Overview
APE Balance
APE Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Name:
TickLens
Compiler Version
v0.7.6+commit.7338295f
Optimization Enabled:
Yes with 1000000 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; pragma abicoder v2; import '@cryptoalgebra/core/contracts/interfaces/IAlgebraPool.sol'; import '../interfaces/ITickLens.sol'; /// @title Tick Lens contract /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-periphery contract TickLens is ITickLens { /// @inheritdoc ITickLens function getPopulatedTicksInWord(address pool, int16 tickTableIndex) public view override returns (PopulatedTick[] memory populatedTicks) { // fetch bitmap uint256 bitmap = IAlgebraPool(pool).tickTable(tickTableIndex); // calculate the number of populated ticks uint256 numberOfPopulatedTicks; for (uint256 i = 0; i < 256; i++) { if (bitmap & (1 << i) > 0) numberOfPopulatedTicks++; } // fetch populated tick data populatedTicks = new PopulatedTick[](numberOfPopulatedTicks); for (uint256 i = 0; i < 256; i++) { if (bitmap & (1 << i) > 0) { int24 populatedTick = (int24(tickTableIndex) << 8) + int24(i); (uint128 liquidityGross, int128 liquidityNet, , , , , , ) = IAlgebraPool(pool).ticks(populatedTick); populatedTicks[--numberOfPopulatedTicks] = PopulatedTick({ tick: populatedTick, liquidityNet: liquidityNet, liquidityGross: liquidityGross }); } } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './pool/IAlgebraPoolImmutables.sol'; import './pool/IAlgebraPoolState.sol'; import './pool/IAlgebraPoolDerivedState.sol'; import './pool/IAlgebraPoolActions.sol'; import './pool/IAlgebraPoolPermissionedActions.sol'; import './pool/IAlgebraPoolEvents.sol'; /** * @title The interface for a Algebra Pool * @dev The pool interface is broken up into many smaller pieces. * Credit to Uniswap Labs under GPL-2.0-or-later license: * https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces */ interface IAlgebraPool is IAlgebraPoolImmutables, IAlgebraPoolState, IAlgebraPoolDerivedState, IAlgebraPoolActions, IAlgebraPoolPermissionedActions, IAlgebraPoolEvents { // used only for combining interfaces }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; pragma abicoder v2; import '../libraries/AdaptiveFee.sol'; interface IDataStorageOperator { event FeeConfiguration(bool zto, AdaptiveFee.Configuration feeConfig); /** * @notice Returns data belonging to a certain timepoint * @param index The index of timepoint in the array * @dev There is more convenient function to fetch a timepoint: getTimepoints(). Which requires not an index but seconds * @return initialized Whether the timepoint has been initialized and the values are safe to use, * blockTimestamp The timestamp of the observation, * tickCumulative The tick multiplied by seconds elapsed for the life of the pool as of the timepoint timestamp, * secondsPerLiquidityCumulative The seconds per in range liquidity for the life of the pool as of the timepoint timestamp, * volatilityCumulative Cumulative standard deviation for the life of the pool as of the timepoint timestamp, * averageTick Time-weighted average tick, * volumePerLiquidityCumulative Cumulative swap volume per liquidity for the life of the pool as of the timepoint timestamp */ function timepoints(uint256 index) external view returns ( bool initialized, uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulative, uint88 volatilityCumulative, int24 averageTick, uint144 volumePerLiquidityCumulative ); /// @notice Initialize the dataStorage array by writing the first slot. Called once for the lifecycle of the timepoints array /// @param time The time of the dataStorage initialization, via block.timestamp truncated to uint32 /// @param tick Initial tick function initialize(uint32 time, int24 tick) external; /// @dev Reverts if an timepoint at or before the desired timepoint timestamp does not exist. /// 0 may be passed as `secondsAgo' to return the current cumulative values. /// If called with a timestamp falling between two timepoints, returns the counterfactual accumulator values /// at exactly the timestamp between the two timepoints. /// @param time The current block timestamp /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an timepoint /// @param tick The current tick /// @param index The index of the timepoint that was most recently written to the timepoints array /// @param liquidity The current in-range pool liquidity /// @return tickCumulative The cumulative tick since the pool was first initialized, as of `secondsAgo` /// @return secondsPerLiquidityCumulative The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of `secondsAgo` /// @return volatilityCumulative The cumulative volatility value since the pool was first initialized, as of `secondsAgo` /// @return volumePerAvgLiquidity The cumulative volume per liquidity value since the pool was first initialized, as of `secondsAgo` function getSingleTimepoint( uint32 time, uint32 secondsAgo, int24 tick, uint16 index, uint128 liquidity ) external view returns ( int56 tickCumulative, uint160 secondsPerLiquidityCumulative, uint112 volatilityCumulative, uint256 volumePerAvgLiquidity ); /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos` /// @dev Reverts if `secondsAgos` > oldest timepoint /// @param time The current block.timestamp /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an timepoint /// @param tick The current tick /// @param index The index of the timepoint that was most recently written to the timepoints array /// @param liquidity The current in-range pool liquidity /// @return tickCumulatives The cumulative tick since the pool was first initialized, as of each `secondsAgo` /// @return secondsPerLiquidityCumulatives The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo` /// @return volatilityCumulatives The cumulative volatility values since the pool was first initialized, as of each `secondsAgo` /// @return volumePerAvgLiquiditys The cumulative volume per liquidity values since the pool was first initialized, as of each `secondsAgo` function getTimepoints( uint32 time, uint32[] memory secondsAgos, int24 tick, uint16 index, uint128 liquidity ) external view returns ( int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulatives, uint112[] memory volatilityCumulatives, uint256[] memory volumePerAvgLiquiditys ); /// @notice Returns average volatility in the range from time-WINDOW to time /// @param time The current block.timestamp /// @param tick The current tick /// @param index The index of the timepoint that was most recently written to the timepoints array /// @param liquidity The current in-range pool liquidity /// @return TWVolatilityAverage The average volatility in the recent range /// @return TWVolumePerLiqAverage The average volume per liquidity in the recent range function getAverages( uint32 time, int24 tick, uint16 index, uint128 liquidity ) external view returns (uint112 TWVolatilityAverage, uint256 TWVolumePerLiqAverage); /// @notice Writes an dataStorage timepoint to the array /// @dev Writable at most once per block. Index represents the most recently written element. index must be tracked externally. /// @param index The index of the timepoint that was most recently written to the timepoints array /// @param blockTimestamp The timestamp of the new timepoint /// @param tick The active tick at the time of the new timepoint /// @param liquidity The total in-range liquidity at the time of the new timepoint /// @param volumePerLiquidity The gmean(volumes)/liquidity at the time of the new timepoint /// @return indexUpdated The new index of the most recently written element in the dataStorage array function write( uint16 index, uint32 blockTimestamp, int24 tick, uint128 liquidity, uint128 volumePerLiquidity ) external returns (uint16 indexUpdated); /// @notice Changes fee configuration for the pool function changeFeeConfiguration(bool zto, AdaptiveFee.Configuration calldata feeConfig) external; /// @notice Calculates gmean(volume/liquidity) for block /// @param liquidity The current in-range pool liquidity /// @param amount0 Total amount of swapped token0 /// @param amount1 Total amount of swapped token1 /// @return volumePerLiquidity gmean(volume/liquidity) capped by 100000 << 64 function calculateVolumePerLiquidity( uint128 liquidity, int256 amount0, int256 amount1 ) external pure returns (uint128 volumePerLiquidity); /// @return windowLength Length of window used to calculate averages function window() external view returns (uint32 windowLength); /// @notice Calculates fee based on combination of sigmoids /// @param time The current block.timestamp /// @param tick The current tick /// @param index The index of the timepoint that was most recently written to the timepoints array /// @param liquidity The current in-range pool liquidity /// @return feeZto The fee for ZtO swaps in hundredths of a bip, i.e. 1e-6 /// @return feeOtz The fee for OtZ swaps in hundredths of a bip, i.e. 1e-6 function getFees( uint32 time, int24 tick, uint16 index, uint128 liquidity ) external view returns (uint16 feeZto, uint16 feeOtz); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces interface IAlgebraPoolActions { /** * @notice Sets the initial price for the pool * @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value * @param price the initial sqrt price of the pool as a Q64.96 */ function initialize(uint160 price) external; /** * @notice Adds liquidity for the given recipient/bottomTick/topTick position * @dev The caller of this method receives a callback in the form of IAlgebraMintCallback# AlgebraMintCallback * in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends * on bottomTick, topTick, the amount of liquidity, and the current price. * @param sender The address which will receive potential surplus of paid tokens * @param recipient The address for which the liquidity will be created * @param bottomTick The lower tick of the position in which to add liquidity * @param topTick The upper tick of the position in which to add liquidity * @param amount The desired amount of liquidity to mint * @param data Any data that should be passed through to the callback * @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback * @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback * @return liquidityActual The actual minted amount of liquidity */ function mint( address sender, address recipient, int24 bottomTick, int24 topTick, uint128 amount, bytes calldata data ) external returns ( uint256 amount0, uint256 amount1, uint128 liquidityActual ); /** * @notice Collects