Overview
APE Balance
APE Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
RoyaltyReleaser
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
No with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./DotsNft.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@limitbreak/creator-token-standards/src/programmable-royalties/MinterCreatorSharedRoyalties.sol"; contract RoyaltyReleaser { function releaseAllRoyalties(address nftContract) external { DotsNft nft = DotsNft(nftContract); uint256 totalSupply = nft.totalSupply(); // Loop through all tokens and release their native (ETH) royalties for(uint256 tokenId = 1; tokenId <= totalSupply; tokenId++) { try nft.releaseNativeFunds(tokenId, MinterCreatorSharedRoyaltiesBase.ReleaseTo.Creator) {} catch {} try nft.releaseNativeFunds(tokenId, MinterCreatorSharedRoyaltiesBase.ReleaseTo.Minter) {} catch {} } } function releaseAllTokenRoyalties(address nftContract, address tokenAddress) external { DotsNft nft = DotsNft(nftContract); uint256 totalSupply = nft.totalSupply(); // Loop through all tokens and release their ERC20 token royalties for(uint256 tokenId = 1; tokenId <= totalSupply; tokenId++) { try nft.releaseERC20Funds(tokenId, tokenAddress, MinterCreatorSharedRoyaltiesBase.ReleaseTo.Creator) {} catch {} try nft.releaseERC20Funds(tokenId, tokenAddress, MinterCreatorSharedRoyaltiesBase.ReleaseTo.Minter) {} catch {} } } // View function to check releasable amounts function getReleasableAmounts(address nftContract) external view returns (uint256 totalETH) { DotsNft nft = DotsNft(nftContract); uint256 totalSupply = nft.totalSupply(); for(uint256 tokenId = 1; tokenId <= totalSupply; tokenId++) { try nft.releasableNativeFunds(tokenId, MinterCreatorSharedRoyaltiesBase.ReleaseTo.Creator) returns (uint256 amount) { totalETH += amount; } catch {} try nft.releasableNativeFunds(tokenId, MinterCreatorSharedRoyaltiesBase.ReleaseTo.Minter) returns (uint256 amount) { totalETH += amount; } catch {} } } function getReleasableTokenAmounts( address nftContract, address tokenAddress ) external view returns (uint256 totalTokens) { DotsNft nft = DotsNft(nftContract); uint256 totalSupply = nft.totalSupply(); for(uint256 tokenId = 1; tokenId <= totalSupply; tokenId++) { try nft.releasableERC20Funds(tokenId, tokenAddress, MinterCreatorSharedRoyaltiesBase.ReleaseTo.Creator) returns (uint256 amount) { totalTokens += amount; } catch {} try nft.releasableERC20Funds(tokenId, tokenAddress, MinterCreatorSharedRoyaltiesBase.ReleaseTo.Minter) returns (uint256 amount) { totalTokens += amount; } catch {} } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./OwnablePermissions.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; abstract contract OwnableBasic is OwnablePermissions, Ownable { function _requireCallerIsContractOwner() internal view virtual override { _checkOwner(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@openzeppelin/contracts/utils/Context.sol"; abstract contract OwnablePermissions is Context { function _requireCallerIsContractOwner() internal view virtual; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../utils/AutomaticValidatorTransferApproval.sol"; import "../utils/CreatorTokenBase.sol"; import "erc721a/contracts/ERC721A.sol"; import {TOKEN_TYPE_ERC721} from "@limitbreak/permit-c/src/Constants.sol"; /** * @title ERC721AC * @author Limit Break, Inc. * @notice Extends Azuki's ERC721-A implementation with Creator Token functionality, which * allows the contract owner to update the transfer validation logic by managing a security policy in * an external transfer validation security policy registry. See {CreatorTokenTransferValidator}. */ abstract contract ERC721AC is ERC721A, CreatorTokenBase, AutomaticValidatorTransferApproval { constructor(string memory name_, string memory symbol_) CreatorTokenBase() ERC721A(name_, symbol_) {} /** * @notice Overrides behavior of isApprovedFor all such that if an operator is not explicitly approved * for all, the contract owner can optionally auto-approve the 721-C transfer validator for transfers. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool isApproved) { isApproved = super.isApprovedForAll(owner, operator); if (!isApproved) { if (autoApproveTransfersFromValidator) { isApproved = operator == address(getTransferValidator()); } } } /** * @notice Indicates whether the contract implements the specified interface. * @dev Overrides supportsInterface in ERC165. * @param interfaceId The interface id * @return true if the contract implements the specified interface, false otherwise */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(ICreatorToken).interfaceId || interfaceId == type(ICreatorTokenLegacy).interfaceId || super.supportsInterface(interfaceId); } /** * @notice Returns the function selector for the transfer validator's validation function to be called * @notice for transaction simulation. */ function getTransferValidationFunction() external pure returns (bytes4 functionSignature, bool isViewFunction) { functionSignature = bytes4(keccak256("validateTransfer(address,address,address,uint256)")); isViewFunction = true; } /// @dev Ties the erc721a _beforeTokenTransfers hook to more granular transfer validation logic function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual override { for (uint256 i = 0; i < quantity;) { _validateBeforeTransfer(from, to, startTokenId + i); unchecked { ++i; } } } /// @dev Ties the erc721a _afterTokenTransfer hook to more granular transfer validation logic function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual override { for (uint256 i = 0; i < quantity;) { _validateAfterTransfer(from, to, startTokenId + i); unchecked { ++i; } } } function _msgSenderERC721A() internal view virtual override returns (address) { return _msgSender(); } function _tokenType() internal pure override returns(uint16) { return uint16(TOKEN_TYPE_ERC721); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; interface ICreatorToken { event TransferValidatorUpdated(address oldValidator, address newValidator); function getTransferValidator() external view returns (address validator); function setTransferValidator(address validator) external; function getTransferValidationFunction() external view returns (bytes4 functionSignature, bool isViewFunction); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; interface ICreatorTokenLegacy { event TransferValidatorUpdated(address oldValidator, address newValidator); function getTransferValidator() external view returns (address validator); function setTransferValidator(address validator) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; interface ITransferValidator { function applyCollectionTransferPolicy(address caller, address from, address to) external view; function validateTransfer(address caller, address from, address to) external view; function validateTransfer(address caller, address from, address to, uint256 tokenId) external view; function validateTransfer(address caller, address from, address to, uint256 tokenId, uint256 amount) external; function beforeAuthorizedTransfer(address operator, address token, uint256 tokenId) external; function afterAuthorizedTransfer(address token, uint256 tokenId) external; function beforeAuthorizedTransfer(address operator, address token) external; function afterAuthorizedTransfer(address token) external; function beforeAuthorizedTransfer(address token, uint256 tokenId) external; function beforeAuthorizedTransferWithAmount(address token, uint256 tokenId, uint256 amount) external; function afterAuthorizedTransferWithAmount(address token, uint256 tokenId) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; interface ITransferValidatorSetTokenType { function setTokenTypeOfCollection(address collection, uint16 