Overview
APE Balance
APE Value
$0.00More Info
Private Name Tags
ContractCreator
Multichain Info
No addresses found
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Timelock
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0 pragma solidity >=0.8.18; import { AccessManager } from "@openzeppelin/contracts/access/manager/AccessManager.sol"; import { Address } from "@openzeppelin/contracts/utils/Address.sol"; /** * @title Timelock * @author Puffer Finance * @custom:security-contact [email protected] */ contract Timelock { using Address for address; /** * @notice Error to be thrown when a bad address is encountered */ error BadAddress(); /** * @notice Error to be thrown when an invalid delay is encountered */ error InvalidDelay(uint256 delay); /** * @notice Error to be thrown when an unauthorized action is attempted */ error Unauthorized(); /** * @notice Error to be thrown when an invalid transaction is attempted * @param txHash The keccak256 hash of the invalid transaction */ error InvalidTransaction(bytes32 txHash); /** * @notice Error to be thrown when a transaction is attempted before the lock period expires * @param txHash The keccak256 hash of the locked transaction * @param lockedUntil The timestamp when the transaction can be executed */ error Locked(bytes32 txHash, uint256 lockedUntil); /** * @notice Error to be thrown when an the params are invalid */ error InvalidParams(); /** * @notice Emitted when the delay changes from `oldDelay` to `newDelay` */ event DelayChanged(uint256 oldDelay, uint256 newDelay); /** * @notice Emitted when the pauser changes from `oldPauser` to `newPauser` */ event PauserChanged(address oldPauser, address newPauser); /** * @notice Emitted when a transaction is queued * @param txHash The keccak256 hash of the queued transaction * @param target The address to which the transaction will be sent * @param callData The data to be sent along with the transaction * @param operationId The id of the operation used to identify the transaction * @param lockedUntil The timestamp when the transaction can be executed */ event TransactionQueued( bytes32 indexed txHash, address indexed target, bytes callData, uint256 indexed operationId, uint256 lockedUntil ); /** * @notice Emitted when a transaction is canceled * @param txHash The keccak256 hash of the canceled transaction * @param target The address to which the transaction was to be sent * @param operationId The id of the operation used to identify the transaction * @param callData The data that was to be sent along with the transaction */ event TransactionCanceled( bytes32 indexed txHash, address indexed target, bytes callData, uint256 indexed operationId ); /** * @notice Emitted when a transaction is executed * @param txHash The keccak256 hash of the executed transaction * @param target The address to which the transaction was sent * @param operationId The id of the operation used to identify the transaction * @param callData The data that was sent along with the transaction */ event TransactionExecuted( bytes32 indexed txHash, address indexed target, bytes callData, uint256 indexed operationId ); /** * @notice Community multisig has 0 delay */ address public immutable COMMUNITY_MULTISIG; /** * @notice Operations multisig has a variable delay */ address public immutable OPERATIONS_MULTISIG; /** * @notice AccessManager */ AccessManager public immutable ACCESS_MANAGER; /** * @notice Minimum delay enforced by the contract */ uint256 public constant MINIMUM_DELAY = 7 days; /** * @notice Timelock delay in seconds */ uint256 public delay; /** * @notice Can only pause the system */ address public pauserMultisig; /** * @notice Transaction queue */ mapping(bytes32 transactionHash => uint256 lockedUntil) public queue; constructor( address communityMultisig, address operationsMultisig, address pauser, address accessManager, uint256 initialDelay ) { _validateAddresses(communityMultisig, operationsMultisig, pauser, accessManager); COMMUNITY_MULTISIG = communityMultisig; OPERATIONS_MULTISIG = operationsMultisig; pauserMultisig = pauser; ACCESS_MANAGER = AccessManager(accessManager); _setDelay(initialDelay); } /** * @notice Operations multisig queues a transaction that can be executed by the operations multisig after the delay period * @param target The address to which the transaction will be sent * @param callData The data to be sent along with the transaction * @param operationId The id of the operation used to identify the transaction * @return The keccak256 hash of the queued transaction */ function queueTransaction(address target, bytes memory callData, uint256 operationId) public returns (bytes32) { if (msg.sender != OPERATIONS_MULTISIG) { revert Unauthorized(); } bytes32 txHash = keccak256(abi.encode(target, callData, operationId)); uint256 lockedUntil = block.timestamp + delay; if (queue[txHash] != 0) { revert InvalidTransaction(txHash); } queue[txHash] = lockedUntil; // solhint-disable-next-line func-named-parameters emit TransactionQueued(txHash, target, callData, operationId, lockedUntil); return txHash; } /** * @notice Pauses the system by closing access to specified targets * @param targets An array of addresses to which access will be paused */ function pause(address[] calldata targets) public { // Community multisig can call this by via executeTransaction if (msg.sender != pauserMultisig && msg.sender != address(this)) { revert Unauthorized(); } bytes[] memory callDatas = new bytes[](targets.length); for (uint256 i = 0; i < targets.length; ++i) { // slither-disable-next-line calls-loop callDatas[i] = abi.encodeCall(AccessManager.setTargetClosed, (targets[i], true)); } ACCESS_MANAGER.multicall(callDatas); } /** * @notice Pauses the system by closing access to specified targets selectors * @param targets An array of addresses to which access will be paused * @param selectors An array of selectors to which access will be paused */ function pauseSelectors(address[] calldata targets, bytes4[][] calldata selectors) public { if (targets.length != selectors.length) { revert InvalidParams(); } // Community multisig can call this by via executeTransaction if (msg.sender != pauserMultisig && msg.sender != address(this)) { revert Unauthorized(); } bytes[] memory callDatas = new bytes[](targets.length); for (uint256 i = 0; i < targets.length; ++i) { // slither-disable-next-line calls-loop callDatas[i] = abi.encodeCall( AccessManager.setTargetFunctionRole, (targets[i], selectors[i], ACCESS_MANAGER.ADMIN_ROLE()) ); } ACCESS_MANAGER.multicall(callDatas); } /** * @notice Cancels a queued transaction * @param target The address to which the transaction was to be sent * @param callData The data that was to be sent along with the transaction * @param operationId The id of the operation used to identify the transaction */ function cancelTransaction(address target, bytes memory callData, uint256 operationId) public { // Community multisig can call this by via executeTransaction if (msg.sender != OPERATIONS_MULTISIG && msg.sender != address(this)) { revert Unauthorized(); } bytes32 txHash = keccak256(abi.encode(target, callData, operationId)); // slither-disable-next-line incorrect-equality if (queue[txHash] == 0) { revert InvalidTransaction(txHash); } queue[txHash] = 0; emit TransactionCanceled(txHash, target, callData, operationId); } /** * @notice Executes a transaction after the delay period for Operations Multisig * Community multisig can execute transactions without any delay * @param target The address to which the transaction will be sent * @param callData The data to be sent along with the transaction * @param operationId The id of the operation used to identify the transaction * @return returnData The data returned by the transaction */ function executeTransaction(address target, bytes calldata callData, uint256 operationId) external returns (bytes memory returnData) { bytes32 txHash = keccak256(abi.encode(target, callData, operationId)); if (msg.sender == OPERATIONS_MULTISIG) { uint256 lockedUntil = queue[txHash]; // Operations Multisig must follow queue and delay rules // slither-disable-next-line incorrect-equality if (lockedUntil == 0) { revert InvalidTransaction(txHash); } if (block.timestamp < lockedUntil) { revert Locked(txHash, lockedUntil); } } else if (msg.sender != COMMUNITY_MULTISIG) { // All other senders are unauthorized revert Unauthorized(); } queue[txHash] = 0; // Execute the transaction // slither-disable-next-line arbitrary-send-eth returnData = target.functionCall(callData); emit TransactionExecuted(txHash, target, callData, operationId); } /** * @notice Sets a new delay for the timelock * @param newDelay The new delay in seconds */ function setDelay(uint256 newDelay) public { if (msg.sender != address(this)) { revert Unauthorized(); } _setDelay(newDelay); } /** * @notice Sets a new pauser for the timelock * @param newPauser The address of the new pauser */ function setPauser(address newPauser) public { if (msg.sender != address(this)) { revert Unauthorized(); } if (newPauser == address(0)) { revert BadAddress(); } _setPauser(newPauser); } function _setPauser(address newPauser) internal { emit PauserChanged(pauserMultisig, newPauser); pauserMultisig = newPauser; } function _setDelay(uint256 newDelay) internal { if (newDelay < MINIMUM_DELAY) { revert InvalidDelay(newDelay); } emit DelayChanged(delay, newDelay); delay = newDelay; } function _validateAddresses( address communityMultisig, address operationsMultisig, address pauser, address accessManager ) internal pure { // Assume that the multisig wallets are different addresses // Sanity check if (communityMultisig == address(0)) { revert BadAddress(); } if (operationsMultisig == address(0)) { revert BadAddress(); } if (pauser == address(0)) { revert BadAddress(); } if (accessManager == address(0)) { revert BadAddress(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AccessManager.sol) pragma solidity ^0.8.20; import {IAccessManager} from "./IAccessManager.sol"; import {IAccessManaged} from "./IAccessManaged.sol"; import {Address} from "../../utils/Address.sol"; import {Context} from "../../utils/Context.sol"; import {Multicall} from "../../utils/Multicall.sol"; import {Math} from "../../utils/math/Math.sol"; import {Time} from "../../utils/types/Time.sol"; /** * @dev AccessManager is a central contract to store the permissions of a system. * * A smart contract under the control of an AccessManager instance is known as a target, and will inherit from the * {AccessManaged} contract, be connected to this contract as its manager and implement the {AccessManaged-restricted} * modifier on a set of functions selected to be permissioned. Note that any function without this setup won't be * effectively restricted. * * The restriction rules for such functions are defined in terms of "roles" identified by an `uint64` and scoped * by target (`address`) and function selectors (`bytes4`). These roles are stored in this contract and can be * configured by admins (`ADMIN_ROLE` members) after a delay (see {getTargetAdminDelay}). * * For each target contract, admins can configure the following without any delay: * * * The target's {AccessManaged-authority} via {updateAuthority}. * * Close or open a target via {setTargetClosed} keeping the permissions intact. * * The roles that are allowed (or disallowed) to call a given function (identified by its selector) through {setTargetFunctionRole}. * * By default every address is member of the `PUBLIC_ROLE` and every target function is restricted to the `ADMIN_ROLE` until configured otherwise. * Additionally, each role has the following configuration options restricted to this manager's admins: * * * A role's admin role via {setRoleAdmin} who can grant or revoke roles. * * A role's guardian role via {setRoleGuardian} who's allowed to cancel operations. * * A delay in which a role takes effect after being granted through {setGrantDelay}. * * A delay of any target's admin action via {setTargetAdminDelay}. * * A role label for discoverability purposes with {labelRole}. * * Any account can be added and removed into any number of these roles by using the {grantRole} and {revokeRole} functions * restricted to each role's admin (see {getRoleAdmin}). * * Since all the permissions of the managed system can be modified by the admins of this instance, it is expected that * they will be highly secured (e.g., a multisig or a well-configured DAO). * * NOTE: This contract implements a form of the {IAuthority} interface, but {canCall} has additional return data so it * doesn't inherit `IAuthority`. It is however compatible with the `IAuthority` interface since the first 32 bytes of * the return data are a boolean as expected by that interface. * * NOTE: Systems that implement other access control mechanisms (for example using {Ownable}) can be paired with an * {AccessManager} by transferring permissions (ownership in the case of {Ownable}) directly to the {AccessManager}. * Users will be able to interact with these contracts through the {execute} function, following the access rules * registered in the {AccessManager}. Keep in mind that in that context, the msg.sender seen by restricted functions * will be {AccessManager} itself. * * WARNING: When granting permissions over an {Ownable} or {AccessControl} contract to an {AccessManager}, be very * mindful of the danger associated with functions such as {{Ownable-renounceOwnership}} or * {{AccessControl-renounceRole}}. */ contract AccessManager is Context, Multicall, IAccessManager { using Time for *; // Structure that stores the details for a target contract. struct TargetConfig { mapping(bytes4 selector => uint64 roleId) allowedRoles; Time.Delay adminDelay; bool closed; } // Structure that stores the details for a role/account pair. This structures fit into a single slot. struct Access { // Timepoint at which the user gets the permission. // If this is either 0 or in the future, then the role permission is not available. uint48 since; // Delay for execution. Only applies to restricted() / execute() calls. Time.Delay delay; } // Structure that stores the details of a role. struct Role { // Members of the role. mapping(address user => Access access) members; // Admin who can grant or revoke permissions. uint64 admin; // Guardian who can cancel operations targeting functions that need this role. uint64 guardian; // Delay in which the role takes effect after being granted. Time.Delay grantDelay; } // Structure that stores the details for a scheduled operation. This structure fits into a single slot. struct Schedule { // Moment at which the operation can be executed. uint48 timepoint; // Operation nonce to allow third-party contracts to identify the operation. uint32 nonce; } uint64 public constant ADMIN_ROLE = type(uint64).min; // 0 uint64 public constant PUBLIC_ROLE = type(uint64).max; // 2**64-1 mapping(address target => TargetConfig mode) private _targets; mapping(uint64 roleId => Role) private _roles; mapping(bytes32 operationId => Schedule) private _schedules; // Used to identify operations that are currently being executed via {execute}. // This should be transient storage when supported by the EVM. bytes32 private _executionId; /** * @dev Check that the caller is authorized to perform the operation, following the restrictions encoded in * {_getAdminRestrictions}. */ modifier onlyAuthorized() { _checkAuthorized(); _; } constructor(address initialAdmin) { if (initialAdmin == address(0)) { revert AccessManagerInvalidInitialAdmin(address(0)); } // admin is active immediately and without any execution delay. _grantRole(ADMIN_ROLE, initialAdmin, 0, 0); } // =================================================== GETTERS ==================================================== /// @inheritdoc IAccessManager function canCall( address caller, address target, bytes4 selector ) public view virtual returns (bool immediate, uint32 delay) { if (isTargetClosed(target)) { return (false, 0); } else if (caller == address(this)) { // Caller is AccessManager, this means the call was sent through {execute} and it already checked // permissions. We verify that the call "identifier", which is set during {execute}, is correct. return (_isExecuting(target, selector), 0); } else { uint64 roleId = getTargetFunctionRole(target, selector); (bool isMember, uint32 currentDelay) = hasRole(roleId, caller); return isMember ? (currentDelay == 0, currentDelay) : (false, 0); } } /// @inheritdoc IAccessManager function expiration() public view virtual returns (uint32) { return 1 weeks; } /// @inheritdoc IAccessManager function minSetback() public view virtual returns (uint32) { return 5 days; } /// @inheritdoc IAccessManager function isTargetClosed(address target) public view virtual returns (bool) { return _targets[target].closed; } /// @inheritdoc IAccessManager function getTargetFunctionRole(address target, bytes4 selector) public view virtual returns (uint64) { return _targets[target].allowedRoles[selector]; } /// @inheritdoc IAccessManager function getTargetAdminDelay(address target) public view virtual returns (uint32) { return _targets[target].adminDelay.get(); } /// @inheritdoc IAccessManager function getRoleAdmin(uint64 roleId) public view virtual returns (uint64) { return _roles[roleId].admin; } /// @inheritdoc IAccessManager function getRoleGuardian(uint64 roleId) public view virtual returns (uint64) { return _roles[roleId].guardian; } /// @inheritdoc IAccessManager function getRoleGrantDelay(uint64 roleId) public view virtual returns (uint32) { return _roles[roleId].grantDelay.get(); } /// @inheritdoc IAccessManager function getAccess( uint64 roleId, address account ) public view virtual returns (uint48 since, uint32 currentDelay, uint32 pendingDelay, uint48 effect) { Access storage access = _roles[roleId].members[account]; since = access.since; (currentDelay, pendingDelay, effect) = access.delay.getFull(); return (since, currentDelay, pendingDelay, effect); } /// @inheritdoc IAccessManager function hasRole( uint64 roleId, address account ) public view virtual returns (bool isMember, uint32 executionDelay) { if (roleId == PUBLIC_ROLE) { return (true, 0); } else { (uint48 hasRoleSince, uint32 currentDelay, , ) = getAccess(roleId, account); return (hasRoleSince != 0 && hasRoleSince <= Time.timestamp(), currentDelay); } } // =============================================== ROLE MANAGEMENT =============================================== /// @inheritdoc IAccessManager function labelRole(uint64 roleId, string calldata label) public virtual onlyAuthorized { if (roleId == ADMIN_ROLE || roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } emit RoleLabel(roleId, label); } /// @inheritdoc IAccessManager function grantRole(uint64 roleId, address account, uint32 executionDelay) public virtual onlyAuthorized { _grantRole(roleId, account, getRoleGrantDelay(roleId), executionDelay); } /// @inheritdoc IAccessManager function revokeRole(uint64 roleId, address account) public virtual onlyAuthorized { _revokeRole(roleId, account); } /// @inheritdoc IAccessManager function renounceRole(uint64 roleId, address callerConfirmation) public virtual { if (callerConfirmation != _msgSender()) { revert AccessManagerBadConfirmation(); } _revokeRole(roleId, callerConfirmation); } /// @inheritdoc IAccessManager function setRoleAdmin(uint64 roleId, uint64 admin) public virtual onlyAuthorized { _setRoleAdmin(roleId, admin); } /// @inheritdoc IAccessManager function setRoleGuardian(uint64 roleId, uint64 guardian) public virtual onlyAuthorized { _setRoleGuardian(roleId, guardian); } /// @inheritdoc IAccessManager function setGrantDelay(uint64 roleId, uint32 newDelay) public virtual onlyAuthorized { _setGrantDelay(roleId, newDelay); } /** * @dev Internal version of {grantRole} without access control. Returns true if the role was newly granted. * * Emits a {RoleGranted} event. */ function _grantRole( uint64 roleId, address account, uint32 