tokens owed to a position * @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity. * Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or * amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the * actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity. * @param recipient The address which should receive the fees collected * @param bottomTick The lower tick of the position for which to collect fees * @param topTick The upper tick of the position for which to collect fees * @param amount0Requested How much token0 should be withdrawn from the fees owed * @param amount1Requested How much token1 should be withdrawn from the fees owed * @return amount0 The amount of fees collected in token0 * @return amount1 The amount of fees collected in token1 */ function collect( address recipient, int24 bottomTick, int24 topTick, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /** * @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position * @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0 * @dev Fees must be collected separately via a call to #collect * @param bottomTick The lower tick of the position for which to burn liquidity * @param topTick The upper tick of the position for which to burn liquidity * @param amount How much liquidity to burn * @return amount0 The amount of token0 sent to the recipient * @return amount1 The amount of token1 sent to the recipient */ function burn( int24 bottomTick, int24 topTick, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /** * @notice Swap token0 for token1, or token1 for token0 * @dev The caller of this method receives a callback in the form of IAlgebraSwapCallback# AlgebraSwapCallback * @param recipient The address to receive the output of the swap * @param zeroToOne The direction of the swap, true for token0 to token1, false for token1 to token0 * @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) * @param limitSqrtPrice The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this * value after the swap. If one for zero, the price cannot be greater than this value after the swap * @param data Any data to be passed through to the callback. If using the Router it should contain * SwapRouter#SwapCallbackData * @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive * @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive */ function swap( address recipient, bool zeroToOne, int256 amountSpecified, uint160 limitSqrtPrice, bytes calldata data ) external returns (int256 amount0, int256 amount1); /** * @notice Swap token0 for token1, or token1 for token0 (tokens that have fee on transfer) * @dev The caller of this method receives a callback in the form of I AlgebraSwapCallback# AlgebraSwapCallback * @param sender The address called this function (Comes from the Router) * @param recipient The address to receive the output of the swap * @param zeroToOne The direction of the swap, true for token0 to token1, false for token1 to token0 * @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) * @param limitSqrtPrice The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this * value after the swap. If one for zero, the price cannot be greater than this value after the swap * @param data Any data to be passed through to the callback. If using the Router it should contain * SwapRouter#SwapCallbackData * @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive * @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive */ function swapSupportingFeeOnInputTokens( address sender, address recipient, bool zeroToOne, int256 amountSpecified, uint160 limitSqrtPrice, bytes calldata data ) external returns (int256 amount0, int256 amount1); /** * @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback * @dev The caller of this method receives a callback in the form of IAlgebraFlashCallback# AlgebraFlashCallback * @dev All excess tokens paid in the callback are distributed to liquidity providers as an additional fee. So this method can be used * to donate underlying tokens to currently in-range liquidity providers by calling with 0 amount{0,1} and sending * the donation amount(s) from the callback * @param recipient The address which will receive the token0 and token1 amounts * @param amount0 The amount of token0 to send * @param amount1 The amount of token1 to send * @param data Any data to be passed through to the callback */ function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /** * @title Pool state that is not stored * @notice Contains view functions to provide information about the pool that is computed rather than stored on the * blockchain. The functions here may have variable gas costs. * @dev Credit to Uniswap Labs under GPL-2.0-or-later license: * https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces */ interface IAlgebraPoolDerivedState { /** * @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp * @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing * the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick, * you must call it with secondsAgos = [3600, 0]. * @dev The time weighted average tick represents the geometric time weighted average price of the pool, in * log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio. * @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned * @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp * @return secondsPerLiquidityCumulatives Cumulative seconds per liquidity-in-range value as of each `secondsAgos` * from the current block timestamp * @return volatilityCumulatives Cumulative standard deviation as of each `secondsAgos` * @return volumePerAvgLiquiditys Cumulative swap volume per liquidity as of each `secondsAgos` */ function getTimepoints(uint32[] calldata secondsAgos) external view returns ( int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulatives, uint112[] memory volatilityCumulatives, uint256[] memory volumePerAvgLiquiditys ); /** * @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range * @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed. * I.e., snapshots cannot be compared if a position is not held for the entire period between when the first * snapshot is taken and the second snapshot is taken. * @param bottomTick The lower tick of the range * @param topTick The upper tick of the range * @return innerTickCumulative The snapshot of the tick accumulator for the range * @return innerSecondsSpentPerLiquidity The snapshot of seconds per liquidity for the range * @return innerSecondsSpent The snapshot of the number of seconds during which the price was in this range */ function getInnerCumulatives(int24 bottomTick, int24 topTick) external view returns ( int56 innerTickCumulative, uint160 innerSecondsSpentPerLiquidity, uint32 innerSecondsSpent ); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces interface IAlgebraPoolEvents { /** * @notice Emitted exactly once by a pool when #initialize is first called on the pool * @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize * @param price The initial sqrt price of the pool, as a Q64.96 * @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool */ event Initialize(uint160 price, int24 tick); /** * @notice Emitted when liquidity is minted for a given position * @param sender The address that minted the liquidity * @param owner The owner of the position and recipient of any minted liquidity * @param bottomTick The lower tick of the position * @param topTick The upper tick of the position * @param liquidityAmount The amount of liquidity minted to the position range * @param amount0 How much token0 was required for the minted liquidity * @param amount1 How much token1 was required for the minted liquidity */ event Mint( address sender, address indexed owner, int24 indexed bottomTick, int24 indexed topTick, uint128 liquidityAmount, uint256 amount0, uint256 amount1 ); /** * @notice Emitted when fees are collected by the owner of a position * @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees * @param owner The owner of the position for which fees are collected * @param recipient The address that received fees * @param bottomTick The lower tick of the position * @param topTick The upper tick of the position * @param amount0 The amount of token0 fees collected * @param amount1 The amount of token1 fees collected */ event Collect(address indexed owner, address recipient, int24 indexed bottomTick, int24 indexed topTick, uint128 amount0, uint128 amount1); /** * @notice Emitted when a position's liquidity is removed * @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect * @param owner The owner of the position for which liquidity is removed * @param bottomTick The lower tick of the position * @param topTick The upper tick of the position * @param liquidityAmount The amount of liquidity to remove * @param amount0 The amount of token0 withdrawn * @param amount1 The amount of token1 withdrawn */ event Burn(address indexed owner, int24 indexed bottomTick, int24 indexed topTick, uint128 liquidityAmount, uint256 amount0, uint256 amount1); /** * @notice Emitted by the pool for any swaps between token0 and token1 * @param sender The address that initiated the swap call, and that received the callback * @param recipient The address that received the output of the swap * @param amount0 The delta of the token0 balance of the pool * @param amount1 The delta of the token1 balance of the pool * @param price The sqrt(price) of the pool after the swap, as a Q64.96 * @param liquidity The liquidity of the pool after the swap * @param tick The log base 1.0001 of price of the pool after the swap */ event Swap(address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 price, uint128 liquidity, int24 tick); /** * @notice Emitted by the pool for any flashes of token0/token1 * @param sender The address that initiated the swap call, and that received the callback * @param recipient The address that received the tokens from flash * @param amount0 The amount of token0 that was flashed * @param amount1 The amount of token1 that was flashed * @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee * @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee */ event Flash(address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1); /** * @notice Emitted when the community fee is changed by the pool * @param communityFee0New The updated value of the token0 community fee percent * @param communityFee1New The updated value of the token1 community fee percent */ event CommunityFee(uint8 communityFee0New, uint8 communityFee1New); /** * @notice Emitted