Overview
APE Balance
0 APE
APE Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Name:
MinimalForwarder
Compiler Version
v0.8.10+commit.fc410830
Optimization Enabled:
Yes with 1 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (metatx/MinimalForwarder.sol) pragma solidity 0.8.10; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/cryptography/draft-EIP712.sol"; /** * @dev Simple minimal forwarder to be used together with an ERC2771 compatible contract. See {ERC2771Context}. */ contract MinimalForwarder is EIP712 { using ECDSA for bytes32; struct ForwardRequest { address from; address to; uint256 value; uint256 gas; uint256 nonce; bytes data; } bytes32 private constant _TYPEHASH = keccak256("ForwardRequest(address from,address to,uint256 value,uint256 gas,uint256 nonce,bytes data)"); mapping(address => uint256) private _nonces; constructor() EIP712("MinimalForwarder", "0.0.1") {} function execute( ForwardRequest calldata req, bytes calldata signature ) public payable returns (bool, bytes memory) { /* solhint-disable reason-string */ require(verify(req, signature), "MinimalForwarder: signature does not match request"); /* solhint-enable reason-string */ _nonces[req.from] = req.nonce + 1; /* solhint-disable avoid-low-level-calls */ (bool success, bytes memory returndata) = req.to.call{ gas: req.gas, value: req.value }( abi.encodePacked(req.data, req.from) ); /* solhint-enable avoid-low-level-calls */ require(success, string(returndata)); // Validate that the relayer has sent enough gas for the call. // See https://ronan.eth.link/blog/ethereum-gas-dangers/ if (gasleft() <= req.gas / 63) { // We explicitly trigger invalid opcode to consume all gas and bubble-up the effects, since // neither revert or assert consume all gas since Solidity 0.8.0 // https://docs.soliditylang.org/en/v0.8.0/control-structures.html#panic-via-assert-and-error-via-require /* solhint-disable no-inline-assembly */ assembly { invalid() } /* solhint-enable no-inline-assembly */ } return (success, returndata); } function getNonce(address from) public view returns (uint256) { return _nonces[from]; } function verify(ForwardRequest calldata req, bytes calldata signature) public view returns (bool) { address signer = _hashTypedDataV4( keccak256(abi.encode(_TYPEHASH, req.from, req.to, req.value, req.gas, req.nonce, keccak256(req.data))) ).recover(signature); return _nonces[req.from] == req.nonce && signer == req.from; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.0; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/draft-EIP712.sol) pragma solidity ^0.8.0; // EIP-712 is Final as of 2022-08-11. This file is deprecated. import "./EIP712.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.8; import "./ECDSA.sol"; import "../ShortStrings.sol"; import "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * _Available since v3.4._ * * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {EIP-5267}. * * _Available since v4.9._ */ function eip712Domain() public view virtual override returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _name.toStringWithFallback(_nameFallback), _version.toStringWithFallback(_versionFallback), block.chainid, address(this), bytes32(0), new uint256[](0) ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol) pragma solidity ^0.8.8; import "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(_FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
{ "metadata": { "bytecodeHash": "none" }, "optimizer": { "enabled": true, "runs": 1 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct MinimalForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"execute","outputs":[{"internalType":"bool","name":"","type":"bool"},{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct MinimalForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"verify","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
6101606040523480156200001257600080fd5b506040518060400160405280601081526020016f26b4b734b6b0b62337b93bb0b93232b960811b81525060405180604001604052806005815260200164302e302e3160d81b815250620000756000836200012f60201b620004c71790919060201c565b61012052620000928160016200012f602090811b620004c717901c565b61014052815160208084019190912060e052815190820120610100524660a0526200012060e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b60805250503060c0526200032f565b60006020835110156200014f57620001478362000183565b90506200017d565b826200016683620001cf60201b620005001760201c565b8151620001779260200190620001d2565b5060ff90505b92915050565b600080829050601f81511115620001ba578260405163305a27a960e01b8152600401620001b1919062000278565b60405180910390fd5b8051620001c782620002d0565b179392505050565b90565b828054620001e090620002f8565b90600052602060002090601f0160209004810192826200020457600085556200024