tokenType) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IPaymentSplitterInitializable { function totalShares() external view returns (uint256); function totalReleased() external view returns (uint256); function totalReleased(IERC20 token) external view returns (uint256); function shares(address account) external view returns (uint256); function released(address account) external view returns (uint256); function released(IERC20 token, address account) external view returns (uint256); function payee(uint256 index) external view returns (address); function releasable(address account) external view returns (uint256); function releasable(IERC20 token, address account) external view returns (uint256); function initializePaymentSplitter(address[] calldata payees, uint256[] calldata shares_) external; function release(address payable account) external; function release(IERC20 token, address account) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./helpers/IPaymentSplitterInitializable.sol"; import "../access/OwnablePermissions.sol"; import "@openzeppelin/contracts/interfaces/IERC2981.sol"; import "@openzeppelin/contracts/proxy/Clones.sol"; import "@openzeppelin/contracts/utils/introspection/ERC165.sol"; /** * @title MinterCreatorSharedRoyaltiesBase * @author Limit Break, Inc. * @dev Base functionality of an NFT mix-in contract implementing programmable royalties. Royalties are shared between creators and minters. */ abstract contract MinterCreatorSharedRoyaltiesBase is IERC2981, ERC165 { error MinterCreatorSharedRoyalties__CreatorCannotBeZeroAddress(); error MinterCreatorSharedRoyalties__CreatorSharesCannotBeZero(); error MinterCreatorSharedRoyalties__MinterCannotBeZeroAddress(); error MinterCreatorSharedRoyalties__MinterHasAlreadyBeenAssignedToTokenId(); error MinterCreatorSharedRoyalties__MinterSharesCannotBeZero(); error MinterCreatorSharedRoyalties__PaymentSplitterDoesNotExistForSpecifiedTokenId(); error MinterCreatorSharedRoyalties__PaymentSplitterReferenceCannotBeZeroAddress(); error MinterCreatorSharedRoyalties__RoyaltyFeeWillExceedSalePrice(); enum ReleaseTo { Minter, Creator } uint256 public constant FEE_DENOMINATOR = 10_000; uint256 private _royaltyFeeNumerator; uint256 private _minterShares; uint256 private _creatorShares; address private _creator; address private _paymentSplitterReference; mapping (uint256 => address) private _minters; mapping (uint256 => address) private _paymentSplitters; mapping (address => address[]) private _minterPaymentSplitters; /** * @notice Indicates whether the contract implements the specified interface. * @dev Overrides supportsInterface in ERC165. * @param interfaceId The interface id * @return true if the contract implements the specified interface, false otherwise */ function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) { return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId); } function royaltyFeeNumerator() public virtual view returns (uint256) { return _royaltyFeeNumerator; } function minterShares() public virtual view returns (uint256) { return _minterShares; } function creatorShares() public virtual view returns (uint256) { return _creatorShares; } function creator() public virtual view returns (address) { return _creator; } function paymentSplitterReference() public virtual view returns (address) { return _paymentSplitterReference; } /** * @notice Returns the royalty fee and recipient for a given token. * @param tokenId The id of the token whose royalty info is being queried. * @param salePrice The sale price of the token. * @return The royalty fee and recipient for a given token. */ function royaltyInfo( uint256 tokenId, uint256 salePrice ) external view override returns (address, uint256) { return (_paymentSplitters[tokenId], (salePrice * royaltyFeeNumerator()) / FEE_DENOMINATOR); } /** * @notice Returns the minter of the token with id `tokenId`. * @param tokenId The id of the token whose minter is being queried. * @return The minter of the token with id `tokenId`. */ function minterOf(uint256 tokenId) external view returns (address) { return _minters[tokenId]; } /** * @notice Returns the payment splitter of the token with id `tokenId`. * @param tokenId The id of the token whose payment splitter is being queried. * @return The payment splitter of the token with id `tokenId`. */ function paymentSplitterOf(uint256 tokenId) external view returns (address) { return _paymentSplitters[tokenId]; } /** * @notice Returns the payment splitters of the minter `minter`. * @param minter The minter whose payment splitters are being queried. * @return The payment splitters of the minter `minter`. */ function paymentSplittersOfMinter(address minter) external view returns (address[] memory) { return _minterPaymentSplitters[minter]; } /** * @notice Returns the amount of native funds that can be released to the minter or creator of the token with id `tokenId`. * @param tokenId The id of the token whose releasable funds are being queried. * @param releaseTo Specifies whether the minter or creator should be queried. * @return The amount of native funds that can be released to the minter or creator of the token with id `tokenId`. */ function releasableNativeFunds(uint256 tokenId, ReleaseTo releaseTo) external view returns (uint256) { IPaymentSplitterInitializable paymentSplitter = _getPaymentSplitterForTokenOrRevert(tokenId); if (releaseTo == ReleaseTo.Minter) { return paymentSplitter.releasable(payable(_minters[tokenId])); } else { return paymentSplitter.releasable(payable(creator())); } } /** * @notice Returns the amount of ERC20 funds that can be released to the minter or creator of the token with id `tokenId`. * @param tokenId The id of the token whose releasable funds are being queried. * @param coin The address of the ERC20 token whose releasable funds are being queried. * @param releaseTo Specifies whether the minter or creator should be queried. * @return The amount of ERC20 funds that can be released to the minter or creator of the token with id `tokenId`. */ function releasableERC20Funds(uint256 tokenId, address coin, ReleaseTo releaseTo) external view returns (uint256) { IPaymentSplitterInitializable paymentSplitter = _getPaymentSplitterForTokenOrRevert(tokenId); if (releaseTo == ReleaseTo.Minter) { return paymentSplitter.releasable(IERC20(coin), _minters[tokenId]); } else { return paymentSplitter.releasable(IERC20(coin), creator()); } } /** * @notice Releases all available native funds to the minter or creator of the token with id `tokenId`. * @param tokenId The id of the token whose funds are being released. * @param releaseTo Specifies whether the minter or creator should be released to. */ function releaseNativeFunds(uint256 tokenId, ReleaseTo releaseTo) external { IPaymentSplitterInitializable paymentSplitter = _getPaymentSplitterForTokenOrRevert(tokenId); if (releaseTo == ReleaseTo.Minter) { paymentSplitter.release(payable(_minters[tokenId])); } else { paymentSplitter.release(payable(creator())); } } /** * @notice Releases all available ERC20 funds to the minter or creator of the token with id `tokenId`. * @param tokenId The id of the token whose funds are being released. * @param coin The address of the ERC20 token whose funds are being released. * @param releaseTo Specifies whether the minter or creator should be released to. */ function releaseERC20Funds(uint256 tokenId, address coin, ReleaseTo releaseTo) external { IPaymentSplitterInitializable paymentSplitter = _getPaymentSplitterForTokenOrRevert(tokenId); if(releaseTo == ReleaseTo.Minter) { paymentSplitter.release(IERC20(coin), _minters[tokenId]); } else { paymentSplitter.release(IERC20(coin), creator()); } } /** * @dev Internal function that must be called when a token is minted. * Creates a payment splitter for the minter and