when the tick spacing changes * @param newTickSpacing The updated value of the new tick spacing */ event TickSpacing(int24 newTickSpacing); /** * @notice Emitted when new activeIncentive is set * @param virtualPoolAddress The address of a virtual pool associated with the current active incentive */ event Incentive(address indexed virtualPoolAddress); /** * @notice Emitted when the fee changes * @param feeZto The value of the token fee for zto swaps * @param feeOtz The value of the token fee for otz swaps */ event Fee(uint16 feeZto, uint16 feeOtz); /** * @notice Emitted when the LiquidityCooldown changes * @param liquidityCooldown The value of locktime for added liquidity */ event LiquidityCooldown(uint32 liquidityCooldown); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import '../IDataStorageOperator.sol'; /// @title Pool state that never changes /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces interface IAlgebraPoolImmutables { /** * @notice The contract that stores all the timepoints and can perform actions with them * @return The operator address */ function dataStorageOperator() external view returns (address); /** * @notice The contract that deployed the pool, which must adhere to the IAlgebraFactory interface * @return The contract address */ function factory() external view returns (address); /** * @notice The first of the two tokens of the pool, sorted by address * @return The token contract address */ function token0() external view returns (address); /** * @notice The second of the two tokens of the pool, sorted by address * @return The token contract address */ function token1() external view returns (address); /** * @notice The maximum amount of position liquidity that can use any tick in the range * @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and * also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool * @return The max amount of liquidity per tick */ function maxLiquidityPerTick() external view returns (uint128); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /** * @title Permissioned pool actions * @notice Contains pool methods that may only be called by the factory owner or tokenomics * @dev Credit to Uniswap Labs under GPL-2.0-or-later license: * https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces */ interface IAlgebraPoolPermissionedActions { /** * @notice Set the community's % share of the fees. Cannot exceed 25% (250) * @param communityFee0 new community fee percent for token0 of the pool in thousandths (1e-3) * @param communityFee1 new community fee percent for token1 of the pool in thousandths (1e-3) */ function setCommunityFee(uint8 communityFee0, uint8 communityFee1) external; /// @notice Set the new tick spacing values. Only factory owner /// @param newTickSpacing The new tick spacing value function setTickSpacing(int24 newTickSpacing) external; /** * @notice Sets an active incentive * @param virtualPoolAddress The address of a virtual pool associated with the incentive */ function setIncentive(address virtualPoolAddress) external; /** * @notice Sets new lock time for added liquidity * @param newLiquidityCooldown The time in seconds */ function setLiquidityCooldown(uint32 newLiquidityCooldown) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @dev Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces interface IAlgebraPoolState { /** * @notice The globalState structure in the pool stores many values but requires only one slot * and is exposed as a single method to save gas when accessed externally. * @return price The current price of the pool as a sqrt(token1/token0) Q64.96 value; * Returns tick The current tick of the pool, i.e. according to the last tick transition that was run; * Returns This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(price) if the price is on a tick * boundary; * Returns feeZto The last pool fee value for ZtO swaps in hundredths of a bip, i.e. 1e-6; * Returns feeOtz The last pool fee value for OtZ swaps in hundredths of a bip, i.e. 1e-6; * Returns timepointIndex The index of the last written timepoint; * Returns communityFeeToken0 The community fee percentage of the swap fee in thousandths (1e-3) for token0; * Returns communityFeeToken1 The community fee percentage of the swap fee in thousandths (1e-3) for token1; * Returns unlocked Whether the pool is currently locked to reentrancy; */ function globalState() external view returns ( uint160 price, int24 tick, uint16 feeZto, uint16 feeOtz, uint16 timepointIndex, uint8 communityFeeToken0, uint8 communityFeeToken1, bool unlocked ); /** * @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool * @dev This value can overflow the uint256 */ function totalFeeGrowth0Token() external view returns (uint256); /** * @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool * @dev This value can overflow the uint256 */ function totalFeeGrowth1Token() external view returns (uint256); /** * @notice The currently in range liquidity available to the pool * @dev This value has no relationship to the total liquidity across all ticks. * Returned value cannot exceed type(uint128).max */ function liquidity() external view returns (uint128); /** * @notice Look up information about a specific tick in the pool * @dev This is a public