contract supports it. function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IEOARegistry).interfaceId || super.supportsInterface(interfaceId); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@openzeppelin/contracts/utils/introspection/IERC165.sol"; interface IEOARegistry is IERC165 { function isVerifiedEOA(address account) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
{ "remappings": [ "@openzeppelin/=lib/openzeppelin-contracts/", "ds-test/=lib/forge-std/lib/ds-test/src/", "forge-std/=lib/forge-std/src/", "murky/=lib/murky/src/", "erc721a/=lib/ERC721A/", "@limitbreak/permit-c/=lib/PermitC/src/", "@opensea/tstorish/=lib/tstorish/src/", "@rari-capital/solmate/=lib/PermitC/lib/solmate/", "ERC721A/=lib/ERC721A/contracts/", "PermitC/=lib/PermitC/", "erc4626-tests/=lib/PermitC/lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-gas-metering/=lib/PermitC/lib/forge-gas-metering/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin/=lib/PermitC/lib/openzeppelin-contracts/contracts/", "solady/=lib/PermitC/lib/forge-gas-metering/lib/solady/", "solmate/=lib/PermitC/lib/solmate/src/", "tstorish/=lib/tstorish/src/" ], "optimizer": { "enabled": true, "runs": 777 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"VerifiedEOASignature","type":"event"},{"inputs":[],"name":"MESSAGE_TO_SIGN","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isVerifiedEOA","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"verifySignature","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"verifySignatureVRS","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60a060405234801561000f575f80fd5b50604080518082019091526003815262454f4160e81b60208201526100339061003b565b60805261027c565b5f61004c825161007b60201b60201c565b8260405160200161005e92919061020e565b604051602081830303815290604052805190602001209050919050565b60605f6100878361010a565b60010190505f816001600160401b038111156100a5576100a5610268565b6040519080825280601f01601f1916602001820160405280156100cf576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846100d957509392505050565b5f807a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310610152577a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000830492506040015b6d04ee2d6d415b85acef8100000000831061017e576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061019c57662386f26fc10000830492506010015b6305f5e10083106101b4576305f5e100830492506008015b61271083106101c857612710830492506004015b606483106101da576064830492506002015b600a83106101e6576001015b92915050565b5f5b838110156102065781810151838201526020016101ee565b50505f910152565b7f19457468657265756d205369676e6564204d6573736167653a0a00000000000081525f835161024581601a8501602088016101ec565b83519083019061025c81601a8401602088016101ec565b01601a01949350505050565b634e487b7160e01b5f52604160045260245ffd5b60805161069f61029b5f395f818161014e01526101ce015261069f5ff3fe608060405234801561000f575f80fd5b5060043610610064575f3560e01c806389a9c8551161004d57806389a9c855146100bf57806399f9a678146100ea578063f80af984146100ff575f80fd5b806301ffc9a71461006857806333f0901b14610090575b5f80fd5b61007b610076366004610512565b610112565b60405190151581526020015b60405180910390f35b6100b260405180604001604052806003815260200162454f4160e81b81525081565b6040516100879190610540565b61007b6100cd36600461058c565b6001600160a01b03165f9081526020819052604090205460ff1690565b6100fd6100f83660046105b2565b610148565b005b6100fd61010d3660046105e9565b6101c8565b5f6001600160e01b031982166389a9c85560e01b148061014257506301ffc9a760e01b6001600160e01b03198316145b92915050565b5f6101757f000000000000000000000000000000000000000000000000000000000000000085858561027a565b6001600160a01b0381165f81815260208190526040808220805460ff191660011790555192935090917fe7f8d62df5af850daa5d677e9e5c8065b7b549ec99ae61ba0ffaa9f5bf3e2d039190a250505050565b5f6102287f000000000000000000000000000000000000000000000000000000000000000084848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152506102a092505050565b6001600160a01b0381165f81815260208190526040808220805460ff191660011790555192935090917fe7f8d62df5af850daa5d677e9e5c8065b7b549ec99ae61ba0ffaa9f5bf3e2d039190a2505050565b5f805f610289878787876102c2565b915091506102968161037f565b5095945050505050565b5f805f6102ad85856104d0565b915091506102ba8161037f565b509392505050565b5f807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156102f757505f90506003610376565b604080515f8082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610348573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610370575f60019250925050610376565b91505f90505b94509492505050