grantDelay, uint32 executionDelay ) internal virtual returns (bool) { if (roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } bool newMember = _roles[roleId].members[account].since == 0; uint48 since; if (newMember) { since = Time.timestamp() + grantDelay; _roles[roleId].members[account] = Access({since: since, delay: executionDelay.toDelay()}); } else { // No setback here. Value can be reset by doing revoke + grant, effectively allowing the admin to perform // any change to the execution delay within the duration of the role admin delay. (_roles[roleId].members[account].delay, since) = _roles[roleId].members[account].delay.withUpdate( executionDelay, 0 ); } emit RoleGranted(roleId, account, executionDelay, since, newMember); return newMember; } /** * @dev Internal version of {revokeRole} without access control. This logic is also used by {renounceRole}. * Returns true if the role was previously granted. * * Emits a {RoleRevoked} event if the account had the role. */ function _revokeRole(uint64 roleId, address account) internal virtual returns (bool) { if (roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } if (_roles[roleId].members[account].since == 0) { return false; } delete _roles[roleId].members[account]; emit RoleRevoked(roleId, account); return true; } /** * @dev Internal version of {setRoleAdmin} without access control. * * Emits a {RoleAdminChanged} event. * * NOTE: Setting the admin role as the `PUBLIC_ROLE` is allowed, but it will effectively allow * anyone to set grant or revoke such role. */ function _setRoleAdmin(uint64 roleId, uint64 admin) internal virtual { if (roleId == ADMIN_ROLE || roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } _roles[roleId].admin = admin; emit RoleAdminChanged(roleId, admin); } /** * @dev Internal version of {setRoleGuardian} without access control. * * Emits a {RoleGuardianChanged} event. * * NOTE: Setting the guardian role as the `PUBLIC_ROLE` is allowed, but it will effectively allow * anyone to cancel any scheduled operation for such role. */ function _setRoleGuardian(uint64 roleId, uint64 guardian) internal virtual { if (roleId == ADMIN_ROLE || roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } _roles[roleId].guardian = guardian; emit RoleGuardianChanged(roleId, guardian); } /** * @dev Internal version of {setGrantDelay} without access control. * * Emits a {RoleGrantDelayChanged} event. */ function _setGrantDelay(uint64 roleId, uint32 newDelay) internal virtual { if (roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } uint48 effect; (_roles[roleId].grantDelay, effect) = _roles[roleId].grantDelay.withUpdate(newDelay, minSetback()); emit RoleGrantDelayChanged(roleId, newDelay, effect); } // ============================================= FUNCTION MANAGEMENT ============================================== /// @inheritdoc IAccessManager function setTargetFunctionRole( address target, bytes4[] calldata selectors, uint64 roleId ) public virtual onlyAuthorized { for (uint256 i = 0; i < selectors.length; ++i) { _setTargetFunctionRole(target, selectors[i], roleId); } } /** * @dev Internal version of {setTargetFunctionRole} without access control. * * Emits a {TargetFunctionRoleUpdated} event. */ function _setTargetFunctionRole(address target, bytes4 selector, uint64 roleId) internal virtual { _targets[target].allowedRoles[selector] = roleId; emit TargetFunctionRoleUpdated(target, selector, roleId); } /// @inheritdoc IAccessManager function setTargetAdminDelay(address target, uint32 newDelay) public virtual onlyAuthorized { _setTargetAdminDelay(target, newDelay); } /** * @dev Internal version of {setTargetAdminDelay} without access control. * * Emits a {TargetAdminDelayUpdated} event. */ function _setTargetAdminDelay(address target, uint32 newDelay) internal virtual { uint48 effect; (_targets[target].adminDelay, effect) = _targets[target].adminDelay.withUpdate(newDelay, minSetback()); emit TargetAdminDelayUpdated(target, newDelay, effect); } // =============================================== MODE MANAGEMENT ================================================ /// @inheritdoc IAccessManager function setTargetClosed(address target, bool closed) public virtual onlyAuthorized { _setTargetClosed(target, closed); } /** * @dev Set the closed flag for a contract. This is an internal setter with no access restrictions. * * Emits a {TargetClosed} event. */ function _setTargetClosed(address target, bool closed) internal virtual { if (target == address(this)) { revert AccessManagerLockedAccount(target); } _targets[target].closed = closed; emit TargetClosed(target, closed); } // ============================================== DELAYED OPERATIONS ============================================== /// @inheritdoc IAccessManager function getSchedule(bytes32 id) public view virtual returns (uint48) { uint48 timepoint = _schedules[id].timepoint; return _isExpired(timepoint) ? 0 : timepoint; } /// @inheritdoc IAccessManager function getNonce(bytes32 id) public view virtual returns (uint32) { return _schedules[id].nonce; } /// @inheritdoc IAccessManager function schedule( address target, bytes calldata data, uint48 when ) public virtual returns (bytes32 operationId, uint32 nonce) { address caller = _msgSender(); // Fetch restrictions that apply to the caller on the targeted function (, uint32 setback) = _canCallExtended(caller, target, data); uint48 minWhen = Time.timestamp() + setback; // if call with delay is not authorized, or if requested timing is too soon if (setback == 0 || (when > 0 && when < minWhen)) { revert AccessManagerUnauthorizedCall(caller, target, _checkSelector(data)); } // Reuse variable due to stack too deep when = uint48(Math.max(when, minWhen)); // cast is safe: both inputs are uint48 // If caller is authorised, schedule operation operationId = hashOperation(caller, target, data); _checkNotScheduled(operationId); unchecked { // It's not feasible to overflow the nonce in less than 1000 years nonce = _schedules[operationId].nonce + 1; } _schedules[operationId].timepoint = when; _schedules[operationId].nonce = nonce; emit OperationScheduled(operationId, nonce, when, caller, target, data); // Using named return values because otherwise we get stack too deep } /** * @dev Reverts if the operation is currently scheduled and has not expired. * (Note: This function was introduced due to stack too deep errors in schedule.) */ function _checkNotScheduled(bytes32 operationId) private view { uint48 prevTimepoint = _schedules[operationId].timepoint; if (prevTimepoint != 0 && !_isExpired(prevTimepoint)) { revert AccessManagerAlreadyScheduled(operationId); } } /// @inheritdoc IAccessManager // Reentrancy is not an issue because permissions are checked on msg.sender. Additionally, // _consumeScheduledOp guarantees a scheduled operation is only executed once. // slither-disable-next-line reentrancy-no-eth function execute(address target, bytes calldata data) public payable virtual returns (uint32) { address caller = _msgSender(); // Fetch restrictions that apply to the caller on the targeted function (bool immediate, uint32 setback) = _canCallExtended(caller, target, data); // If caller is not authorised, revert if (!immediate && setback == 0) { revert AccessManagerUnauthorizedCall(caller, target, _checkSelector(data)); } bytes32 operationId = hashOperation(caller, target, data); uint32 nonce; // If caller is authorised, check operation was scheduled early enough // Consume an available schedule even if there is no currently enforced delay if (setback != 0 || getSchedule(operationId) != 0) { nonce = _consumeScheduledOp(operationId); } // Mark the target and selector as authorised bytes32 executionIdBefore = _executionId; _executionId = _hashExecutionId(target, _checkSelector(data)); // Perform call Address.functionCallWithValue(target, data, msg.value); // Reset execute identifier _executionId = executionIdBefore; return nonce; } /// @inheritdoc IAccessManager function cancel(address caller, address target, bytes calldata data) public virtual returns (uint32) { address msgsender = _msgSender(); bytes4 selector = _checkSelector(data); bytes32 operationId = hashOperation(caller, target, data); if (_schedules[operationId].timepoint == 0) { revert AccessManagerNotScheduled(operationId); } else if (caller != msgsender) { // calls can only be canceled by the account that scheduled them, a global admin, or by a guardian of the required role. (bool isAdmin, ) = hasRole(ADMIN_ROLE, msgsender); (bool isGuardian, ) = hasRole(getRoleGuardian(getTargetFunctionRole(target, selector)), msgsender); if (!isAdmin && !isGuardian) { revert AccessManagerUnauthorizedCancel(msgsender, caller, target, selector); } } delete _schedules[operationId].timepoint; // reset the timepoint, keep the nonce uint32 nonce = _schedules[operationId].nonce; emit OperationCanceled(operationId, nonce); return nonce; } /// @inheritdoc IAccessManager function consumeScheduledOp(address caller, bytes calldata data) public virtual { address target = _msgSender(); if (IAccessManaged(target).isConsumingScheduledOp() != IAccessManaged.isConsumingScheduledOp.selector) { revert AccessManagerUnauthorizedConsume(target); } _consumeScheduledOp(hashOperation(caller, target, data)); } /** * @dev Internal variant of {consumeScheduledOp} that operates on bytes32 operationId. * * Returns the nonce of the scheduled operation that is consumed. */ function _consumeScheduledOp(bytes32 operationId) internal virtual returns (uint32) { uint48 timepoint = _schedules[operationId].timepoint; uint32 nonce = _schedules[operationId].nonce; if (timepoint == 0) { revert AccessManagerNotScheduled(operationId); } else if (timepoint > Time.timestamp()) { revert AccessManagerNotReady(operationId); } else if (_isExpired(timepoint)) { revert AccessManagerExpired(operationId); } delete _schedules[operationId].timepoint; // reset the timepoint, keep the nonce emit OperationExecuted(operationId, nonce); return nonce; } /// @inheritdoc