creator of the token to share royalties. * @param minter The minter of the token. * @param tokenId The id of the token that was minted. */ function _onMinted(address minter, uint256 tokenId) internal { if (minter == address(0)) { revert MinterCreatorSharedRoyalties__MinterCannotBeZeroAddress(); } if (_minters[tokenId] != address(0)) { revert MinterCreatorSharedRoyalties__MinterHasAlreadyBeenAssignedToTokenId(); } address paymentSplitter = _createPaymentSplitter(minter); _paymentSplitters[tokenId] = paymentSplitter; _minterPaymentSplitters[minter].push(paymentSplitter); _minters[tokenId] = minter; } /** * @dev Internal function that must be called when a token is burned. * Deletes the payment splitter mapping and minter mapping for the token in case it is ever re-minted. * @param tokenId The id of the token that was burned. */ function _onBurned(uint256 tokenId) internal { delete _paymentSplitters[tokenId]; delete _minters[tokenId]; } /** * @dev Internal function that creates a payment splitter for the minter and creator of the token to share royalties. * @param minter The minter of the token. * @return The address of the payment splitter. */ function _createPaymentSplitter(address minter) private returns (address) { address creator_ = creator(); address paymentSplitterReference_ = paymentSplitterReference(); IPaymentSplitterInitializable paymentSplitter = IPaymentSplitterInitializable(Clones.clone(paymentSplitterReference_)); if (minter == creator_) { address[] memory payees = new address[](1); payees[0] = creator_; uint256[] memory shares = new uint256[](1); shares[0] = minterShares() + creatorShares(); paymentSplitter.initializePaymentSplitter(payees, shares); } else { address[] memory payees = new address[](2); payees[0] = minter; payees[1] = creator_; uint256[] memory shares = new uint256[](2); shares[0] = minterShares(); shares[1] = creatorShares(); paymentSplitter.initializePaymentSplitter(payees, shares); } return address(paymentSplitter); } /** * @dev Gets the payment splitter for the specified token id or reverts if it does not exist. */ function _getPaymentSplitterForTokenOrRevert(uint256 tokenId) private view returns (IPaymentSplitterInitializable) { address paymentSplitterForToken = _paymentSplitters[tokenId]; if(paymentSplitterForToken == address(0)) { revert MinterCreatorSharedRoyalties__PaymentSplitterDoesNotExistForSpecifiedTokenId(); } return IPaymentSplitterInitializable(payable(paymentSplitterForToken)); } function _setRoyaltyFeeNumeratorAndShares( uint256 royaltyFeeNumerator_, uint256 minterShares_, uint256 creatorShares_, address creator_, address paymentSplitterReference_) internal { if(royaltyFeeNumerator_ > FEE_DENOMINATOR) { revert MinterCreatorSharedRoyalties__RoyaltyFeeWillExceedSalePrice(); } if (minterShares_ == 0) { revert MinterCreatorSharedRoyalties__MinterSharesCannotBeZero(); } if (creatorShares_ == 0) { revert MinterCreatorSharedRoyalties__CreatorSharesCannotBeZero(); } if (creator_ == address(0)) { revert MinterCreatorSharedRoyalties__CreatorCannotBeZeroAddress(); } if (paymentSplitterReference_ == address(0)) { revert MinterCreatorSharedRoyalties__PaymentSplitterReferenceCannotBeZeroAddress(); } _royaltyFeeNumerator = royaltyFeeNumerator_; _minterShares = minterShares_; _creatorShares = creatorShares_; _creator = creator_; _paymentSplitterReference = paymentSplitterReference_; } } /** * @title MinterCreatorSharedRoyalties * @author Limit Break, Inc. * @notice Constructable MinterCreatorSharedRoyalties Contract implementation. */ abstract contract MinterCreatorSharedRoyalties is MinterCreatorSharedRoyaltiesBase { uint256 private immutable _royaltyFeeNumeratorImmutable; uint256 private immutable _minterSharesImmutable; uint256 private immutable _creatorSharesImmutable; address private immutable _creatorImmutable; address private immutable _paymentSplitterReferenceImmutable; /** * @dev Constructor that sets the royalty fee numerator, creator, and minter/creator shares. * @dev Throws when defaultRoyaltyFeeNumerator_ is greater than FEE_DENOMINATOR * @param royaltyFeeNumerator_ The royalty fee numerator * @param minterShares_ The number of shares minters get allocated in payment processors * @param creatorShares_ The number of shares creators get allocated in payment processors * @param creator_ The NFT creator's royalty wallet */ constructor( uint256 royaltyFeeNumerator_, uint256 minterShares_, uint256 creatorShares_, address creator_, address paymentSplitterReference_) { _setRoyaltyFeeNumeratorAndShares( royaltyFeeNumerator_, minterShares_, creatorShares_, creator_, paymentSplitterReference_); _royaltyFeeNumeratorImmutable = royaltyFeeNumerator_; _minterSharesImmutable = minterShares_; _creatorSharesImmutable = creatorShares_; _creatorImmutable = creator_; _paymentSplitterReferenceImmutable = paymentSplitterReference_; } function royaltyFeeNumerator() public view override returns (uint256) { return _royaltyFeeNumeratorImmutable; } function minterShares() public view override returns (uint256) { return _minterSharesImmutable; } function creatorShares() public view override returns (uint256) { return _creatorSharesImmutable; } function creator() public view override returns (address) { return _creatorImmutable; } function paymentSplitterReference() public view override returns (address) { return _paymentSplitterReferenceImmutable; } } /** * @title MinterCreatorSharedRoyaltiesInitializable * @author Limit Break, Inc. * @notice Initializable MinterCreatorSharedRoyalties Contract implementation to allow for EIP-1167 clones. */ abstract contract MinterCreatorSharedRoyaltiesInitializable is OwnablePermissions, MinterCreatorSharedRoyaltiesBase { error MinterCreatorSharedRoyaltiesInitializable__RoyaltyFeeAndSharesAlreadyInitialized(); bool private _royaltyFeeAndSharesInitialized; function initializeMinterRoyaltyFee( uint256 royaltyFeeNumerator_, uint256 minterShares_, uint256 creatorShares_, address creator_, address paymentSplitterReference_) public { _requireCallerIsContractOwner(); if(_royaltyFeeAndSharesInitialized) { revert MinterCreatorSharedRoyaltiesInitializable__RoyaltyFeeAndSharesAlreadyInitialized(); } _royaltyFeeAndSharesInitialized = true; _setRoyaltyFeeNumeratorAndShares( royaltyFeeNumerator_, minterShares_, creatorShares_, creator_, paymentSplitterReference_); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../access/OwnablePermissions.sol"; /** * @title AutomaticValidatorTransferApproval * @author Limit Break, Inc. * @notice Base contract mix-in that provides boilerplate code giving the contract owner the * option to automatically approve a 721-C transfer validator implementation for transfers. */ abstract contract AutomaticValidatorTransferApproval is OwnablePermissions { /// @dev Emitted when the automatic approval flag is modified by the creator. event AutomaticApprovalOfTransferValidatorSet(bool autoApproved); /// @dev If true, the collection's transfer validator is automatically approved to transfer holder's tokens. bool public autoApproveTransfersFromValidator; /** * @notice Sets if the transfer validator is automatically approved as an operator for all token owners. * * @dev Throws when the caller is not the contract owner. * * @param autoApprove If true, the collection's transfer validator will be automatically approved to * transfer holder's tokens. */ function setAutomaticApprovalOfTransfersFromValidator(bool autoApprove) external { _requireCallerIsContractOwner(); autoApproveTransfersFromValidator = autoApprove; emit AutomaticApprovalOfTransferValidatorSet(autoApprove); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../access/OwnablePermissions.sol"; import "../interfaces/ICreatorToken.sol"; import "../interfaces/ICreatorTokenLegacy.sol"; import "../interfaces/ITransferValidator.sol"; import "./TransferValidation.sol"; import "../interfaces/ITransferValidatorSetTokenType.sol"; /** * @title CreatorTokenBase * @author Limit Break, Inc. * @notice CreatorTokenBaseV3 is an abstract contract that provides basic functionality for managing token * transfer policies through an implementation of ICreatorTokenTransferValidator/ICreatorTokenTransferValidatorV2/ICreatorTokenTransferValidatorV3. * This contract is intended to be used as a base for creator-specific token contracts, enabling customizable transfer * restrictions and security policies. * * <h4>Features:</h4> * <ul>Ownable: This contract can have an owner who can set and update the transfer validator.