f565b82601f106200021f57805160ff19168380011785556200024f565b828001600101855582156200024f579182015b828111156200024f57825182559160200191906001019062000232565b506200025d92915062000261565b5090565b5b808211156200025d576000815560010162000262565b600060208083528351808285015260005b81811015620002a75785810183015185820160400152820162000289565b81811115620002ba576000604083870101525b50601f01601f1916929092016040019392505050565b80516020808301519190811015620002f2576000198160200360031b1b821691505b50919050565b600181811c908216806200030d57607f821691505b60208210811415620002f257634e487b7160e01b600052602260045260246000fd5b60805160a05160c05160e051610100516101205161014051610e056200038a60003960006102f8015260006102ce0152600061074f0152600061072701526000610682015260006106ac015260006106d60152610e056000f3fe60806040526004361061003f5760003560e01c80632d0335ab1461004457806347153f821461008d57806384b0196e146100ae578063bf5d3bdb146100d6575b600080fd5b34801561005057600080fd5b5061007a61005f366004610ab2565b6001600160a01b031660009081526002602052604090205490565b6040519081526020015b60405180910390f35b6100a061009b366004610ae2565b610106565b604051610084929190610bdc565b3480156100ba57600080fd5b506100c36102c0565b6040516100849796959493929190610bff565b3480156100e257600080fd5b506100f66100f1366004610ae2565b610348565b6040519015158152602001610084565b60006060610115858585610348565b6101815760405162461bcd60e51b815260206004820152603260248201527f4d696e696d616c466f727761726465723a207369676e617475726520646f6573604482015271081b9bdd081b585d18da081c995c5d595cdd60721b60648201526084015b60405180910390fd5b61019060808601356001610c95565b600260006101a16020890189610ab2565b6001600160a01b03166001600160a01b03168152602001908152602001600020819055506000808660200160208101906101db9190610ab2565b6001600160a01b0316606088013560408901356101fb60a08b018b610cbb565b61020860208d018d610ab2565b60405160200161021a93929190610d01565b60408051601f198184030181529082905261023491610d22565b600060405180830381858888f193505050503d8060008114610272576040519150601f19603f3d011682016040523d82523d6000602084013e610277565b606091505b509150915081819061029c5760405162461bcd60e51b81526004016101789190610d3e565b506102ac603f6060890135610d51565b5a116102b457fe5b90969095509350505050565b6000606080828080836102f37f000000000000000000000000000000000000000000000000000000000000000083610503565b61031e7f00000000000000000000000000000000000000000000000000000000000000006001610503565b60408051600080825260208201909252600f60f81b9b939a50919850469750309650945092509050565b60008061045b84848080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061045592507fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e4891506103b8905060208a018a610ab2565b6103c860408b0160208c01610ab2565b60408b013560608c013560808d01356103e460a08f018f610cbb565b6040516103f2929190610d73565b6040805191829003822060208301989098526001600160a01b0396871690820152949093166060850152608084019190915260a083015260c082015260e081019190915261010001604051602081830303815290604052805190602001206105a7565b906105d4565b90506080850135600260006104736020890189610ab2565b6001600160a01b03166001600160a01b03168152602001908152602001600020541480156104be57506104a96020860186610ab2565b6001600160a01b0316816001600160a01b0316145b95945050505050565b60006020835110156104e3576104dc836105f8565b90506104fa565b828281516104f49260200190610a19565b5060ff90505b92915050565b90565b606060ff8314610516576104dc83610636565b81805461052290610d83565b80601f016020809104026020016040519081016040528092919081815260200182805461054e90610d83565b801561059b5780601f106105705761010080835404028352916020019161059b565b820191906000526020600020905b81548152906001019060200180831161057e57829003601f168201915b505050505090506104fa565b60006104fa6105b4610675565b8360405161190160f01b8152600281019290925260228201526042902090565b60008060006105e385856107a5565b915091506105f0816107eb565b509392505050565b600080829050601f81511115610623578260405163305a27a960e01b81526004016101789190610d3e565b805161062e82610dbe565b179392505050565b6060600061064383610937565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b6000306001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480156106ce57507f000000000000000000000000000000000000000000000000000000000000000046145b156106f857507f000000000000000000000000000000000000000000000000000000000000000090565b6107a0604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b905090565b6000808251604114156107dc5760208301516040840151606085015160001a6107d08782858561095f565b945094505050506107e4565b506000905060025b9250929050565b60008160048111156107ff576107ff610de2565b14156108085750565b600181600481111561081c5761081c610de2565b14156108655760405162461bcd60e51b815260206004820152601860248201527745434453413a20696e76616c6964207369676e617475726560401b6044820152606401610178565b600281600481111561087957610879610de2565b14156108c75760