IAccessManager function hashOperation(address caller, address target, bytes calldata data) public view virtual returns (bytes32) { return keccak256(abi.encode(caller, target, data)); } // ==================================================== OTHERS ==================================================== /// @inheritdoc IAccessManager function updateAuthority(address target, address newAuthority) public virtual onlyAuthorized { IAccessManaged(target).setAuthority(newAuthority); } // ================================================= ADMIN LOGIC ================================================== /** * @dev Check if the current call is authorized according to admin logic. */ function _checkAuthorized() private { address caller = _msgSender(); (bool immediate, uint32 delay) = _canCallSelf(caller, _msgData()); if (!immediate) { if (delay == 0) { (, uint64 requiredRole, ) = _getAdminRestrictions(_msgData()); revert AccessManagerUnauthorizedAccount(caller, requiredRole); } else { _consumeScheduledOp(hashOperation(caller, address(this), _msgData())); } } } /** * @dev Get the admin restrictions of a given function call based on the function and arguments involved. * * Returns: * - bool restricted: does this data match a restricted operation * - uint64: which role is this operation restricted to * - uint32: minimum delay to enforce for that operation (max between operation's delay and admin's execution delay) */ function _getAdminRestrictions( bytes calldata data ) private view returns (bool restricted, uint64 roleAdminId, uint32 executionDelay) { if (data.length < 4) { return (false, 0, 0); } bytes4 selector = _checkSelector(data); // Restricted to ADMIN with no delay beside any execution delay the caller may have if ( selector == this.labelRole.selector || selector == this.setRoleAdmin.selector || selector == this.setRoleGuardian.selector || selector == this.setGrantDelay.selector || selector == this.setTargetAdminDelay.selector ) { return (true, ADMIN_ROLE, 0); } // Restricted to ADMIN with the admin delay corresponding to the target if ( selector == this.updateAuthority.selector || selector == this.setTargetClosed.selector || selector == this.setTargetFunctionRole.selector ) { // First argument is a target. address target = abi.decode(data[0x04:0x24], (address)); uint32 delay = getTargetAdminDelay(target); return (true, ADMIN_ROLE, delay); } // Restricted to that role's admin with no delay beside any execution delay the caller may have. if (selector == this.grantRole.selector || selector == this.revokeRole.selector) { // First argument is a roleId. uint64 roleId = abi.decode(data[0x04:0x24], (uint64)); return (true, getRoleAdmin(roleId), 0); } return (false, 0, 0); } // =================================================== HELPERS ==================================================== /** * @dev An extended version of {canCall} for internal usage that checks {_canCallSelf} * when the target is this contract. * * Returns: * - bool immediate: whether the operation can be executed immediately (with no delay) * - uint32 delay: the execution delay */ function _canCallExtended( address caller, address target, bytes calldata data ) private view returns (bool immediate, uint32 delay) { if (target == address(this)) { return _canCallSelf(caller, data); } else { return data.length < 4 ? (false, 0) : canCall(caller, target, _checkSelector(data)); } } /** * @dev A version of {canCall} that checks for admin restrictions in this contract. */ function _canCallSelf(address caller, bytes calldata data) private view returns (bool immediate, uint32 delay) { if (data.length < 4) { return (false, 0); } if (caller == address(this)) { // Caller is AccessManager, this means the call was sent through {execute} and it already checked // permissions. We verify that the call "identifier", which is set during {execute}, is correct. return (_isExecuting(address(this), _checkSelector(data)), 0); } (bool enabled, uint64 roleId, uint32 operationDelay) = _getAdminRestrictions(data); if (!enabled) { return (false, 0); } (bool inRole, uint32 executionDelay) = hasRole(roleId, caller); if (!inRole) { return (false, 0); } // downcast is safe because both options are uint32 delay = uint32(Math.max(operationDelay, executionDelay)); return (delay == 0, delay); } /** * @dev Returns true if a call with `target` and `selector` is being executed via {executed}. */ function _isExecuting(address target, bytes4 selector) private view returns (bool) { return _executionId == _hashExecutionId(target, selector); } /** * @dev Returns true if a schedule timepoint is past its expiration deadline. */ function _isExpired(uint48 timepoint) private view returns (bool) { return timepoint + expiration() <= Time.timestamp(); } /** * @dev Extracts the selector from calldata. Panics if data is not at least 4 bytes */ function _checkSelector(bytes calldata data) private pure returns (bytes4) { return bytes4(data[0:4]); } /** * @dev Hashing function for execute protection */ function _hashExecutionId(address target, bytes4 selector) private pure returns (bytes32) { return keccak256(abi.encode(target, selector)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManager.sol) pragma solidity ^0.8.20; import {IAccessManaged} from "./IAccessManaged.sol"; import {Time} from "../../utils/types/Time.sol"; interface IAccessManager { /** * @dev A delayed operation was scheduled. */ event OperationScheduled( bytes32 indexed operationId, uint32 indexed nonce, uint48 schedule, address caller, address target, bytes data ); /** * @dev A scheduled operation was executed. */ event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce); /** * @dev A scheduled operation was canceled. */ event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce); /** * @dev Informational labelling for a roleId. */ event RoleLabel(uint64 indexed roleId, string label); /** * @dev Emitted when `account` is granted `roleId`. * * NOTE: The meaning of the `since` argument depends on the `newMember` argument. * If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role, * otherwise it indicates the execution delay for this account and roleId is updated. */ event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember); /** * @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous. */ event RoleRevoked(uint64 indexed roleId, address indexed account); /** * @dev Role acting as admin over a given `roleId` is updated. */ event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin); /** * @dev Role acting as guardian over a given `roleId` is updated. */ event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian); /** * @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached. */ event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since); /** * @dev Target mode is updated (true = closed, false = open). */ event TargetClosed(address indexed target, bool closed); /** * @dev Role required to invoke `selector` on `target` is updated to `roleId`. */ event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId); /** * @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached. */ event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since); error AccessManagerAlreadyScheduled(bytes32 operationId); error AccessManagerNotScheduled(bytes32 operationId); error AccessManagerNotReady(bytes32 operationId); error AccessManagerExpired(bytes32 operationId); error AccessManagerLockedAccount(address account); error AccessManagerLockedRole(uint64 roleId); error AccessManagerBadConfirmation(); error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId); error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector); error AccessManagerUnauthorizedConsume(address target); error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector); error AccessManagerInvalidInitialAdmin(address initialAdmin); /** * @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with * no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule} * & {execute} workflow. * * This function is usually called by the targeted contract to control immediate execution of restricted functions. * Therefore we only return true if the call can be performed without any delay. If the call is subject to a * previously set delay (not zero), then the function should return false and the caller should schedule the operation * for future execution. * * If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise * the operation can be executed if and only if delay is greater than 0. * * NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that * is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail * to identify the indirect workflow, and will consider calls that require a delay to be forbidden. * * NOTE: This function does not report the permissions of this manager itself. These are defined by the * {_canCallSelf} function instead. */ function canCall( address caller, address target, bytes4 selector ) external view returns (bool allowed, uint32 delay); /** * @dev Expiration delay for scheduled proposals. Defaults to 1 week. * * IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately, * disabling any scheduling usage. */ function expiration() external view returns (uint32); /** * @dev Minimum setback for all delay updates, with the exception of execution delays. It * can be increased without setback (and reset via {revokeRole} in the case event of an * accidental increase). Defaults to 5 days. */ function minSetback() external view returns (uint32); /** * @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied. */ function isTargetClosed(address target) external view returns (bool); /** * @dev Get the role required to call a function. */ function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64); /** * @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay. */ function getTargetAdminDelay(address target) external view returns (uint32); /** * @dev Get the id of the role that acts as an admin for the given role. * * The admin permission is required to grant the role, revoke the role and update the execution delay to execute * an operation that is restricted to this role. */ function getRoleAdmin(uint64 roleId) external view returns (uint64); /** * @dev Get the role that acts as a guardian for a given role. * * The guardian permission allows canceling operations that have been scheduled under the role. */ function getRoleGuardian(uint64 roleId) external view returns (uint64); /** * @dev Get the role current grant delay. * * Its value may change at any point without an event emitted following a call to {setGrantDelay}. * Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event. */ function getRoleGrantDelay(uint64 roleId) external view returns (uint32); /** * @dev Get the access details for a given account for a given role. These details include the timepoint at which * membership becomes active, and the delay applied to all operation by this user that requires this permission * level. * * Returns: * [0] Timestamp at which the account membership becomes valid. 