</ul> * <ul>TransferValidation: Implements the basic token transfer validation interface.</ul> * * <h4>Benefits:</h4> * <ul>Provides a flexible and modular way to implement custom token transfer restrictions and security policies.</ul> * <ul>Allows creators to enforce policies such as account and codehash blacklists, whitelists, and graylists.</ul> * <ul>Can be easily integrated into other token contracts as a base contract.</ul> * * <h4>Intended Usage:</h4> * <ul>Use as a base contract for creator token implementations that require advanced transfer restrictions and * security policies.</ul> * <ul>Set and update the ICreatorTokenTransferValidator implementation contract to enforce desired policies for the * creator token.</ul> * * <h4>Compatibility:</h4> * <ul>Backward and Forward Compatible - V1/V2/V3 Creator Token Base will work with V1/V2/V3 Transfer Validators.</ul> */ abstract contract CreatorTokenBase is OwnablePermissions, TransferValidation, ICreatorToken { /// @dev Thrown when setting a transfer validator address that has no deployed code. error CreatorTokenBase__InvalidTransferValidatorContract(); /// @dev The default transfer validator that will be used if no transfer validator has been set by the creator. address public constant DEFAULT_TRANSFER_VALIDATOR = address(0x721C002B0059009a671D00aD1700c9748146cd1B); /// @dev Used to determine if the default transfer validator is applied. /// @dev Set to true when the creator sets a transfer validator address. bool private isValidatorInitialized; /// @dev Address of the transfer validator to apply to transactions. address private transferValidator; constructor() { _emitDefaultTransferValidator(); _registerTokenType(DEFAULT_TRANSFER_VALIDATOR); } /** * @notice Sets the transfer validator for the token contract. * * @dev Throws when provided validator contract is not the zero address and does not have code. * @dev Throws when the caller is not the contract owner. * * @dev <h4>Postconditions:</h4> * 1. The transferValidator address is updated. * 2. The `TransferValidatorUpdated` event is emitted. * * @param transferValidator_ The address of the transfer validator contract. */ function setTransferValidator(address transferValidator_) public { _requireCallerIsContractOwner(); bool isValidTransferValidator = transferValidator_.code.length > 0; if(transferValidator_ != address(0) && !isValidTransferValidator) { revert CreatorTokenBase__InvalidTransferValidatorContract(); } emit TransferValidatorUpdated(address(getTransferValidator()), transferValidator_); isValidatorInitialized = true; transferValidator = transferValidator_; _registerTokenType(transferValidator_); } /** * @notice Returns the transfer validator contract address for this token contract. */ function getTransferValidator() public view override returns (address validator) { validator = transferValidator; if (validator == address(0)) { if (!isValidatorInitialized) { validator = DEFAULT_TRANSFER_VALIDATOR; } } } /** * @dev Pre-validates a token transfer, reverting if the transfer is not allowed by this token's security policy. * Inheriting contracts are responsible for overriding the _beforeTokenTransfer function, or its equivalent * and calling _validateBeforeTransfer so that checks can be properly applied during token transfers. * * @dev Be aware that if the msg.sender is the transfer validator, the transfer is automatically permitted, as the * transfer validator is expected to pre-validate the transfer. * * @dev Throws when the transfer doesn't comply with the collection's transfer policy, if the transferValidator is * set to a non-zero address. * * @param caller The address of the caller. * @param from The address of the sender. * @param to The address of the receiver. * @param tokenId The token id being transferred. */ function _preValidateTransfer( address caller, address from, address to, uint256 tokenId, uint256 /*value*/) internal virtual override { address validator = getTransferValidator(); if (validator != address(0)) { if (msg.sender == validator) { return; } ITransferValidator(validator).validateTransfer(caller, from, to, tokenId); } } /** * @dev Pre-validates a token transfer, reverting if the transfer is not allowed by this token's security policy. * Inheriting contracts are responsible for overriding the _beforeTokenTransfer function, or its equivalent * and calling _validateBeforeTransfer so that checks can be properly applied during token transfers. * * @dev Be aware that if the msg.sender is the transfer validator, the transfer is automatically permitted, as the * transfer validator is expected to pre-validate the transfer. * * @dev Used for ERC20 and ERC1155 token transfers which have an amount value to validate in the transfer validator. * @dev The `tokenId` for ERC20 tokens should be set to `0`. * * @dev Throws when the transfer doesn't comply with the collection's transfer policy, if the transferValidator is * set to a non-zero address. * * @param caller The address of the caller. * @param from The address of the sender. * @param to The address of the receiver. * @param tokenId The token id being transferred. * @param amount The amount of token being transferred. */ function _preValidateTransfer( address caller, address from, address to, uint256 tokenId, uint256 amount, uint256 /*value*/) internal virtual override { address validator = getTransferValidator(); if (validator != address(0)) { if (msg.sender == validator) { return; } ITransferValidator(validator).validateTransfer(caller, from, to, tokenId, amount); } } function _tokenType() internal virtual pure returns(uint16); function _registerTokenType(address validator) internal { if (validator != address(0)) { uint256 validatorCodeSize; assembly { validatorCodeSize := extcodesize(validator) } if(validatorCodeSize > 0) { try ITransferValidatorSetTokenType(validator).setTokenTypeOfCollection(address(this), _tokenType()) { } catch { } } } } /** * @dev Used during contract deployment for constructable and cloneable creator tokens * @dev to emit the `TransferValidatorUpdated` event signaling the validator for the contract * @dev is the default transfer validator. */ function _emitDefaultTransferValidator() internal { emit TransferValidatorUpdated(address(0), DEFAULT_TRANSFER_VALIDATOR); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@openzeppelin/contracts/utils/Context.sol"; /** * @title TransferValidation * @author Limit Break, Inc. * @notice A mix-in that can be combined with ERC-721 contracts to provide more granular hooks. * Openzeppelin's ERC721 contract only provides hooks for before and after transfer. This allows * developers to validate or customize transfers within the context of a mint, a burn, or a transfer. */ abstract contract TransferValidation is Context { /// @dev Thrown when the from and to address are both the zero address. error ShouldNotMintToBurnAddress(); /*************************************************************************/ /* Transfers Without Amounts */ /*************************************************************************/ /// @dev