APE Price: $1.10 (-5.18%)

Contract

0xE0A0004CB92d89CD9b056927DF0FE008c16CF86F

Overview

APE Balance

Apechain LogoApechain LogoApechain Logo0 APE

APE Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

1 Internal Transaction found.

Latest 1 internal transaction

Parent Transaction Hash Block From To
25870592024-10-29 0:34:4381 days ago1730162083  Contract Creation0 APE

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
EOARegistry

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 777 runs

Other Settings:
cancun EvmVersion
File 1 of 7 : EOARegistry.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.4;

import "../interfaces/IEOARegistry.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

/**
 * @title EOARegistry
 * @author Limit Break, Inc.
 * @notice A registry that may be used globally by any smart contract that limits contract interactions to verified EOA addresses only.
 * @dev Take care and carefully consider whether or not to use this. Restricting operations to EOA only accounts can break Defi composability, 
 * so if Defi composability is an objective, this is not a good option.  Be advised that in the future, EOA accounts might not be a thing
 * but this is yet to be determined.  See https://eips.ethereum.org/EIPS/eip-4337 for more information.
 */
contract EOARegistry is ERC165, IEOARegistry {

    /// @dev A pre-cached signed message hash used for gas-efficient signature recovery
    bytes32 immutable private signedMessageHash;

    /// @dev The plain text message to sign for signature verification
    string constant public MESSAGE_TO_SIGN = "EOA";

    /// @dev Mapping of accounts that to signature verification status
    mapping (address => bool) private eoaSignatureVerified;

    /// @dev Emitted whenever a user verifies that they are an EOA by submitting their signature.
    event VerifiedEOASignature(address indexed account);

    constructor() {
        signedMessageHash = ECDSA.toEthSignedMessageHash(bytes(MESSAGE_TO_SIGN));
    }

    /// @notice Allows a user to verify an ECDSA signature to definitively prove they are an EOA account.
    //          Any user can submit a signature for any other user.
    ///
    /// Postconditions:
    /// ---------------
    /// The verified signature mapping has been updated to `true` for the caller.
    /// 
    /// @param signature  The signature supplied as a bytes array by an EOA to verify their address is an EOA.
    function verifySignature(bytes calldata signature) external {
        address signer = ECDSA.recover(signedMessageHash, signature);
        eoaSignatureVerified[signer] = true;
        emit VerifiedEOASignature(signer);
    }

    /// @notice Allows a user to verify an ECDSA signature to definitively prove they are an EOA account.
    /// This version is passed the v, r, s components of the signature, and is slightly more gas efficient than
    /// calculating the v, r, s components on-chain.  Any user can submit a signature for any other user.
    ///
    /// Postconditions:
    /// ---------------
    /// The verified signature mapping has been updated to `true` for the caller.
    /// 
    /// @param v  The signature v component supplied by an EOA to verify their address is an EOA.
    /// @param r  The signature r component supplied by an EOA to verify their address is an EOA.
    /// @param s  The signature s component supplied by an EOA to verify their address is an EOA.
    function verifySignatureVRS(uint8 v, bytes32 r, bytes32 s) external {
        address signer = ECDSA.recover(signedMessageHash, v, r, s);
        eoaSignatureVerified[signer] = true;
        emit VerifiedEOASignature(signer);
    }

    /// @notice Returns true if the specified account has verified a signature on this registry, false otherwise.
    /// 
    /// @param account  The address to check to see if it has verified as an EOA.
    function isVerifiedEOA(address account) public view override returns (bool) {
        return eoaSignatureVerified[account];
    }

    /// @dev ERC-165 interface support
    /// 
    /// @param interfaceId  The identifier of the interface to check if this contract supports it.
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IEOARegistry).interfaceId ||
            super.supportsInterface(interfaceId);
    }
}

File 2 of 7 : IEOARegistry.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import "@openzeppelin/contracts/utils/introspection/IERC165.sol";

interface IEOARegistry is IERC165 {
    function isVerifiedEOA(address account) external view returns (bool);
}

File 3 of 7 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 4 of 7 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

File 5 of 7 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 6 of 7 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