0 means role is not granted. * [1] Current execution delay for the account. * [2] Pending execution delay for the account. * [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled. */ function getAccess(uint64 roleId, address account) external view returns (uint48, uint32, uint32, uint48); /** * @dev Check if a given account currently has the permission level corresponding to a given role. Note that this * permission might be associated with an execution delay. {getAccess} can provide more details. */ function hasRole(uint64 roleId, address account) external view returns (bool, uint32); /** * @dev Give a label to a role, for improved role discoverability by UIs. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleLabel} event. */ function labelRole(uint64 roleId, string calldata label) external; /** * @dev Add `account` to `roleId`, or change its execution delay. * * This gives the account the authorization to call any function that is restricted to this role. An optional * execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation * that is restricted to members of this role. The user will only be able to execute the operation after the delay has * passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}). * * If the account has already been granted this role, the execution delay will be updated. This update is not * immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is * called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any * operation executed in the 3 hours that follows this update was indeed scheduled before this update. * * Requirements: * * - the caller must be an admin for the role (see {getRoleAdmin}) * - granted role must not be the `PUBLIC_ROLE` * * Emits a {RoleGranted} event. */ function grantRole(uint64 roleId, address account, uint32 executionDelay) external; /** * @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has * no effect. * * Requirements: * * - the caller must be an admin for the role (see {getRoleAdmin}) * - revoked role must not be the `PUBLIC_ROLE` * * Emits a {RoleRevoked} event if the account had the role. */ function revokeRole(uint64 roleId, address account) external; /** * @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in * the role this call has no effect. * * Requirements: * * - the caller must be `callerConfirmation`. * * Emits a {RoleRevoked} event if the account had the role. */ function renounceRole(uint64 roleId, address callerConfirmation) external; /** * @dev Change admin role for a given role. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleAdminChanged} event */ function setRoleAdmin(uint64 roleId, uint64 admin) external; /** * @dev Change guardian role for a given role. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleGuardianChanged} event */ function setRoleGuardian(uint64 roleId, uint64 guardian) external; /** * @dev Update the delay for granting a `roleId`. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleGrantDelayChanged} event. */ function setGrantDelay(uint64 roleId, uint32 newDelay) external; /** * @dev Set the role required to call functions identified by the `selectors` in the `target` contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetFunctionRoleUpdated} event per selector. */ function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external; /** * @dev Set the delay for changing the configuration of a given target contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetAdminDelayUpdated} event. */ function setTargetAdminDelay(address target, uint32 newDelay) external; /** * @dev Set the closed flag for a contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetClosed} event. */ function setTargetClosed(address target, bool closed) external; /** * @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the * operation is not yet scheduled, has expired, was executed, or was canceled. */ function getSchedule(bytes32 id) external view returns (uint48); /** * @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never * been scheduled. */ function getNonce(bytes32 id) external view returns (uint32); /** * @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to * choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays * required for the caller. The special value zero will automatically set the earliest possible time. * * Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when * the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this * scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}. * * Emits a {OperationScheduled} event. * * NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If * this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target * contract if it is using standard Solidity ABI encoding. */ function schedule(address target, bytes calldata data, uint48 when) external returns (bytes32, uint32); /** * @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the * execution delay is 0. * * Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the * operation wasn't previously scheduled (if the caller doesn't have an execution delay). * * Emits an {OperationExecuted} event only if the call was scheduled and delayed. */ function execute(address target, bytes calldata data) external payable returns (uint32); /** * @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled * operation that is cancelled. * * Requirements: * * - the caller must be the proposer, a guardian of the targeted function, or a global admin * * Emits a {OperationCanceled} event. */ function cancel(address caller, address target, bytes calldata data) external returns (uint32); /** * @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed * (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error. * * This is useful for contract that want to enforce that calls targeting them were scheduled on the manager, * with all the verifications that it implies. * * Emit a {OperationExecuted} event. */ function consumeScheduledOp(address caller, bytes calldata data) external; /** * @dev Hashing function for delayed operations. */ function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32); /** * @dev Changes the authority of a target managed by this manager instance. * * Requirements: * * - the caller must be a global admin */ function updateAuthority(address target, address newAuthority) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol) pragma solidity ^0.8.20; interface IAccessManaged { /** * @dev Authority that manages this contract was updated. */ event AuthorityUpdated(address authority); error AccessManagedUnauthorized(address caller); error AccessManagedRequiredDelay(address caller, uint32 delay); error AccessManagedInvalidAuthority(address authority); /** * @dev Returns the current authority. */ function authority() external view returns (address); /** * @dev Transfers control to a new authority. The caller must be the current authority. */ function setAuthority(address) external; /** * @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is * being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs * attacker controlled calls. */ function isConsumingScheduledOp() external view returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Multicall.sol) pragma solidity ^0.8.20; import {Address} from "./Address.sol"; import {Context} from "./Context.sol"; /** * @dev Provides a function to batch together multiple calls in a single external call. * * Consider any assumption about calldata validation performed by the sender may be violated if it's not especially * careful about sending transactions invoking {multicall}. For example, a relay address that filters function * selectors won't filter calls nested within a {multicall} operation. * * NOTE: Since 5.0.1 and 4.9.4, this contract identifies non-canonical contexts (i.e. `msg.sender` is not {_msgSender}). * If a non-canonical context is identified, the following self `delegatecall` appends the last bytes of `msg.data` * to the subcall. This makes it safe to use with {ERC2771Context}. Contexts that don't affect the resolution of * {_msgSender} are not propagated to subcalls. */ abstract contract Multicall is Context { /** * @dev Receives and executes a batch of function calls on this contract. * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) { bytes memory context = msg.sender == _msgSender() ? new bytes(0) : msg.data[msg.data.length - _contextSuffixLength():]; results = new bytes[](data.length); for (uint256 i = 0; i < data.length; i++) { results[i] = Address.functionDelegateCall(address(this), bytes.concat(data[i], context)); } return results; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol) pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; import {SafeCast} from "../math/SafeCast.sol"; /** * @dev This library provides helpers for manipulating time-related objects. * * It uses the following types: * - `uint48` for timepoints * - `uint32` for durations * * While the library doesn't provide specific types for timepoints and duration, it does provide: * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point * - additional helper functions */ library Time { using Time for *; /** * @dev Get the block timestamp as a Timepoint. */ function timestamp() internal view returns (uint48) { return SafeCast.toUint48(block.timestamp); } /** * @dev Get the block number as a Timepoint. */ function blockNumber() internal view returns (uint48) { return SafeCast.toUint48(block.number); } // ==================================================== Delay ===================================================== /** * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value. * This allows updating the delay applied to some operation while keeping some guarantees. * * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should * still apply for some time. * * * The `Delay` type is 112 bits long, and packs the following: * * ``` * | [uint48]: effect date (timepoint) * | | [uint32]: value before (duration) * ↓ ↓ ↓ [uint32]: value after (duration) * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC * ``` * * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently * supported. */ type Delay is uint112; /** * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature */ function toDelay(uint32 duration) internal pure returns (Delay) { return Delay.wrap(duration); } /** * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered. */ function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) { (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack(); return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect); } /** * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the * effect timepoint is 0, then the pending value should not be considered. */ function getFull(Delay self) internal view returns (uint32, uint32, uint48) { return _getFullAt(self, timestamp()); } /** * @dev Get the current value. */ function get(Delay self) internal view returns (uint32) { (uint32 delay, , ) = self.getFull(); return delay; } /** * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the * new delay becomes effective. */ function withUpdate( Delay self, uint32 newValue, uint32 minSetback ) internal view returns (Delay updatedDelay, uint48 effect) { uint32 value = self.get(); uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0)); effect = timestamp() + setback; return (pack(value, newValue, effect), effect); } /** * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint). */ function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { uint112 raw = Delay.unwrap(self); valueAfter = uint32(raw); valueBefore = uint32(raw >> 32); effect = uint48(raw >> 64); return (valueBefore, valueAfter, effect); } /** * @dev pack the components into a Delay object. */ function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) { return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } }
{ "remappings": [ "ds-test/=node_modules/forge-std/lib/ds-test/src/", "erc4626-tests/=node_modules/erc4626-tests/", "forge-std/=node_modules/forge-std/src/", "@openzeppelin-contracts-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/", "@openzeppelin/contracts-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/", "@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/", "@connext/=node_modules/@connext/", "@crytic/=node_modules/@crytic/properties/", "eigenlayer/=node_modules/eigenlayer-contracts/src/contracts/", "eigenlayer-middleware/=node_modules/eigenlayer-middleware/src/", "eigenlayer-test/=node_modules/eigenlayer-contracts/src/test/", "eigenlayer-contracts/=node_modules/eigenlayer-contracts/", "rave/=node_modules/rave/src/", "rave-test/=node_modules/rave/test/", "murky/=node_modules/murky/src/", "l2-contracts/=node_modules/l2-contracts/", "mainnet-contracts/=node_modules/mainnet-contracts/", "openzeppelin-foundry-upgrades/=node_modules/openzeppelin-foundry-upgrades/src/", "solidity-stringutils/=node_modules/solidity-stringutils/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"communityMultisig","type":"address"},{"internalType":"address","name":"operationsMultisig","type":"address"},{"internalType":"address","name":"pauser","type":"address"},{"internalType":"address","name":"accessManager","type":"address"},{"internalType":"uint256","name":"initialDelay","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"BadAddress","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"uint256","name":"delay","type":"uint256"}],"name":"InvalidDelay","type":"error"},{"inputs":[],"name":"InvalidParams","type":"error"},{"inputs":[{"internalType":"bytes32","name":"txHash","type":"bytes32"}],"name":"InvalidTransaction","type":"error"},{"inputs":[{"internalType":"bytes32","name":"txHash","type":"bytes32"},{"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"name":"Locked","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldDelay","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newDelay","type":"uint256"}],"name":"DelayChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldPauser","type":"address"},{"indexed":false,"internalType":"address","name":"newPauser","type":"address"}],"name":"PauserChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"txHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"target","type":"address"},{"indexed":false,"internalType":"bytes","name":"callData","type":"bytes"},{"indexed":true,"internalType":"uint256","name":"operationId","type":"uint256"}],"name":"TransactionCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"txHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"target","type":"address"},{"indexed":false,"internalType":"bytes","name":"callData","type":"bytes"},{"indexed":true,"internalType":"uint256","name":"operationId","type":"uint256"}],"name":"TransactionExecuted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"txHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"target","type":"address"},{"indexed":false,"internalType":"bytes","name":"callData","type":"bytes"},{"indexed":true,"internalType":"uint256","name":"operationId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"name":"TransactionQueued","type":"event"},{"inputs":[],"name":"ACCESS_MANAGER","outputs":[{"internalType":"contract AccessManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"COMMUNITY_MULTISIG","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINIMUM_DELAY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATIONS_MULTISIG","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"operationId","type":"uint256"}],"name":"cancelTransaction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"delay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"operationId","type":"uint256"}],"name":"executeTransaction","outputs":[{"internalType":"bytes","name":"returnData","type":"bytes"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"targets","type":"address[]"}],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"targets","type":"address[]"},{"internalType":"bytes4[][]","name":"selectors","type":"bytes4[][]"}],"name":"pauseSelectors","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pauserMultisig","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"transactionHash","type":"bytes32"}],"name":"queue","outputs":[{"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"operationId","type":"uint256"}],"name":"queueTransaction","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newDelay","type":"uint256"}],"name":"setDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newPauser","type":"address"}],"name":"setPauser","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60e060405234801561000f575f5ffd5b506040516115e73803806115e783398101604081905261002e916101a1565b61003a8585858561007a565b6001600160a01b0385811660805284811660a052600180546001600160a01b031916858316179055821660c0526100708161011c565b50505050506101fb565b6001600160a01b0384166100a1576040516332691b5760e01b815260040160405180910390fd5b6001600160a01b0383166100c8576040516332691b5760e01b815260040160405180910390fd5b6001600160a01b0382166100ef576040516332691b5760e01b815260040160405180910390fd5b6001600160a01b038116610116576040516332691b5760e01b815260040160405180910390fd5b50505050565b62093a80811015610147576040516309913ab360e31b81526004810182905260240160405180910390fd5b5f5460408051918252602082018390527fe238f342cc2d86b842f1511bd768de5dbea53639f6b5335c5d877543bc355c71910160405180910390a15f55565b80516001600160a01b038116811461019c575f5ffd5b919050565b5f5f5f5f5f60a086880312156101b5575f5ffd5b6101be86610186565b94506101cc60208701610186565b93506101da60408701610186565b92506101e860608701610186565b9150608086015190509295509295909350565b60805160a05160c0516113916102565f395f818161015a015281816107e40152818161095f0152610a5901525f818161011e015281816102be01528181610401015261059701525f81816101ca01526104a601526113915ff3fe608060405234801561000f575f5ffd5b50600436106100e5575f3560e01c80637780ba1a116100885780639755c6a7116100635780639755c6a71461021e578063b1b43ae514610231578063b607d00f1461023b578063e177246e1461024e575f5ffd5b80637780ba1a146101c55780637c10dea6146101ec5780638c3dc5c11461020b575f5ffd5b80633a7b7a39116100c35780633a7b7a391461015557806350b6386f1461017c5780636a42b8f81461018f5780636b8d7a12146101a5575f5ffd5b80630ea850f6146100e957806329009066146101195780632d88af4a14610140575b5f5ffd5b6001546100fc906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b6100fc7f000000000000000000000000000000000000000000000000000000000000000081565b61015361014e366004610d1e565b610261565b005b6100fc7f000000000000000000000000000000000000000000000000000000000000000081565b61015361018a366004610da1565b6102b3565b6101975f5481565b604051908152602001610110565b6101b86101b3366004610e34565b6103cd565b6040516101109190610ee5565b6100fc7f000000000000000000000000000000000000000000000000000000000000000081565b6101976101fa366004610ef7565b60026020525f908152604090205481565b610197610219366004610da1565b61058b565b61015361022c366004610f55565b6106a6565b61019762093a8081565b610153610249