Inheriting contracts should call this function in the _beforeTokenTransfer function to get more granular hooks. function _validateBeforeTransfer(address from, address to, uint256 tokenId) internal virtual { bool fromZeroAddress = from == address(0); bool toZeroAddress = to == address(0); if(fromZeroAddress && toZeroAddress) { revert ShouldNotMintToBurnAddress(); } else if(fromZeroAddress) { _preValidateMint(_msgSender(), to, tokenId, msg.value); } else if(toZeroAddress) { _preValidateBurn(_msgSender(), from, tokenId, msg.value); } else { _preValidateTransfer(_msgSender(), from, to, tokenId, msg.value); } } /// @dev Inheriting contracts should call this function in the _afterTokenTransfer function to get more granular hooks. function _validateAfterTransfer(address from, address to, uint256 tokenId) internal virtual { bool fromZeroAddress = from == address(0); bool toZeroAddress = to == address(0); if(fromZeroAddress && toZeroAddress) { revert ShouldNotMintToBurnAddress(); } else if(fromZeroAddress) { _postValidateMint(_msgSender(), to, tokenId, msg.value); } else if(toZeroAddress) { _postValidateBurn(_msgSender(), from, tokenId, msg.value); } else { _postValidateTransfer(_msgSender(), from, to, tokenId, msg.value); } } /// @dev Optional validation hook that fires before a mint function _preValidateMint(address caller, address to, uint256 tokenId, uint256 value) internal virtual {} /// @dev Optional validation hook that fires after a mint function _postValidateMint(address caller, address to, uint256 tokenId, uint256 value) internal virtual {} /// @dev Optional validation hook that fires before a burn function _preValidateBurn(address caller, address from, uint256 tokenId, uint256 value) internal virtual {} /// @dev Optional validation hook that fires after a burn function _postValidateBurn(address caller, address from, uint256 tokenId, uint256 value) internal virtual {} /// @dev Optional validation hook that fires before a transfer function _preValidateTransfer(address caller, address from, address to, uint256 tokenId, uint256 value) internal virtual {} /// @dev Optional validation hook that fires after a transfer function _postValidateTransfer(address caller, address from, address to, uint256 tokenId, uint256 value) internal virtual {} /*************************************************************************/ /* Transfers With Amounts */ /*************************************************************************/ /// @dev Inheriting contracts should call this function in the _beforeTokenTransfer function to get more granular hooks. function _validateBeforeTransfer(address from, address to, uint256 tokenId, uint256 amount) internal virtual { bool fromZeroAddress = from == address(0); bool toZeroAddress = to == address(0); if(fromZeroAddress && toZeroAddress) { revert ShouldNotMintToBurnAddress(); } else if(fromZeroAddress) { _preValidateMint(_msgSender(), to, tokenId, amount, msg.value); } else if(toZeroAddress) { _preValidateBurn(_msgSender(), from, tokenId, amount, msg.value); } else { _preValidateTransfer(_msgSender(), from, to, tokenId, amount, msg.value); } } /// @dev Inheriting contracts should call this function in the _afterTokenTransfer function to get more granular hooks. function _validateAfterTransfer(address from, address to, uint256 tokenId, uint256 amount) internal virtual { bool fromZeroAddress = from == address(0); bool toZeroAddress = to == address(0); if(fromZeroAddress && toZeroAddress) { revert ShouldNotMintToBurnAddress(); } else if(fromZeroAddress) { _postValidateMint(_msgSender(), to, tokenId, amount, msg.value); } else if(toZeroAddress) { _postValidateBurn(_msgSender(), from, tokenId, amount, msg.value); } else { _postValidateTransfer(_msgSender(), from, to, tokenId, amount, msg.value); } } /// @dev Optional validation hook that fires before a mint function _preValidateMint(address caller, address to, uint256 tokenId, uint256 amount, uint256 value) internal virtual {} /// @dev Optional validation hook that fires after a mint function _postValidateMint(address caller, address to, uint256 tokenId, uint256 amount, uint256 value) internal virtual {} /// @dev Optional validation hook that fires before a burn function _preValidateBurn(address caller, address from, uint256 tokenId, uint256 amount, uint256 value) internal virtual {} /// @dev Optional validation hook that fires after a burn function _postValidateBurn(address caller, address from, uint256 tokenId, uint256 amount, uint256 value) internal virtual {} /// @dev Optional validation hook that fires before a transfer function _preValidateTransfer(address caller, address from, address to, uint256 tokenId, uint256 amount, uint256 value) internal virtual {} /// @dev Optional validation hook that fires after a transfer function _postValidateTransfer(address caller, address from, address to, uint256 tokenId, uint256 amount, uint256 value) internal virtual {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @dev Constant bytes32 value of 0x000...000 bytes32 constant ZERO_BYTES32 = bytes32(0); /// @dev Constant value of 0 uint256 constant ZERO = 0; /// @dev Constant value of 1 uint256 constant ONE = 1; /// @dev Constant value representing an open order in storage uint8 constant ORDER_STATE_OPEN = 0; /// @dev Constant value representing a filled order in storage uint8 constant ORDER_STATE_FILLED = 1; /// @dev Constant value representing a cancelled order in storage uint8 constant ORDER_STATE_CANCELLED = 2; /// @dev Constant value representing the ERC721 token type for signatures and transfer hooks uint256 constant TOKEN_TYPE_ERC721 = 721; /// @dev Constant value representing the ERC1155 token type for signatures and transfer hooks uint256 constant TOKEN_TYPE_ERC1155 = 1155; /// @dev Constant value representing the ERC20 token type for signatures and transfer hooks uint256 constant TOKEN_TYPE_ERC20 = 20; /// @dev Constant value to mask the upper bits of a signature that uses a packed `vs` value to extract `s` bytes32 constant UPPER_BIT_MASK = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff; /// @dev EIP-712 typehash used for validating signature based stored approvals bytes32 constant UPDATE_APPROVAL_TYPEHASH = keccak256("UpdateApprovalBySignature(uint256 tokenType,address token,uint256 id,uint256 amount,uint256 nonce,address operator,uint256 approvalExpiration,uint256 sigDeadline,uint256 masterNonce)"); /// @dev EIP-712 typehash used for validating a single use permit without additional data bytes32 constant SINGLE_USE_PERMIT_TYPEHASH = keccak256("PermitTransferFrom(uint256 tokenType,address token,uint256 id,uint256 amount,uint256 nonce,address operator,uint256 expiration,uint256 masterNonce)"); /// @dev EIP-712 typehash used for validating a single use permit with additional data string constant SINGLE_USE_PERMIT_TRANSFER_ADVANCED_TYPEHASH_STUB = "PermitTransferFromWithAdditionalData(uint256 tokenType,address token,uint256 id,uint256 amount,uint256 nonce,address operator,uint256 expiration,uint256 masterNonce,"; /// @dev EIP-712 typehash used for validating an order permit that updates storage as it fills string constant PERMIT_ORDER_ADVANCED_TYPEHASH_STUB = "PermitOrderWithAdditionalData(uint256 tokenType,address token,uint256 id,uint256 amount,uint256 salt,address operator,uint256 expiration,uint256 masterNonce,"; /// @dev Pausable flag for stored approval transfers of ERC721 assets uint256 constant PAUSABLE_APPROVAL_TRANSFER_FROM_ERC721 = 1 << 0; /// @dev Pausable flag for stored approval transfers of ERC1155 assets uint256 constant PAUSABLE_APPROVAL_TRANSFER_FROM_ERC1155 = 1 << 1; /// @dev Pausable flag for stored approval transfers of ERC20 assets uint256 constant PAUSABLE_APPROVAL_TRANSFER_FROM_ERC20 = 1 << 2; /// @dev Pausable flag for single use permit