File 7 of 7 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "murky/=lib/murky/src/",
    "erc721a/=lib/ERC721A/",
    "@limitbreak/permit-c/=lib/PermitC/src/",
    "@opensea/tstorish/=lib/tstorish/src/",
    "@rari-capital/solmate/=lib/PermitC/lib/solmate/",
    "ERC721A/=lib/ERC721A/contracts/",
    "PermitC/=lib/PermitC/",
    "erc4626-tests/=lib/PermitC/lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-gas-metering/=lib/PermitC/lib/forge-gas-metering/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin/=lib/PermitC/lib/openzeppelin-contracts/contracts/",
    "solady/=lib/PermitC/lib/forge-gas-metering/lib/solady/",
    "solmate/=lib/PermitC/lib/solmate/src/",
    "tstorish/=lib/tstorish/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 777
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"VerifiedEOASignature","type":"event"},{"inputs":[],"name":"MESSAGE_TO_SIGN","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isVerifiedEOA","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"verifySignature","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"verifySignatureVRS","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60a060405234801561000f575f80fd5b50604080518082019091526003815262454f4160e81b60208201526100339061003b565b60805261027c565b5f61004c825161007b60201b60201c565b8260405160200161005e92919061020e565b604051602081830303815290604052805190602001209050919050565b60605f6100878361010a565b60010190505f816001600160401b038111156100a5576100a5610268565b6040519080825280601f01601f1916602001820160405280156100cf576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846100d957509392505050565b5f807a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310610152577a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000830492506040015b6d04ee2d6d415b85acef8100000000831061017e576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061019c57662386f26fc10000830492506010015b6305f5e10083106101b4576305f5e100830492506008015b61271083106101c857612710830492506004015b606483106101da576064830492506002015b600a83106101e6576001015b92915050565b5f5b838110156102065781810151838201526020016101ee565b50505f910152565b7f19457468657265756d205369676e6564204d6573736167653a0a00000000000081525f835161024581601a8501602088016101ec565b83519083019061025c81601a8401602088016101ec565b01601a01949350505050565b634e487b7160e01b5f52604160045260245ffd5b60805161069f61029b5f395f818161014e01526101ce015261069f5ff3fe608060405234801561000f575f80fd5b5060043610610064575f3560e01c806389a9c8551161004d57806389a9c855146100bf57806399f9a678146100ea578063f80af984146100ff575f80fd5b806301ffc9a71461006857806333f0901b14610090575b5f80fd5b61007b610076366004610512565b610112565b60405190151581526020015b60405180910390f35b6100b260405180604001604052806003815260200162454f4160e81b81525081565b6040516100879190610540565b61007b6100cd36600461058c565b6001600160a01b03165f9081526020819052604090205460ff1690565b6100fd6100f83660046105b2565b610148565b005b6100fd61010d3660046105e9565b6101c8565b5f6001600160e01b031982166389a9c85560e01b148061014257506301ffc9a760e01b6001600160e01b03198316145b92915050565b5f6101757f000000000000000000000000000000000000000000000000000000000000000085858561027a565b6001600160a01b0381165f81815260208190526040808220805460ff191660011790555192935090917fe7f8d62df5af850daa5d677e9e5c8065b7b549ec99ae61ba0ffaa9f5bf3e2d039190a250505050565b5f6102287f000000000000000000000000000000000000000000000000000000000000000084848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152506102a092505050565b6001600160a01b0381165f81815260208190526040808220805460ff191660011790555192935090917fe7f8d62df5af850daa5d677e9e5c8065b7b549ec99ae61ba0ffaa9f5bf3e2d039190a2505050565b5f805f610289878787876102c2565b915091506102968161037f565b5095945050505050565b5f805f6102ad85856104d0565b915091506102ba8161037f565b509392505050565b5f807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156102f757505f90506003610376565b604080515f8082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610348573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610370575f60019250925050610376565b91505f90505b94509492505050565b5f81600481111561039257610392610655565b0361039a5750565b60018160048111156103ae576103ae610655565b036104005760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064015b60405180910390fd5b600281600481111561041457610414610655565b036104615760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e6774680060448201526064016103f7565b600381600481111561047557610475610655565b036104cd5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b60648201526084016103f7565b50565b5f808251604103610504576020830151604084015160608501515f1a6104f8878285856102c2565b9450945050505061050b565b505f905060025b9250929050565b5f60208284031215610522575f80fd5b81356001600160e01b031981168114610539575f80fd5b9392505050565b5f602080835283518060208501525f5b8181101561056c57858101830151858201604001528201610550565b505f604082860101526040601f19601f8301168501019250505092915050565b5f6020828403121561059c575f80fd5b81356001600160a01b0381168114610539575f80fd5b5f805f606084860312156105c4575f80fd5b833560ff811681146105d4575f80fd5b95602085013595506040909401359392505050565b5f80602083850312156105fa575f80fd5b823567ffffffffffffffff80821115610611575f80fd5b818501915085601f830112610624575f80fd5b813581811115610632575f80fd5b866020828501011115610643575f80fd5b60209290920196919550909350505050565b634e487b7160e01b5f52602160045260245ffdfea26469706673582212203fe3f1874a6271291ae2c1c190f744833273d78bbcbf4179e75c3c1ca169405964736f6c63430008180033