366004610f93565b610861565b61015361025c366004610ef7565b610ad8565b333014610280576040516282b42960e81b815260040160405180910390fd5b6001600160a01b0381166102a7576040516332691b5760e01b815260040160405180910390fd5b6102b081610b00565b50565b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016148015906102ec5750333014155b15610309576040516282b42960e81b815260040160405180910390fd5b5f83838360405160200161031f93929190610ffd565b60405160208183030381529060405280519060200120905060025f8281526020019081526020015f20545f0361037057604051631416489560e31b8152600481018290526024015b60405180910390fd5b5f81815260026020526040808220919091555182906001600160a01b0386169083907f4b02192b257234d0b6923d1cf041a4b39c504132836d60650632cd161c29ba7f906103bf908890610ee5565b60405180910390a450505050565b60605f858585856040516020016103e79493929190611058565b6040516020818303038152906040528051906020012090507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316336001600160a01b03160361049b575f818152600260205260408120549081900361046a57604051631416489560e31b815260048101839052602401610367565b80421015610495576040516383ead0c560e01b81526004810183905260248101829052604401610367565b506104e3565b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146104e3576040516282b42960e81b815260040160405180910390fd5b5f818152600260209081526040808320929092558151601f870182900482028101820190925285825261053b919087908790819084018382808284375f92019190915250506001600160a01b038a1692915050610b69565b915082866001600160a01b0316827fc7c496b6b1839782c38a269d6c0426f05129d0374b7ee175e8571f96e21e02ca888860405161057a92919061108d565b60405180910390a450949350505050565b5f336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146105d4576040516282b42960e81b815260040160405180910390fd5b5f8484846040516020016105ea93929190610ffd565b6040516020818303038152906040528051906020012090505f5f544261061091906110a8565b5f838152600260205260409020549091501561064257604051631416489560e31b815260048101839052602401610367565b5f82815260026020526040908190208290555184906001600160a01b0388169084907f5548e4b06f16c2bb2224a884464ab659f6284c75e5bd7ffc9d73c32ca7d5d7be90610693908a9087906110c7565b60405180910390a45090505b9392505050565b6001546001600160a01b031633148015906106c15750333014155b156106de576040516282b42960e81b815260040160405180910390fd5b5f816001600160401b038111156106f7576106f7610d37565b60405190808252806020026020018201604052801561072a57816020015b60608152602001906001900390816107155790505b5090505f5b828110156107cc57838382818110610749576107496110e8565b905060200201602081019061075e9190610d1e565b6040516001600160a01b0390911660248201526001604482015260640160408051601f198184030181529190526020810180516001600160e01b031663167bd39560e01b17905282518390839081106107b9576107b96110e8565b602090810291909101015260010161072f565b50604051631592ca1b60e31b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169063ac9650d8906108199084906004016110fc565b5f604051808303815f875af1158015610834573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f1916820160405261085b919081019061115f565b50505050565b82811461088157604051635435b28960e11b815260040160405180910390fd5b6001546001600160a01b0316331480159061089c5750333014155b156108b9576040516282b42960e81b815260040160405180910390fd5b5f836001600160401b038111156108d2576108d2610d37565b60405190808252806020026020018201604052801561090557816020015b60608152602001906001900390816108f05790505b5090505f5b84811015610a4157858582818110610924576109246110e8565b90506020020160208101906109399190610d1e565b84848381811061094b5761094b6110e8565b905060200281019061095d9190611265565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166375b238fc6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156109b9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109dd91906112aa565b6040516024016109f094939291906112d0565b60408051601f198184030181529190526020810180516001600160e01b03166308d6122d60e01b1790528251839083908110610a2e57610a2e6110e8565b602090810291909101015260010161090a565b50604051631592ca1b60e31b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169063ac9650d890610a8e9084906004016110fc565b5f604051808303815f875af1158015610aa9573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610ad0919081019061115f565b505050505050565b333014610af7576040516282b42960e81b815260040160405180910390fd5b6102b081610b7f565b600154604080516001600160a01b03928316815291831660208301527f95bb211a5a393c4d30c3edc9a745825fba4e6ad3e3bb949e6bf8ccdfe431a811910160405180910390a1600180546001600160a01b0319166001600160a01b0392909216919091179055565b6060610b7683835f610be5565b90505b92915050565b62093a80811015610ba6576040516309913ab360e31b815260048101829052602401610367565b5f5460408051918252602082018390527fe238f342cc2d86b842f1511bd768de5dbea53639f6b5335c5d877543bc355c71910160405180910390a15f55565b606081471015610c0a5760405163cd78605960e01b8152306004820152602401610367565b5f5f856001600160a01b03168486604051610c259190611345565b5f6040518083038185875af1925050503d805f8114610c5f576040519150601f19603f3d011682016040523d82523d5f602084013e610c64565b606091505b5091509150610c74868383610c7e565b9695505050505050565b606082610c9357610c8e82610cda565b61069f565b8151158015610caa57506001600160a01b0384163b155b15610cd357604051639996b31560e01b81526001600160a01b0385166004820152602401610367565b508061069f565b805115610cea5780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b80356001600160a01b0381168114610d19575f5ffd5b919050565b5f60208284031215610d2e575f5ffd5b610b7682610d03565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f191681016001600160401b0381118282101715610d7357610d73610d37565b604052919050565b5f6001600160401b03821115610d9357610d93610d37565b50601f01601f191660200190565b5f5f5f60608486031215610db3575f5ffd5b610dbc84610d03565b925060208401356001600160401b03811115610dd6575f5ffd5b8401601f81018613610de6575f5ffd5b8035610df9610df482610d7b565b610d4b565b818152876020838501011115610e0d575f5ffd5b816020840160208301375f9181016020019190915293969395505050506040919091013590565b5f5f5f5f60608587031215610e47575f5ffd5b610e5085610d03565b935060208501356001600160401b03811115610e6a575f5ffd5b8501601f81018713610e7a575f5ffd5b80356001600160401b03811115610e8f575f5ffd5b876020828401011115610ea0575f5ffd5b949760209190910196509394604001359392505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610b766020830184610eb7565b5f60208284031215610f07575f5ffd5b5035919050565b5f5f83601f840112610f1e575f5ffd5b5081356001600160401b03811115610f34575f5ffd5b6020830191508360208260051b8501011115610f4e575f5ffd5b9250929050565b5f5f60208385031215610f66575f5ffd5b82356001600160401b03811115610f7b575f5ffd5b610f8785828601610f0e565b90969095509350505050565b5f5f5f5f60408587031215610fa6575f5ffd5b84356001600160401b03811115610fbb575f5ffd5b610fc787828801610f0e565b90955093505060208501356001600160401b03811115610fe5575f5ffd5b610ff187828801610f0e565b95989497509550505050565b6001600160a01b03841681526060602082018190525f9061102090830185610eb7565b9050826040830152949350505050565b81835281816020850137505f828201602090810191909152601f909101601f19169091010190565b6001600160a01b03851681526060602082018190525f9061107c9083018587611030565b905082604083015295945050505050565b602081525f6110a0602083018486611030565b949350505050565b80820180821115610b7957634e487b7160e01b5f52601160045260245ffd5b604081525f6110d96040830185610eb7565b90508260208301529392505050565b634e487b7160e01b5f52603260045260245ffd5b5f602082016020835280845180835260408501915060408160051b8601019250602086015f5b8281101561115357603f1987860301845261113e858351610eb7565b94506020938401939190910190600101611122565b50929695505050505050565b5f6020828403121561116f575f5ffd5b81516001600160401b03811115611184575f5ffd5b8201601f81018413611194575f5ffd5b80516001600160401b038111156111ad576111ad610d37565b8060051b6111bd60208201610d4b565b918252602081840181019290810190878411156111d8575f5ffd5b6020850192505b8383101561125a5782516001600160401b038111156111fc575f5ffd5b8501603f8101891361120c575f5ffd5b602081015161121d610df482610d7b565b8181526040838301018b1015611231575f5ffd5b8160408401602083015e5f602083830101528085525050506020820191506020830192506111df565b979650505050505050565b5f5f8335601e1984360301811261127a575f5ffd5b8301803591506001600160401b03821115611293575f5ffd5b6020019150600581901b3603821315610f4e575f5ffd5b5f602082840312156112ba575f5ffd5b81516001600160401b038116811461069f575f5ffd5b6001600160a01b038516815260606020820181905281018390525f8460808301825b868110156113275782356001600160e01b03198116808214611312575f5ffd5b835250602092830192909101906001016112f2565b5080925050506001600160401b038316604083015295945050505050565b5f82518060208501845e5f92019182525091905056fea26469706673582212209a939089f443b8be3d18f85f56761ff2f36b6600de7a418254a56cc5f05b7d3c64736f6c634300081c0033000000000000000000000000e417fd3b116eb604de2e14715daeb099154e597b00000000000000000000000036e3881ff855c264045c22179b6fbc01430f97ec0000000000000000000000000b975bb578e9111977bc75b667f3c18f96cd03e7000000000000000000000000386edd14a5cdb642ab32d2beeb62ffe70c8531c70000000000000000000000000000000000000000000000000000000000093a80
Deployed Bytecode