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610178565b60038160048111156108db576108db610de2565b14156109345760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610178565b50565b600060ff8216601f8111156104fa57604051632cd44ac360e21b815260040160405180910390fd5b6000806fa2a8918ca85bafe22016d0b997e4df60600160ff1b0383111561098c5750600090506003610a10565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa1580156109e0573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116610a0957600060019250925050610a10565b9150600090505b94509492505050565b828054610a2590610d83565b90600052602060002090601f016020900481019282610a475760008555610a8d565b82601f10610a6057805160ff1916838001178555610a8d565b82800160010185558215610a8d579182015b82811115610a8d578251825591602001919060010190610a72565b50610a99929150610a9d565b5090565b5b80821115610a995760008155600101610a9e565b600060208284031215610ac457600080fd5b81356001600160a01b0381168114610adb57600080fd5b9392505050565b600080600060408486031215610af757600080fd5b83356001600160401b0380821115610b0e57600080fd5b9085019060c08288031215610b2257600080fd5b90935060208501359080821115610b3857600080fd5b818601915086601f830112610b4c57600080fd5b813581811115610b5b57600080fd5b876020828501011115610b6d57600080fd5b6020830194508093505050509250925092565b60005b83811015610b9b578181015183820152602001610b83565b83811115610baa576000848401525b50505050565b60008151808452610bc8816020860160208601610b80565b601f01601f19169290920160200192915050565b8215158152604060208201526000610bf76040830184610bb0565b949350505050565b60ff60f81b881681526000602060e081840152610c1f60e084018a610bb0565b8381036040850152610c31818a610bb0565b606085018990526001600160a01b038816608086015260a0850187905284810360c0860152855180825283870192509083019060005b81811015610c8357835183529284019291840191600101610c67565b50909c9b505050505050505050505050565b60008219821115610cb657634e487b7160e01b600052601160045260246000fd5b500190565b6000808335601e19843603018112610cd257600080fd5b8301803591506001600160401b03821115610cec57600080fd5b6020019150368190038213156107e457600080fd5b8284823760609190911b6001600160601b0319169101908152601401919050565b60008251610d34818460208701610b80565b9190910192915050565b602081526000610adb6020830184610bb0565b600082610d6e57634e487b7160e01b600052601260045260246000fd5b500490565b8183823760009101908152919050565b600181811c90821680610d9757607f821691505b60208210811415610db857634e487b7160e01b600052602260045260246000fd5b50919050565b80516020808301519190811015610db85760001960209190910360031b1b16919050565b634e487b7160e01b600052602160045260246000fdfea164736f6c634300080a000a
Deployed Bytecode
0x60806040526004361061003f5760003560e01c80632d0335ab1461004457806347153f821461008d57806384b0196e146100ae578063bf5d3bdb146100d6575b600080fd5b34801561005057600080fd5b5061007a61005f366004610ab2565b6001600160a01b031660009081526002602052604090205490565b6040519081526020015b60405180910390f35b6100a061009b366004610ae2565b610106565b604051610084929190610bdc565b3480156100ba57600080fd5b506100c36102c0565b6040516100849796959493929190610bff565b3480156100e257600080fd5b506100f66100f1366004610ae2565b610348565b6040519015158152602001610084565b60006060610115858585610348565b6101815760405162461bcd60e51b815260206004820152603260248201527f4d696e696d616c466f727761726465723a207369676e617475726520646f6573604482015271081b9bdd081b585d18da081c995c5d595cdd60721b60648201526084015b60405180910390fd5b61019060808601356001610c95565b600260006101a16020890189610ab2565b6001600160a01b03166001600160a01b03168152602001908152602001600020819055506000808660200160208101906101db9190610ab2565b6001600160a01b0316606088013560408901356101fb60a08b018b610cbb565b61020860208d018d610ab2565b60405160200161021a93929190610d01565b60408051601f198184030181529082905261023491610d22565b600060405180830381858888f193505050503d8060008114610272576040519150601f19603f3d011682016040523d82523d6000602084013e610277565b606091505b509150915081819061029c5760405162461bcd60e51b81526004016101789190610d3e565b506102ac603f6060890135610d51565b5a116102b457fe5b90969095509350505050565b6000606080828080836102f37f4d696e696d616c466f727761726465720000000000000000000000000000001083610503565b61031e7f302e302e310000000000000000000000000000000000000000000000000000056001610503565b60408051600080825260208201909252600f60f81b9b939a50919850469750309650945092509050565b60008061045b84848080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061045592507fdd8f4b70b0f4393e889bd39128a30628a78b61816a9eb8199759e7a349657e4891506103b8905060208a018a610ab2565b6103c860408b0160208c01610ab2565b60408b013560608c013560808d01356103e460a08f018f610cbb565b6040516103f2929190610d73565b6040805191829003822060208301989098526001600160a01b0396871690820152949093166060850152608084019190915260a083015260c082015260e081019190915261010001604051602081830303815290604052805190602001206105