transfers of ERC721 assets uint256 constant PAUSABLE_PERMITTED_TRANSFER_FROM_ERC721 = 1 << 3; /// @dev Pausable flag for single use permit transfers of ERC1155 assets uint256 constant PAUSABLE_PERMITTED_TRANSFER_FROM_ERC1155 = 1 << 4; /// @dev Pausable flag for single use permit transfers of ERC20 assets uint256 constant PAUSABLE_PERMITTED_TRANSFER_FROM_ERC20 = 1 << 5; /// @dev Pausable flag for order fill transfers of ERC1155 assets uint256 constant PAUSABLE_ORDER_TRANSFER_FROM_ERC1155 = 1 << 6; /// @dev Pausable flag for order fill transfers of ERC20 assets uint256 constant PAUSABLE_ORDER_TRANSFER_FROM_ERC20 = 1 << 7;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol) pragma solidity ^0.8.0; import "../utils/introspection/IERC165.sol"; /** * @dev Interface for the NFT Royalty Standard. * * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal * support for royalty payments across all NFT marketplaces and ecosystem participants. * * _Available since v4.5._ */ interface IERC2981 is IERC165 { /** * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of * exchange. The royalty amount is denominated and should be paid in that same unit of exchange. */ function royaltyInfo(uint256 tokenId, uint256 salePrice) external view returns (address receiver, uint256 royaltyAmount); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (proxy/Clones.sol) pragma solidity ^0.8.0; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. * * _Available since v3.4._ */ library Clones { /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create(0, 0x09, 0x37) } require(instance != address(0), "ERC1167: create failed"); } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create2(0, 0x09, 0x37, salt) } require(instance != address(0), "ERC1167: create2 failed"); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := keccak256(add(ptr, 0x43), 0x55) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress(address implementation, bytes32 salt) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@limitbreak/creator-token-standards/src/access/OwnableBasic.sol"; import "@limitbreak/creator-token-standards/src/erc721c/ERC721AC.sol"; import "@limitbreak/creator-token-standards/src/programmable-royalties/MinterCreatorSharedRoyalties.sol"; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; contract DotsNft is OwnableBasic, ERC721AC, MinterCreatorSharedRoyalties { using MerkleProof for bytes32[]; using Strings for uint256; bytes32 public merkleRoot; string private _baseTokenURI; error InvalidTokenId(); // Phase control bool public claimPhaseActive; bool public publicPhaseActive; // Mint tracking mapping(address => bool) public hasClaimed; mapping(address => uint256) public publicMintCount; // Royalty constants uint256 private constant ROYALTY_FEE_NUMERATOR = 600; // 6% total royalty uint256 private constant MINTER_SHARES = 200; // 2% for minters uint256 private constant CREATOR_SHARES = 400; // 4% for creator // Constants uint256 public constant MAX_SUPPLY = 1881; uint256 public constant CLAIM_MINT_LIMIT = 1; uint256 public constant PUBLIC_MINT_LIMIT = 2; // Supply tracking uint256 private _currentSupply; constructor( address creator_, address paymentSplitterReference_, string memory name_, string memory symbol_, bytes32 merkleRoot_, string memory baseTokenURI_ ) ERC721AC(name_, symbol_) MinterCreatorSharedRoyalties( ROYALTY_FEE_NUMERATOR, // 6% total royalty MINTER_SHARES, // 2% for minters CREATOR_SHARES, // 4% for creator creator_, paymentSplitterReference_ ) { merkleRoot = merkleRoot_; _baseTokenURI = baseTokenURI_; _mint(0xF5B7e691bF54857a634f43100bc9deA1Ac6547C0, 1); _mint(0xF5B7e691bF54857a634f43100bc9deA1Ac6547C0, 1); } // Phase control functions function setClaimPhase(bool _isActive) external onlyOwner { claimPhaseActive = _isActive; } function setPublicPhase(bool _isActive) external onlyOwner { publicPhaseActive = _isActive; } function setMerkleRoot(bytes32 _merkleRoot) external onlyOwner { merkleRoot = _merkleRoot; } // Claim phase mint function claim(bytes32[] calldata proof) external { require(claimPhaseActive, "Claim phase not active"); require(!hasClaimed[msg.sender], "Already claimed"); require(_currentSupply + CLAIM_MINT_LIMIT <= MAX_SUPPLY, "Max supply reached"); bytes32 leaf = keccak256(abi.encodePacked(msg.sender)); require( MerkleProof.verify(proof, merkleRoot, leaf), "Invalid merkle proof" ); hasClaimed[msg.sender] = true; _mint(msg.sender, CLAIM_MINT_LIMIT); } // Public phase mint function publicMint(uint256 quantity) external { require(publicPhaseActive, "Public phase not active"); require(quantity > 0, "Must mint at least 1"); require(_currentSupply + quantity <= MAX_SUPPLY, "Max supply reached"); uint256 currentMintCount = publicMintCount[msg.sender]; uint256 allowedMints = hasClaimed[msg.sender] ? PUBLIC_MINT_LIMIT : PUBLIC_MINT_LIMIT; require( currentMintCount + quantity <= allowedMints, "Exceeds mint limit" ); publicMintCount[msg.sender] += quantity; _mint(msg.sender, quantity); } // URI functions function setBaseURI(string memory baseURI_) external onlyOwner { _baseTokenURI = baseURI_; } function _baseURI() internal view override returns (string memory) { return _baseTokenURI; } function tokenURI(uint256 tokenId) public view override returns (string memory) { if (ownerOf(tokenId) == address(0)) revert InvalidTokenId(); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString(), ".json")) : ""; } // Override required interface support function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721AC, MinterCreatorSharedRoyaltiesBase) returns (bool) { return ERC721AC.supportsInterface(interfaceId) || MinterCreatorSharedRoyaltiesBase.supportsInterface(interfaceId); } // Internal functions // Supply query functions function totalSupply() public view override returns (uint256) { return _currentSupply; } function remainingSupply() public view returns (uint256) { return MAX_SUPPLY - _currentSupply; } function _mint(address to, uint256 quantity) internal virtual override { uint256 nextTokenId = _nextTokenId(); for (uint256 i = 0; i < quantity;) { _onMinted(to, nextTokenId + i); unchecked { ++i; } } _currentSupply += quantity; super._mint(to, quantity); } function _startTokenId() internal view virtual override returns (uint256) { return 1; } }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; import './IERC721A.sol'; /** * @dev Interface of ERC721 token receiver. */ interface ERC721A__IERC721Receiver { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } /** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is IERC721A { // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). struct TokenApprovalRef { address value; } // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 private _currentIndex; // The number of tokens burned. uint256 private _burnCounter; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) private _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) private _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => TokenApprovalRef) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // ============================================================= // CONSTRUCTOR // ============================================================= constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _currentIndex = _startTokenId(); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID. * To change the starting token ID, please override this function. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return _currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256) { // Counter underflow is impossible as _burnCounter cannot be incremented // more than `_currentIndex - _startTokenId()` times. unchecked { return _currentIndex - _burnCounter - _startTokenId(); } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { return _currentIndex - _startTokenId(); } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return _burnCounter; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) revert BalanceQueryForZeroAddress(); return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(_packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = _packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); _packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnerships[index]); } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (_packedOwnerships[index] == 0) { _packedOwnerships[index] = _packedOwnershipOf(index); } } /** * Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) { uint256 curr = tokenId; unchecked { if (_startTokenId() <= curr) if (curr < _currentIndex) { uint256 packed = _packedOwnerships[curr]; // If not burned. if (packed & _BITMASK_BURNED == 0) { // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `curr` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. while (packed == 0) { packed = _packedOwnerships[--curr]; } return packed; } } } revert OwnerQueryForNonexistentToken(); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) public payable virtual override { address owner = ownerOf(tokenId); if (_msgSenderERC721A() != owner) if (!isApprovedForAll(owner, _msgSenderERC721A())) { revert ApprovalCallerNotOwnerNorApproved(); } _tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); return _tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { _operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _startTokenId() <= tokenId && tokenId < _currentIndex && // If within bounds, _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned. } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner( address approvedAddress, address owner, address msgSender ) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) public payable virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner(); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); if (to == address(0)) revert TransferToZeroAddress(); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --_packedAddressData[from]; // Updates: `balance -= 1`. ++_packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, to, tokenId); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public payable virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public payable virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns ( bytes4 retval ) { return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert TransferToNonERC721ReceiverImplementer(); } else { assembly { revert(add(32, reason), mload(reason)) } } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (quantity == 0) revert MintZeroQuantity(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); uint256 toMasked; uint256 end = startTokenId + quantity; // Use assembly to loop and emit the `Transfer` event for gas savings. // The duplicated `log4` removes an extra check and reduces stack juggling. // The assembly, together with the surrounding Solidity code, have been // delicately arranged to nudge the compiler into producing optimized opcodes. assembly { // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. toMasked := and(to, _BITMASK_ADDRESS) // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. startTokenId // `tokenId`. ) // The `iszero(eq(,))` check ensures that large values of `quantity` // that overflows uint256 will make the loop run out of gas. // The compiler will optimize the `iszero` away for performance. for { let tokenId := add(startTokenId, 1) } iszero(eq(tokenId, end)) { tokenId := add(tokenId, 1) } { // Emit the `Transfer` event. Similar to above. log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId) } } if (toMasked == 0) revert MintToZeroAddress(); _currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (to == address(0)) revert MintToZeroAddress(); if (quantity == 0) revert MintZeroQuantity(); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); _currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = _currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } while (index < end); // Reentrancy protection. if (_currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ''); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. unchecked { _burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = _packedOwnerships[index]; if (packed == 0) revert OwnershipNotInitializedForExtraData(); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); _packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData( address from, address to, uint24 previousExtraData ) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData( address from, address to, uint256 prevOwnershipPacked ) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721A. */ interface IERC721A { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external payable; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external payable; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); }
{ "evmVersion": "paris", "optimizer": { "enabled": false, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"nftContract","type":"address"}],"name":"getReleasableAmounts","outputs":[{"internalType":"uint256","name":"totalETH","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"nftContract","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"}],"name":"getReleasableTokenAmounts","outputs":[{"internalType":"uint256","name":"totalTokens","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"nftContract","type":"address"}],"name":"releaseAllRoyalties","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"nftContract","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"}],"name":"releaseAllTokenRoyalties","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6080604052348015600f57600080fd5b50610a658061001f6000396000f3fe608060405234801561001057600080fd5b506004361061004c5760003560e01c80633e6fac6714610051578063600506c61461006d578063a70f942d1461009d578063f4edf937146100b9575b600080fd5b61006b600480360381019061006691906107a4565b6100e9565b005b610087600480360381019061008291906107a4565b610258565b60405161009491906107ea565b60405180910390f35b6100b760048036038101906100b29190610805565b610410565b005b6100d360048036038101906100ce9190610805565b610584565b6040516100e091906107ea565b60405180910390f35b600081905060008173ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561013b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061015f9190610871565b90506000600190505b818111610252578273ffffffffffffffffffffffffffffffffffffffff166333c93f588260016040518363ffffffff1660e01b81526004016101ab929190610915565b600060405180830381600087803b1580156101c557600080fd5b505af19250505080156101d6575060015b508273ffffffffffffffffffffffffffffffffffffffff166333c93f588260006040518363ffffffff1660e01b8152600401610213929190610915565b600060405180830381600087803b15801561022d57600080fd5b505af192505050801561023e575060015b50808061024a9061096d565b915050610168565b50505050565b60008082905060008173ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102ab573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102cf9190610871565b90506000600190505b818111610408578273ffffffffffffffffffffffffffffffffffffffff166377f33fe98260016040518363ffffffff1660e01b815260040161031b929190610915565b602060405180830381865afa92505050801561035557506040513d601f19601f820116820180604052508101906103529190610871565b60015b1561036a57808561036691906109b5565b9450505b8273ffffffffffffffffffffffffffffffffffffffff166377f33fe98260006040518363ffffffff1660e01b81526004016103a6929190610915565b602060405180830381865afa9250505080156103e057506040513d601f19601f820116820180604052508101906103dd9190610871565b60015b156103f55780856103f191906109b5565b9450505b80806104009061096d565b9150506102d8565b505050919050565b600082905060008173ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