structure, so the `return` natspec tags are omitted. * @param tick The tick to look up * @return liquidityTotal the total amount of position liquidity that uses the pool either as tick lower or * tick upper; * Returns liquidityDelta how much liquidity changes when the pool price crosses the tick; * Returns outerFeeGrowth0Token the fee growth on the other side of the tick from the current tick in token0; * Returns outerFeeGrowth1Token the fee growth on the other side of the tick from the current tick in token1; * Returns outerTickCumulative the cumulative tick value on the other side of the tick from the current tick; * Returns outerSecondsPerLiquidity the seconds spent per liquidity on the other side of the tick from the current tick; * Returns outerSecondsSpent the seconds spent on the other side of the tick from the current tick; * Returns initialized Set to true if the tick is initialized, i.e. liquidityTotal is greater than 0 * otherwise equal to false. Outside values can only be used if the tick is initialized. * In addition, these values are only relative and must be used only in comparison to previous snapshots for * a specific position. */ function ticks(int24 tick) external view returns ( uint128 liquidityTotal, int128 liquidityDelta, uint256 outerFeeGrowth0Token, uint256 outerFeeGrowth1Token, int56 outerTickCumulative, uint160 outerSecondsPerLiquidity, uint32 outerSecondsSpent, bool initialized ); /** @notice Returns 256 packed tick initialized boolean values. See TickTable for more information */ function tickTable(int16 wordPosition) external view returns (uint256); /** * @notice Returns the information about a position by the position's key * @dev This is a public mapping of structures, so the `return` natspec tags are omitted. * @param key The position's key is a hash of a preimage composed by the owner, bottomTick and topTick * @return liquidityAmount The amount of liquidity in the position; * Returns lastLiquidityAddTimestamp Timestamp of last adding of liquidity; * Returns innerFeeGrowth0Token Fee growth of token0 inside the tick range as of the last mint/burn/poke; * Returns innerFeeGrowth1Token Fee growth of token1 inside the tick range as of the last mint/burn/poke; * Returns fees0 The computed amount of token0 owed to the position as of the last mint/burn/poke; * Returns fees1 The computed amount of token1 owed to the position as of the last mint/burn/poke */ function positions(bytes32 key) external view returns ( uint128 liquidityAmount, uint32 lastLiquidityAddTimestamp, uint256 innerFeeGrowth0Token, uint256 innerFeeGrowth1Token, uint128 fees0, uint128 fees1 ); /** * @notice Returns data about a specific timepoint index * @param index The element of the timepoints array to fetch * @dev You most likely want to use #getTimepoints() instead of this method to get an timepoint as of some amount of time * ago, rather than at a specific index in the array. * This is a public mapping of structures, so the `return` natspec tags are omitted. * @return initialized whether the timepoint has been initialized and the values are safe to use; * Returns blockTimestamp The timestamp of the timepoint; * Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the timepoint timestamp; * Returns secondsPerLiquidityCumulative the seconds per in range liquidity for the life of the pool as of the timepoint timestamp; * Returns volatilityCumulative Cumulative standard deviation for the life of the pool as of the timepoint timestamp; * Returns averageTick Time-weighted average tick; * Returns volumePerLiquidityCumulative Cumulative swap volume per liquidity for the life of the pool as of the timepoint timestamp; */ function timepoints(uint256 index) external view returns ( bool initialized, uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulative, uint88 volatilityCumulative, int24 averageTick, uint144 volumePerLiquidityCumulative ); /** * @notice Returns the information about active incentive * @dev if there is no active incentive at the moment, virtualPool,endTimestamp,startTimestamp would be equal to 0 * @return virtualPool The address of a virtual pool associated with the current active incentive */ function activeIncentive() external view returns (address virtualPool); /** * @notice Returns the lock time for added liquidity */ function liquidityCooldown() external view returns (uint32 cooldownInSeconds); /** * @notice The pool tick spacing * @dev Ticks can only be used at multiples of this value * e.g.: a tickSpacing of 60 means ticks can be initialized every 60th tick, i.e., ..., -120, -60, 0, 60, 120, ... * This value is an int24 to avoid casting even though it is always positive. * @return The tick spacing */ function tickSpacing() external view returns (int24); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.7.6; import './Constants.sol'; /// @title AdaptiveFee /// @notice Calculates fee based on combination of sigmoids library AdaptiveFee { // alpha1 + alpha2 + baseFee must be <= type(uint16).max struct Configuration { uint16 alpha1; // max value of the first sigmoid uint16 alpha2; // max value of the second sigmoid uint32 beta1; // shift along the x-axis for the first sigmoid uint32 beta2; // shift along the x-axis for the second sigmoid uint16 gamma1; // horizontal