a7565b906105d4565b90506080850135600260006104736020890189610ab2565b6001600160a01b03166001600160a01b03168152602001908152602001600020541480156104be57506104a96020860186610ab2565b6001600160a01b0316816001600160a01b0316145b95945050505050565b60006020835110156104e3576104dc836105f8565b90506104fa565b828281516104f49260200190610a19565b5060ff90505b92915050565b90565b606060ff8314610516576104dc83610636565b81805461052290610d83565b80601f016020809104026020016040519081016040528092919081815260200182805461054e90610d83565b801561059b5780601f106105705761010080835404028352916020019161059b565b820191906000526020600020905b81548152906001019060200180831161057e57829003601f168201915b505050505090506104fa565b60006104fa6105b4610675565b8360405161190160f01b8152600281019290925260228201526042902090565b60008060006105e385856107a5565b915091506105f0816107eb565b509392505050565b600080829050601f81511115610623578260405163305a27a960e01b81526004016101789190610d3e565b805161062e82610dbe565b179392505050565b6060600061064383610937565b604080516020808252818301909252919250600091906020820181803683375050509182525060208101929092525090565b6000306001600160a01b037f0000000000000000000000008087039152c472fa74f47398628ff002994056ea161480156106ce57507f000000000000000000000000000000000000000000000000000000000000817346145b156106f857507fa8a4ea30b6bd8bbacf4e55e1c0794183ea0a591bb110fad95e5ac76b4605a0b190565b6107a0604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f9e0923a39f515e9a8cebc9fb694b9abf7e4b8c3f7ab6f81b56eabdac504b08dc918101919091527fae209a0b48f21c054280f2455d32cf309387644879d9acbd8ffc19916381188560608201524660808201523060a082015260009060c00160405160208183030381529060405280519060200120905090565b905090565b6000808251604114156107dc5760208301516040840151606085015160001a6107d08782858561095f565b945094505050506107e4565b506000905060025b9250929050565b60008160048111156107ff576107ff610de2565b14156108085750565b600181600481111561081c5761081c610de2565b14156108655760405162461bcd60e51b815260206004820152601860248201527745434453413a20696e76616c6964207369676e617475726560401b6044820152606401610178565b600281600481111561087957610879610de2565b14156108c75760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152606401610178565b60038160048111156108db576108db610de2565b14156109345760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b6064820152608401610178565b50565b600060ff8216601f8111156104fa57604051632cd44ac360e21b815260040160405180910390fd5b6000806fa2a8918ca85bafe22016d0b997e4df60600160ff1b0383111561098c5750600090506003610a10565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa1580156109e0573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116610a0957600060019250925050610a10565b9150600090505b94509492505050565b828054610a2590610d83565b90600052602060002090601f016020900481019282610a475760008555610a8d565b82601f10610a6057805160ff1916838001178555610a8d565b82800160010185558215610a8d579182015b82811115610a8d578251825591602001919060010190610a72565b50610a99929150610a9d565b5090565b5b80821115610a995760008155600101610a9e565b600060208284031215610ac457600080fd5b81356001600160a01b0381168114610adb57600080fd5b9392505050565b600080600060408486031215610af757600080fd5b83356001600160401b0380821115610b0e57600080fd5b9085019060c08288031215610b2257600080fd5b90935060208501359080821115610b3857600080fd5b818601915086601f830112610b4c57600080fd5b813581811115610b5b57600080fd5b876020828501011115610b6d57600080fd5b6020830194508093505050509250925092565b60005b83811015610b9b578181015183820152602001610b83565b83811115610baa576000848401525b50505050565b60008151808452610bc8816020860160208601610b80565b601f01601f19169290920160200192915050565b8215158152604060208201526000610bf76040830184610bb0565b949350505050565b60ff60f81b881681526000602060e081840152610c1f60e084018a610bb0565b8381036040850152610c31818a610bb0565b606085018990526001600160a01b038816608086015260a0850187905284810360c0860152855180825283870192509083019060005b81811015610c8357835183529284019291840191600101610c67565b50909c9b505050505050505050505050565b60008219821115610cb657634e487b7160e01b600052601160045260246000fd5b500190565b6000808335601e19843603018112610cd257600080fd5b8301803591506001600160401b03821115610cec57600080fd5b6020019150368190038213156107e457600080fd5b8284823760609190911b6001600160601b0319169101908152601401919050565b60008251610d34818460208701610b80565b9190910192915050565b602081526000610adb6020830184610bb0565b600082610d6e57634e487b7160e01b600052601260045260246000fd5b500490565b8183823760009101908152919050565b600181811c90821680610d9757607f821691505b60208210811415610db857634e487b7160e01b600052602260045260246000fd5b50919050565b80516020808301519190811015610db85760001960209190910360031b1b16919050565b634e487b7160e01b600052602160045260246000fdfea164736f6c634300080a000a
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.