610462573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104869190610871565b90506000600190505b81811161057d578273ffffffffffffffffffffffffffffffffffffffff1663261a2f30828660016040518463ffffffff1660e01b81526004016104d4939291906109f8565b600060405180830381600087803b1580156104ee57600080fd5b505af19250505080156104ff575060015b508273ffffffffffffffffffffffffffffffffffffffff1663261a2f30828660006040518463ffffffff1660e01b815260040161053e939291906109f8565b600060405180830381600087803b15801561055857600080fd5b505af1925050508015610569575060015b5080806105759061096d565b91505061048f565b5050505050565b60008083905060008173ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105d7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105fb9190610871565b90506000600190505b818111610738578273ffffffffffffffffffffffffffffffffffffffff166336d396f4828760016040518463ffffffff1660e01b8152600401610649939291906109f8565b602060405180830381865afa92505050801561068357506040513d601f19601f820116820180604052508101906106809190610871565b60015b1561069857808561069491906109b5565b9450505b8273ffffffffffffffffffffffffffffffffffffffff166336d396f4828760006040518463ffffffff1660e01b81526004016106d6939291906109f8565b602060405180830381865afa92505050801561071057506040513d601f19601f8201168201806040525081019061070d9190610871565b60015b1561072557808561072191906109b5565b9450505b80806107309061096d565b915050610604565b50505092915050565b600080fd5b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b600061077182610746565b9050919050565b61078181610766565b811461078c57600080fd5b50565b60008135905061079e81610778565b92915050565b6000602082840312156107ba576107b9610741565b5b60006107c88482850161078f565b91505092915050565b6000819050919050565b6107e4816107d1565b82525050565b60006020820190506107ff60008301846107db565b92915050565b6000806040838503121561081c5761081b610741565b5b600061082a8582860161078f565b925050602061083b8582860161078f565b9150509250929050565b61084e816107d1565b811461085957600080fd5b50565b60008151905061086b81610845565b92915050565b60006020828403121561088757610886610741565b5b60006108958482850161085c565b91505092915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600281106108de576108dd61089e565b5b50565b60008190506108ef826108cd565b919050565b60006108ff826108e1565b9050919050565b61090f816108f4565b82525050565b600060408201905061092a60008301856107db565b6109376020830184610906565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000610978826107d1565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82036109aa576109a961093e565b5b600182019050919050565b60006109c0826107d1565b91506109cb836107d1565b92508282019050808211156109e3576109e261093e565b5b92915050565b6109f281610766565b82525050565b6000606082019050610a0d60008301866107db565b610a1a60208301856109e9565b610a276040830184610906565b94935050505056fea2646970667358221220e98a9afc8c92a428f42d6959907147bcbf87556b991d0886ca79d3257f512f2064736f6c634300081c0033
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061004c5760003560e01c80633e6fac6714610051578063600506c61461006d578063a70f942d1461009d578063f4edf937146100b9575b600080fd5b61006b600480360381019061006691906107a4565b6100e9565b005b610087600480360381019061008291906107a4565b610258565b60405161009491906107ea565b60405180910390f35b6100b760048036038101906100b29190610805565b610410565b005b6100d360048036038101906100ce9190610805565b610584565b6040516100e091906107ea565b60405180910390f35b600081905060008173ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561013b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061015f9190610871565b90506000600190505b818111610252578273ffffffffffffffffffffffffffffffffffffffff166333c93f588260016040518363ffffffff1660e01b81526004016101ab929190610915565b600060405180830381600087803b1580156101c557600080fd5b505af19250505080156101d6575060015b508273ffffffffffffffffffffffffffffffffffffffff166333c93f588260006040518363ffffffff1660e01b8152600401610213929190610915565b600060405180830381600087803b15801561022d57600080fd5b505af192505050801561023e575060015b50808061024a9061096d565b915050610168565b50505050565b60008082905060008173ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102ab573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102cf9190610871565b90506000600190505b818111610408578273ffffffffffffffffffffffffffffffffffffffff166377f33fe98260016040518363ffffffff1660e01b815260040161031b929190610915565b602060405180830381865afa92505050801561035557506040513d601f19601f820116820180604052508101906103529190610871565b60015b1561036a57808561036691906109b5565b9450505b8273ffffffffffffffffffffffffffffffffffffffff166377f33fe98260006040518363ffffffff1660e01b81526004016103a6929190610915565b602060405180830381865afa9250505080156103e057506040513d601f19601f820116820180604052508101906103dd9190610871565b60015b156103f55780856103f191906109b5565b9450505b80806104009061096d565b9150506102d8565b505050919050565b600082905060008173ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610462573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104869190610871565b90506000600190505b81811161057d578273ffffffffffffffffffffffffffffffffffffffff1663261a2f30828660016040518463ffffffff1660e01b81526004016104d4939291906109f8565b600060405180830381600087803b1580156104ee57600080fd5b505af19250505080156104ff575060015b508273ffffffffffffffffffffffffffffffffffffffff1663261a2f30828660006040518463ffffffff1660e01b815260040161053e939291906109f8565b600060405180830381600087803b15801561055857600080fd5b505af1925050508015610569575060015b5080806105759061096d565b91505061048f565b5050505050565b60008083905060008173ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105d7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105fb9190610871565b90506000600190505b818111610738578273ffffffffffffffffffffffffffffffffffffffff166336d396f4828760016040518463ffffffff1660e01b8152600401610649939291906109f8565b602060405180830381865afa92505050801561068357506040513d601f19601f820116820180604052508101906106809190610871565b60015b1561069857808561069491906109b5565b9450505b8273ffffffffffffffffffffffffffffffffffffffff166336d396f4828760006040518463ffffffff1660e01b81526004016106d6939291906109f8565b602060405180830381865afa92505050801561071057506040513d601f19601f8201168201806040525081019061070d9190610871565b60015b1561072557808561072191906109b5565b9450505b80806107309061096d565b915050610604565b50505092915050565b600080fd5b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b600061077182610746565b9050919050565b61078181610766565b811461078c57600080fd5b50565b60008135905061079e81610778565b92915050565b6000602082840312156107ba576107b9610741565b5b60006107c88482850161078f565b91505092915050565b6000819050919050565b6107e4816107d1565b82525050565b60006020820190506107ff60008301846107db565b92915050565b6000806040838503121561081c5761081b610741565b5b600061082a8582860161078f565b925050602061083b8582860161078f565b9150509250929050565b61084e816107d1565b811461085957600080fd5b50565b60008151905061086b81610845565b92915050565b60006020828403121561088757610886610741565b5b60006108958482850161085c565b91505092915050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600281106108de576108dd61089e565b5b50565b60008190506108ef826108cd565b919050565b60006108ff826108e1565b9050919050565b61090f816108f4565b82525050565b600060408201905061092a60008301856107db565b6109376020830184610906565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000610978826107d1565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82036109aa576109a961093e565b5b600182019050919050565b60006109c0826107d1565b91506109cb836107d1565b92508282019050808211156109e3576109e261093e565b5b92915050565b6109f281610766565b82525050565b6000606082019050610a0d60008301866107db565b610a1a60208301856109e9565b610a276040830184610906565b94935050505056fea2646970667358221220e98a9afc8c92a428f42d6959907147bcbf87556b991d0886ca79d3257f512f2064736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.