stretch factor for the first sigmoid uint16 gamma2; // horizontal stretch factor for the second sigmoid uint32 volumeBeta; // shift along the x-axis for the outer volume-sigmoid uint16 volumeGamma; // horizontal stretch factor the outer volume-sigmoid uint16 baseFee; // minimum possible fee } /// @notice Calculates fee based on formula: /// baseFee + sigmoidVolume(sigmoid1(volatility, volumePerLiquidity) + sigmoid2(volatility, volumePerLiquidity)) /// maximum value capped by baseFee + alpha1 + alpha2 function getFee( uint88 volatility, uint256 volumePerLiquidity, Configuration memory config ) internal pure returns (uint16 fee) { uint256 sumOfSigmoids = sigmoid(volatility, config.gamma1, config.alpha1, config.beta1) + sigmoid(volatility, config.gamma2, config.alpha2, config.beta2); if (sumOfSigmoids > type(uint16).max) { // should be impossible, just in case sumOfSigmoids = type(uint16).max; } return uint16(config.baseFee + sigmoid(volumePerLiquidity, config.volumeGamma, uint16(sumOfSigmoids), config.volumeBeta)); // safe since alpha1 + alpha2 + baseFee _must_ be <= type(uint16).max } /// @notice calculates α / (1 + e^( (β-x) / γ)) /// that is a sigmoid with a maximum value of α, x-shifted by β, and stretched by γ /// @dev returns uint256 for fuzzy testing. Guaranteed that the result is not greater than alpha function sigmoid( uint256 x, uint16 g, uint16 alpha, uint256 beta ) internal pure returns (uint256 res) { if (x > beta) { x = x - beta; if (x >= 6 * uint256(g)) return alpha; // so x < 19 bits uint256 g8 = uint256(g)**8; // < 128 bits (8*16) uint256 ex = exp(x, g, g8); // < 155 bits res = (alpha * ex) / (g8 + ex); // in worst case: (16 + 155 bits) / 155 bits // so res <= alpha } else { x = beta - x; if (x >= 6 * uint256(g)) return 0; // so x < 19 bits uint256 g8 = uint256(g)**8; // < 128 bits (8*16) uint256 ex = g8 + exp(x, g, g8); // < 156 bits res = (alpha * g8) / ex; // in worst case: (16 + 128 bits) / 156 bits // g8 <= ex, so res <= alpha } } /// @notice calculates e^(x/g) * g^8 in a series, since (around zero): /// e^x = 1 + x + x^2/2 + ... + x^n/n! + ... /// e^(x/g) = 1 + x/g + x^2/(2*g^2) + ... + x^(n)/(g^n * n!) + ... function exp( uint256 x, uint16 g, uint256 gHighestDegree ) internal pure returns (uint256 res) { // calculating: // g**8 + x * g**7 + (x**2 * g**6) / 2 + (x**3 * g**5) / 6 + (x**4 * g**4) / 24 + (x**5 * g**3) / 120 + (x**6 * g^2) / 720 + x**7 * g / 5040 + x**8 / 40320 // x**8 < 152 bits (19*8) and g**8 < 128 bits (8*16) // so each summand < 152 bits and res < 155 bits uint256 xLowestDegree = x; res = gHighestDegree; // g**8 gHighestDegree /= g; // g**7 res += xLowestDegree * gHighestDegree; gHighestDegree /= g; // g**6 xLowestDegree *= x; // x**2 res += (xLowestDegree * gHighestDegree) / 2; gHighestDegree /= g; // g**5 xLowestDegree *= x; // x**3 res += (xLowestDegree * gHighestDegree) / 6; gHighestDegree /= g; // g**4 xLowestDegree *= x; // x**4 res += (xLowestDegree * gHighestDegree) / 24; gHighestDegree /= g; // g**3 xLowestDegree *= x; // x**5 res += (xLowestDegree * gHighestDegree) / 120; gHighestDegree /= g; // g**2 xLowestDegree *= x; // x**6 res += (xLowestDegree * gHighestDegree) / 720; xLowestDegree *= x; // x**7 res += (xLowestDegree * g) / 5040 + (xLowestDegree * x) / (40320); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity =0.7.6; library Constants { uint8 internal constant RESOLUTION = 96; uint256 internal constant Q96 = 0x1000000000000000000000000; uint256 internal constant Q128 = 0x100000000000000000000000000000000; // fee value in hundredths of a bip, i.e. 1e-6 uint16 internal constant BASE_FEE = 100; int24 internal constant MAX_TICK_SPACING = 500; // max(uint128) / (MAX_TICK - MIN_TICK) uint128 internal constant MAX_LIQUIDITY_PER_TICK = 191757638537527648490752896198553; uint32 internal constant MAX_LIQUIDITY_COOLDOWN = 1 days; uint8 internal constant MAX_COMMUNITY_FEE = 250; uint256 internal constant COMMUNITY_FEE_DENOMINATOR = 1000; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; /// @title Tick Lens /// @notice Provides functions for fetching chunks of tick data for a pool /// @dev This avoids the waterfall of fetching the tick bitmap, parsing the bitmap to know which ticks to fetch, and /// then sending additional multicalls to fetch the tick data /// Credit to Uniswap Labs under GPL-2.0-or-later license: /// https://github.com/Uniswap/v3-periphery interface ITickLens { struct PopulatedTick { int24 tick; int128 liquidityNet; uint128 liquidityGross; } /// @notice Get all the tick data for the populated ticks from a word of the tick bitmap of a pool /// @param pool The address of the pool for which to fetch populated tick data /// @param tickTableIndex The index of the word in the tick bitmap for which to parse the bitmap and /// fetch all the populated ticks /// @return populatedTicks An array of tick data for the given word in the tick bitmap function getPopulatedTicksInWord(address pool, int16 tickTableIndex) external view returns (PopulatedTick[] memory populatedTicks); }