0x608060405234801561000f575f5ffd5b50600436106100e5575f3560e01c80637780ba1a116100885780639755c6a7116100635780639755c6a71461021e578063b1b43ae514610231578063b607d00f1461023b578063e177246e1461024e575f5ffd5b80637780ba1a146101c55780637c10dea6146101ec5780638c3dc5c11461020b575f5ffd5b80633a7b7a39116100c35780633a7b7a391461015557806350b6386f1461017c5780636a42b8f81461018f5780636b8d7a12146101a5575f5ffd5b80630ea850f6146100e957806329009066146101195780632d88af4a14610140575b5f5ffd5b6001546100fc906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b6100fc7f00000000000000000000000036e3881ff855c264045c22179b6fbc01430f97ec81565b61015361014e366004610d1e565b610261565b005b6100fc7f000000000000000000000000386edd14a5cdb642ab32d2beeb62ffe70c8531c781565b61015361018a366004610da1565b6102b3565b6101975f5481565b604051908152602001610110565b6101b86101b3366004610e34565b6103cd565b6040516101109190610ee5565b6100fc7f000000000000000000000000e417fd3b116eb604de2e14715daeb099154e597b81565b6101976101fa366004610ef7565b60026020525f908152604090205481565b610197610219366004610da1565b61058b565b61015361022c366004610f55565b6106a6565b61019762093a8081565b610153610249366004610f93565b610861565b61015361025c366004610ef7565b610ad8565b333014610280576040516282b42960e81b815260040160405180910390fd5b6001600160a01b0381166102a7576040516332691b5760e01b815260040160405180910390fd5b6102b081610b00565b50565b336001600160a01b037f00000000000000000000000036e3881ff855c264045c22179b6fbc01430f97ec16148015906102ec5750333014155b15610309576040516282b42960e81b815260040160405180910390fd5b5f83838360405160200161031f93929190610ffd565b60405160208183030381529060405280519060200120905060025f8281526020019081526020015f20545f0361037057604051631416489560e31b8152600481018290526024015b60405180910390fd5b5f81815260026020526040808220919091555182906001600160a01b0386169083907f4b02192b257234d0b6923d1cf041a4b39c504132836d60650632cd161c29ba7f906103bf908890610ee5565b60405180910390a450505050565b60605f858585856040516020016103e79493929190611058565b6040516020818303038152906040528051906020012090507f00000000000000000000000036e3881ff855c264045c22179b6fbc01430f97ec6001600160a01b0316336001600160a01b03160361049b575f818152600260205260408120549081900361046a57604051631416489560e31b815260048101839052602401610367565b80421015610495576040516383ead0c560e01b81526004810183905260248101829052604401610367565b506104e3565b336001600160a01b037f000000000000000000000000e417fd3b116eb604de2e14715daeb099154e597b16146104e3576040516282b42960e81b815260040160405180910390fd5b5f818152600260209081526040808320929092558151601f870182900482028101820190925285825261053b919087908790819084018382808284375f92019190915250506001600160a01b038a1692915050610b69565b915082866001600160a01b0316827fc7c496b6b1839782c38a269d6c0426f05129d0374b7ee175e8571f96e21e02ca888860405161057a92919061108d565b60405180910390a450949350505050565b5f336001600160a01b037f00000000000000000000000036e3881ff855c264045c22179b6fbc01430f97ec16146105d4576040516282b42960e81b815260040160405180910390fd5b5f8484846040516020016105ea93929190610ffd565b6040516020818303038152906040528051906020012090505f5f544261061091906110a8565b5f838152600260205260409020549091501561064257604051631416489560e31b815260048101839052602401610367565b5f82815260026020526040908190208290555184906001600160a01b0388169084907f5548e4b06f16c2bb2224a884464ab659f6284c75e5bd7ffc9d73c32ca7d5d7be90610693908a9087906110c7565b60405180910390a45090505b9392505050565b6001546001600160a01b031633148015906106c15750333014155b156106de576040516282b42960e81b815260040160405180910390fd5b5f816001600160401b038111156106f7576106f7610d37565b60405190808252806020026020018201604052801561072a57816020015b60608152602001906001900390816107155790505b5090505f5b828110156107cc57838382818110610749576107496110e8565b905060200201602081019061075e9190610d1e565b6040516001600160a01b0390911660248201526001604482015260640160408051601f198184030181529190526020810180516001600160e01b031663167bd39560e01b17905282518390839081106107b9576107b96110e8565b602090810291909101015260010161072f565b50604051631592ca1b60e31b81526001600160a01b037f000000000000000000000000386edd14a5cdb642ab32d2beeb62ffe70c8531c7169063ac9650d8906108199084906004016110fc565b5f604051808303815f875af1158015610834573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f1916820160405261085b919081019061115f565b50505050565b82811461088157604051635435b28960e11b815260040160405180910390fd5b6001546001600160a01b0316331480159061089c5750333014155b156108b9576040516282b42960e81b815260040160405180910390fd5b5f836001600160401b038111156108d2576108d2610d37565b60405190808252806020026020018201604052801561090557816020015b60608152602001906001900390816108f05790505b5090505f5b84811015610a4157858582818110610924576109246110e8565b90506020020160208101906109399190610d1e565b84848381811061094b5761094b6110e8565b905060200281019061095d9190611265565b7f000000000000000000000000386edd14a5cdb642ab32d2beeb62ffe70c8531c76001600160a01b03166375b238fc6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156109b9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109dd91906112aa565b6040516024016109f094939291906112d0565b60408051601f198184030181529190526020810180516001600160e01b03166308d6122d60e01b1790528251839083908110610a2e57610a2e6110e8565b602090810291909101015260010161090a565b50604051631592ca1b60e31b81526001600160a01b037f000000000000000000000000386edd14a5cdb642ab32d2beeb62ffe70c8531c7169063ac9650d890610a8e9084906004016110fc565b5f604051808303815f875af1158015610aa9573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610ad0919081019061115f565b505050505050565b333014610af7576040516282b42960e81b815260040160405180910390fd5b6102b081610b7f565b600154604080516001600160a01b03928316815291831660208301527f95bb211a5a393c4d30c3edc9a745825fba4e6ad3e3bb949e6bf8ccdfe431a811910160405180910390a1600180546001600160a01b0319166001600160a01b0392909216919091179055565b6060610b7683835f610be5565b90505b92915050565b62093a80811015610ba6576040516309913ab360e31b815260048101829052602401610367565b5f5460408051918252602082018390527fe238f342cc2d86b842f1511bd768de5dbea53639f6b5335c5d877543bc355c71910160405180910390a15f55565b606081471015610c0a5760405163cd78605960e01b8152306004820152602401610367565b5f5f856001600160a01b03168486604051610c259190611345565b5f6040518083038185875af1925050503d805f8114610c5f576040519150601f19603f3d011682016040523d82523d5f602084013e610c64565b606091505b5091509150610c74868383610c7e565b9695505050505050565b606082610c9357610c8e82610cda565b61069f565b8151158015610caa57506001600160a01b0384163b155b15610cd357604051639996b31560e01b81526001600160a01b0385166004820152602401610367565b508061069f565b805115610cea5780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b80356001600160a01b0381168114610d19575f5ffd5b919050565b5f60208284031215610d2e575f5ffd5b610b7682610d03565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f191681016001600160401b0381118282101715610d7357610d73610d37565b604052919050565b5f6001600160401b03821115610d9357610d93610d37565b50601f01601f191660200190565b5f5f5f60608486031215610db3575f5ffd5b610dbc84610d03565b925060208401356001600160401b03811115610dd6575f5ffd5b8401601f81018613610de6575f5ffd5b8035610df9610df482610d7b565b610d4b565b818152876020838501011115610e0d575f5ffd5b816020840160208301375f9181016020019190915293969395505050506040919091013590565b5f5f5f5f60608587031215610e47575f5ffd5b610e5085610d03565b935060208501356001600160401b03811115610e6a575f5ffd5b8501601f81018713610e7a575f5ffd5b80356001600160401b03811115610e8f575f5ffd5b876020828401011115610ea0575f5ffd5b949760209190910196509394604001359392505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f610b766020830184610eb7565b5f60208284031215610f07575f5ffd5b5035919050565b5f5f83601f840112610f1e575f5ffd5b5081356001600160401b03811115610f34575f5ffd5b6020830191508360208260051b8501011115610f4e575f5ffd5b9250929050565b5f5f60208385031215610f66575f5ffd5b82356001600160401b03811115610f7b575f5ffd5b610f8785828601610f0e565b90969095509350505050565b5f5f5f5f60408587031215610fa6575f5ffd5b84356001600160401b03811115610fbb575f5ffd5b610fc787828801610f0e565b90955093505060208501356001600160401b03811115610fe5575f5ffd5b610ff187828801610f0e565b95989497509550505050565b6001600160a01b03841681526060602082018190525f9061102090830185610eb7565b9050826040830152949350505050565b81835281816020850137505f828201602090810191909152601f909101601f19169091010190565b6001600160a01b03851681526060602082018190525f9061107c9083018587611030565b905082604083015295945050505050565b602081525f6110a0602083018486611030565b949350505050565b80820180821115610b7957634e487b7160e01b5f52601160045260245ffd5b604081525f6110d96040830185610eb7565b90508260208301529392505050565b634e487b7160e01b5f52603260045260245ffd5b5f602082016020835280845180835260408501915060408160051b8601019250602086015f5b8281101561115357603f1987860301845261113e858351610eb7565b94506020938401939190910190600101611122565b50929695505050505050565b5f6020828403121561116f575f5ffd5b81516001600160401b03811115611184575f5ffd5b8201601f81018413611194575f5ffd5b80516001600160401b038111156111ad576111ad610d37565b8060051b6111bd60208201610d4b565b918252602081840181019290810190878411156111d8575f5ffd5b6020850192505b8383101561125a5782516001600160401b038111156111fc575f5ffd5b8501603f8101891361120c575f5ffd5b602081015161121d610df482610d7b565b8181526040838301018b1015611231575f5ffd5b8160408401602083015e5f602083830101528085525050506020820191506020830192506111df565b979650505050505050565b5f5f8335601e1984360301811261127a575f5ffd5b8301803591506001600160401b03821115611293575f5ffd5b6020019150600581901b3603821315610f4e575f5ffd5b5f602082840312156112ba575f5ffd5b81516001600160401b038116811461069f575f5ffd5b6001600160a01b038516815260606020820181905281018390525f8460808301825b868110156113275782356001600160e01b03198116808214611312575f5ffd5b835250602092830192909101906001016112f2565b5080925050506001600160401b038316604083015295945050505050565b5f82518060208501845e5f92019182525091905056fea26469706673582212209a939089f443b8be3d18f85f56761ff2f36b6600de7a418254a56cc5f05b7d3c64736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000e417fd3b116eb604de2e14715daeb099154e597b00000000000000000000000036e3881ff855c264045c22179b6fbc01430f97ec0000000000000000000000000b975bb578e9111977bc75b667f3c18f96cd03e7000000000000000000000000386edd14a5cdb642ab32d2beeb62ffe70c8531c70000000000000000000000000000000000000000000000000000000000093a80
-----Decoded View---------------
Arg [0] : communityMultisig (address): 0xE417FD3b116eb604De2E14715DaeB099154E597B
Arg [1] : operationsMultisig (address): 0x36E3881Ff855c264045c22179b6fBc01430F97EC
Arg [2] : pauser (address): 0x0B975bB578e9111977Bc75b667f3C18f96cD03E7
Arg [3] : accessManager (address): 0x386edd14a5cdB642aB32d2bEEB62fFe70c8531C7
Arg [4] : initialDelay (uint256): 604800
-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 000000000000000000000000e417fd3b116eb604de2e14715daeb099154e597b
Arg [1] : 00000000000000000000000036e3881ff855c264045c22179b6fbc01430f97ec
Arg [2] : 0000000000000000000000000b975bb578e9111977bc75b667f3c18f96cd03e7
Arg [3] : 000000000000000000000000386edd14a5cdb642ab32d2beeb62ffe70c8531c7
Arg [4] : 0000000000000000000000000000000000000000000000000000000000093a80
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.