Deployed Bytecode

0x608060405234801561000f575f80fd5b5060043610610064575f3560e01c806389a9c8551161004d57806389a9c855146100bf57806399f9a678146100ea578063f80af984146100ff575f80fd5b806301ffc9a71461006857806333f0901b14610090575b5f80fd5b61007b610076366004610512565b610112565b60405190151581526020015b60405180910390f35b6100b260405180604001604052806003815260200162454f4160e81b81525081565b6040516100879190610540565b61007b6100cd36600461058c565b6001600160a01b03165f9081526020819052604090205460ff1690565b6100fd6100f83660046105b2565b610148565b005b6100fd61010d3660046105e9565b6101c8565b5f6001600160e01b031982166389a9c85560e01b148061014257506301ffc9a760e01b6001600160e01b03198316145b92915050565b5f6101757fd3f5cd7a1487f8f0a2a12cf6e95545173640e44a3a845c5f2c9d00175aab429485858561027a565b6001600160a01b0381165f81815260208190526040808220805460ff191660011790555192935090917fe7f8d62df5af850daa5d677e9e5c8065b7b549ec99ae61ba0ffaa9f5bf3e2d039190a250505050565b5f6102287fd3f5cd7a1487f8f0a2a12cf6e95545173640e44a3a845c5f2c9d00175aab429484848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152506102a092505050565b6001600160a01b0381165f81815260208190526040808220805460ff191660011790555192935090917fe7f8d62df5af850daa5d677e9e5c8065b7b549ec99ae61ba0ffaa9f5bf3e2d039190a2505050565b5f805f610289878787876102c2565b915091506102968161037f565b5095945050505050565b5f805f6102ad85856104d0565b915091506102ba8161037f565b509392505050565b5f807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156102f757505f90506003610376565b604080515f8082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610348573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610370575f60019250925050610376565b91505f90505b94509492505050565b5f81600481111561039257610392610655565b0361039a5750565b60018160048111156103ae576103ae610655565b036104005760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064015b60405180910390fd5b600281600481111561041457610414610655565b036104615760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e6774680060448201526064016103f7565b600381600481111561047557610475610655565b036104cd5760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b60648201526084016103f7565b50565b5f808251604103610504576020830151604084015160608501515f1a6104f8878285856102c2565b9450945050505061050b565b505f905060025b9250929050565b5f60208284031215610522575f80fd5b81356001600160e01b031981168114610539575f80fd5b9392505050565b5f602080835283518060208501525f5b8181101561056c57858101830151858201604001528201610550565b505f604082860101526040601f19601f8301168501019250505092915050565b5f6020828403121561059c575f80fd5b81356001600160a01b0381168114610539575f80fd5b5f805f606084860312156105c4575f80fd5b833560ff811681146105d4575f80fd5b95602085013595506040909401359392505050565b5f80602083850312156105fa575f80fd5b823567ffffffffffffffff80821115610611575f80fd5b818501915085601f830112610624575f80fd5b813581811115610632575f80fd5b866020828501011115610643575f80fd5b60209290920196919550909350505050565b634e487b7160e01b5f52602160045260245ffdfea26469706673582212203fe3f1874a6271291ae2c1c190f744833273d78bbcbf4179e75c3c1ca169405964736f6c63430008180033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.