{ "optimizer": { "enabled": true, "runs": 1000000 }, "metadata": { "bytecodeHash": "none", "useLiteralContent": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"pool","type":"address"},{"internalType":"int16","name":"tickTableIndex","type":"int16"}],"name":"getPopulatedTicksInWord","outputs":[{"components":[{"internalType":"int24","name":"tick","type":"int24"},{"internalType":"int128","name":"liquidityNet","type":"int128"},{"internalType":"uint128","name":"liquidityGross","type":"uint128"}],"internalType":"struct ITickLens.PopulatedTick[]","name":"populatedTicks","type":"tuple[]"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b506104bc806100206000396000f3fe608060405234801561001057600080fd5b506004361061002b5760003560e01c8063351fb47814610030575b600080fd5b61004361003e3660046102f7565b610059565b60405161005091906103fd565b60405180910390f35b606060008373ffffffffffffffffffffffffffffffffffffffff1663c677e3e0846040518263ffffffff1660e01b8152600401610096919061046e565b60206040518083038186803b1580156100ae57600080fd5b505afa1580156100c2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906100e691906103e5565b90506000805b610100811015610110576001811b831615610108576001909101905b6001016100ec565b508067ffffffffffffffff8111801561012857600080fd5b5060405190808252806020026020018201604052801561016257816020015b61014f6102a3565b8152602001906001900390816101475790505b50925060005b61010081101561029a576001811b831615610292576040517ff30dba93000000000000000000000000000000000000000000000000000000008152600186900b60020b60081b820190600090819073ffffffffffffffffffffffffffffffffffffffff8a169063f30dba93906101e290869060040161047c565b6101006040518083038186803b1580156101fb57600080fd5b505afa15801561020f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102339190610335565b5050505050509150915060405180606001604052808460020b815260200182600f0b8152602001836fffffffffffffffffffffffffffffffff168152508786600190039650868151811061028357fe5b60200260200101819052505050505b600101610168565b50505092915050565b604080516060810182526000808252602082018190529181019190915290565b805180151581146102d357600080fd5b919050565b80516102d38161048a565b805163ffffffff811681146102d357600080fd5b60008060408385031215610309578182fd5b82356103148161048a565b91506020830135600181900b811461032a578182fd5b809150509250929050565b600080600080600080600080610100898b031215610351578384fd5b88516fffffffffffffffffffffffffffffffff81168114610370578485fd5b80985050602089015180600f0b8114610387578485fd5b80975050604089015195506060890151945060808901518060060b81146103ac578485fd5b93506103ba60a08a016102d8565b92506103c860c08a016102e3565b91506103d660e08a016102c3565b90509295985092959890939650565b6000602082840312156103f6578081fd5b5051919050565b602080825282518282018190526000919060409081850190868401855b82811015610461578151805160020b855286810151600f0b878601528501516fffffffffffffffffffffffffffffffff16858501526060909301929085019060010161041a565b5091979650505050505050565b60019190910b815260200190565b60029190910b815260200190565b73ffffffffffffffffffffffffffffffffffffffff811681146104ac57600080fd5b5056fea164736f6c6343000706000a
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061002b5760003560e01c8063351fb47814610030575b600080fd5b61004361003e3660046102f7565b610059565b60405161005091906103fd565b60405180910390f35b606060008373ffffffffffffffffffffffffffffffffffffffff1663c677e3e0846040518263ffffffff1660e01b8152600401610096919061046e565b60206040518083038186803b1580156100ae57600080fd5b505afa1580156100c2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906100e691906103e5565b90506000805b610100811015610110576001811b831615610108576001909101905b6001016100ec565b508067ffffffffffffffff8111801561012857600080fd5b5060405190808252806020026020018201604052801561016257816020015b61014f6102a3565b8152602001906001900390816101475790505b50925060005b61010081101561029a576001811b831615610292576040517ff30dba93000000000000000000000000000000000000000000000000000000008152600186900b60020b60081b820190600090819073ffffffffffffffffffffffffffffffffffffffff8a169063f30dba93906101e290869060040161047c565b6101006040518083038186803b1580156101fb57600080fd5b505afa15801561020f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102339190610335565b5050505050509150915060405180606001604052808460020b815260200182600f0b8152602001836fffffffffffffffffffffffffffffffff168152508786600190039650868151811061028357fe5b60200260200101819052505050505b600101610168565b50505092915050565b604080516060810182526000808252602082018190529181019190915290565b805180151581146102d357600080fd5b919050565b80516102d38161048a565b805163ffffffff811681146102d357600080fd5b60008060408385031215610309578182fd5b82356103148161048a565b91506020830135600181900b811461032a578182fd5b809150509250929050565b600080600080600080600080610100898b031215610351578384fd5b88516fffffffffffffffffffffffffffffffff81168114610370578485fd5b80985050602089015180600f0b8114610387578485fd5b80975050604089015195506060890151945060808901518060060b81146103ac578485fd5b93506103ba60a08a016102d8565b92506103c860c08a016102e3565b91506103d660e08a016102c3565b90509295985092959890939650565b6000602082840312156103f6578081fd5b5051919050565b602080825282518282018190526000919060409081850190868401855b82811015610461578151805160020b855286810151600f0b878601528501516fffffffffffffffffffffffffffffffff16858501526060909301929085019060010161041a565b5091979650505050505050565b60019190910b815260200190565b60029190910b815260200190565b73ffffffffffffffffffffffffffffffffffffffff811681146104ac57600080fd5b5056fea164736f6c6343000706000a
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.