565b5f81600481111561039257610392610655565b0361039a5750565b60018160048111156103ae576103ae610655565b036104005760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064015b60405180910390fd5b600281600481111561041457610414610655565b036104615760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e6774680060448201526064016103f7565b600381600481111561047557610475610655565b036104cd5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b60648201526084016103f7565b50565b5f808251604103610504576020830151604084015160608501515f1a6104f8878285856102c2565b9450945050505061050b565b505f905060025b9250929050565b5f60208284031215610522575f80fd5b81356001600160e01b031981168114610539575f80fd5b9392505050565b5f602080835283518060208501525f5b8181101561056c57858101830151858201604001528201610550565b505f604082860101526040601f19601f8301168501019250505092915050565b5f6020828403121561059c575f80fd5b81356001600160a01b0381168114610539575f80fd5b5f805f606084860312156105c4575f80fd5b833560ff811681146105d4575f80fd5b95602085013595506040909401359392505050565b5f80602083850312156105fa575f80fd5b823567ffffffffffffffff80821115610611575f80fd5b818501915085601f830112610624575f80fd5b813581811115610632575f80fd5b866020828501011115610643575f80fd5b60209290920196919550909350505050565b634e487b7160e01b5f52602160045260245ffdfea26469706673582212203fe3f1874a6271291ae2c1c190f744833273d78bbcbf4179e75c3c1ca169405964736f6c63430008180033
Deployed Bytecode
0x608060405234801561000f575f80fd5b5060043610610064575f3560e01c806389a9c8551161004d57806389a9c855146100bf57806399f9a678146100ea578063f80af984146100ff575f80fd5b806301ffc9a71461006857806333f0901b14610090575b5f80fd5b61007b610076366004610512565b610112565b60405190151581526020015b60405180910390f35b6100b260405180604001604052806003815260200162454f4160e81b81525081565b6040516100879190610540565b61007b6100cd36600461058c565b6001600160a01b03165f9081526020819052604090205460ff1690565b6100fd6100f83660046105b2565b610148565b005b6100fd61010d3660046105e9565b6101c8565b5f6001600160e01b031982166389a9c85560e01b148061014257506301ffc9a760e01b6001600160e01b03198316145b92915050565b5f6101757fd3f5cd7a1487f8f0a2a12cf6e95545173640e44a3a845c5f2c9d00175aab429485858561027a565b6001600160a01b0381165f81815260208190526040808220805460ff191660011790555192935090917fe7f8d62df5af850daa5d677e9e5c8065b7b549ec99ae61ba0ffaa9f5bf3e2d039190a250505050565b5f6102287fd3f5cd7a1487f8f0a2a12cf6e95545173640e44a3a845c5f2c9d00175aab429484848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152506102a092505050565b6001600160a01b0381165f81815260208190526040808220805460ff191660011790555192935090917fe7f8d62df5af850daa5d677e9e5c8065b7b549ec99ae61ba0ffaa9f5bf3e2d039190a2505050565b5f805f610289878787876102c2565b915091506102968161037f565b5095945050505050565b5f805f6102ad85856104d0565b915091506102ba8161037f565b509392505050565b5f807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156102f757505f90506003610376565b604080515f8082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610348573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610370575f60019250925050610376565b91505f90505b94509492505050565b5f81600481111561039257610392610655565b0361039a5750565b60018160048111156103ae576103ae610655565b036104005760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064015b60405180910390fd5b600281600481111561041457610414610655565b036104615760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e6774680060448201526064016103f7565b600381600481111561047557610475610655565b036104cd5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b60648201526084016103f7565b50565b5f808251604103610504576020830151604084015160608501515f1a6104f8878285856102c2565b9450945050505061050b565b505f905060025b9250929050565b5f60208284031215610522575f80fd5b81356001600160e01b031981168114610539575f80fd5b9392505050565b5f602080835283518060208501525f5b8181101561056c57858101830151858201604001528201610550565b505f604082860101526040601f19601f8301168501019250505092915050565b5f6020828403121561059c575f80fd5b81356001600160a01b0381168114610539575f80fd5b5f805f606084860312156105c4575f80fd5b833560ff811681146105d4575f80fd5b95602085013595506040909401359392505050565b5f80602083850312156105fa575f80fd5b823567ffffffffffffffff80821115610611575f80fd5b818501915085601f830112610624575f80fd5b813581811115610632575f80fd5b866020828501011115610643575f80fd5b60209290920196919550909350505050565b634e487b7160e01b5f52602160045260245ffdfea26469706673582212203fe3f1874a6271291ae2c1c190f744833273d78bbcbf4179e75c3c1ca169405964736f6c63430008180033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.