Overview
APE Balance
0 APE
APE Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
0x61023b61 | 4608784 | 5 hrs ago | IN | 0 APE | 0.00449249 |
Loading...
Loading
Contract Name:
ReserveLogic
Compiler Version
v0.6.12+commit.27d51765
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {SafeMath} from '../../../dependencies/openzeppelin/contracts/SafeMath.sol'; import {IERC20} from '../../../dependencies/openzeppelin/contracts/IERC20.sol'; import {SafeERC20} from '../../../dependencies/openzeppelin/contracts/SafeERC20.sol'; import {IAToken} from '../../../interfaces/IAToken.sol'; import {IStableDebtToken} from '../../../interfaces/IStableDebtToken.sol'; import {IVariableDebtToken} from '../../../interfaces/IVariableDebtToken.sol'; import {IReserveInterestRateStrategy} from '../../../interfaces/IReserveInterestRateStrategy.sol'; import {ReserveConfiguration} from '../configuration/ReserveConfiguration.sol'; import {MathUtils} from '../math/MathUtils.sol'; import {WadRayMath} from '../math/WadRayMath.sol'; import {PercentageMath} from '../math/PercentageMath.sol'; import {Errors} from '../helpers/Errors.sol'; import {DataTypes} from '../types/DataTypes.sol'; /** * @title ReserveLogic library * @author Aave * @notice Implements the logic to update the reserves state */ library ReserveLogic { using SafeMath for uint256; using WadRayMath for uint256; using PercentageMath for uint256; using SafeERC20 for IERC20; /** * @dev Emitted when the state of a reserve is updated * @param asset The address of the underlying asset of the reserve * @param liquidityRate The new liquidity rate * @param stableBorrowRate The new stable borrow rate * @param variableBorrowRate The new variable borrow rate * @param liquidityIndex The new liquidity index * @param variableBorrowIndex The new variable borrow index **/ event ReserveDataUpdated( address indexed asset, uint256 liquidityRate, uint256 stableBorrowRate, uint256 variableBorrowRate, uint256 liquidityIndex, uint256 variableBorrowIndex ); using ReserveLogic for DataTypes.ReserveData; using ReserveConfiguration for DataTypes.ReserveConfigurationMap; /** * @dev Returns the ongoing normalized income for the reserve * A value of 1e27 means there is no income. As time passes, the income is accrued * A value of 2*1e27 means for each unit of asset one unit of income has been accrued * @param reserve The reserve object * @return the normalized income. expressed in ray **/ function getNormalizedIncome(DataTypes.ReserveData storage reserve) internal view returns (uint256) { uint40 timestamp = reserve.lastUpdateTimestamp; //solium-disable-next-line if (timestamp == uint40(block.timestamp)) { //if the index was updated in the same block, no need to perform any calculation return reserve.liquidityIndex; } uint256 cumulated = MathUtils.calculateLinearInterest(reserve.currentLiquidityRate, timestamp).rayMul( reserve.liquidityIndex ); return cumulated; } /** * @dev Returns the ongoing normalized variable debt for the reserve * A value of 1e27 means there is no debt. As time passes, the income is accrued * A value of 2*1e27 means that for each unit of debt, one unit worth of interest has been accumulated * @param reserve The reserve object * @return The normalized variable debt. expressed in ray **/ function getNormalizedDebt(DataTypes.ReserveData storage reserve) internal view returns (uint256) { uint40 timestamp = reserve.lastUpdateTimestamp; //solium-disable-next-line if (timestamp == uint40(block.timestamp)) { //if the index was updated in the same block, no need to perform any calculation return reserve.variableBorrowIndex; } uint256 cumulated = MathUtils.calculateCompoundedInterest(reserve.currentVariableBorrowRate, timestamp).rayMul( reserve.variableBorrowIndex ); return cumulated; } /** * @dev Updates the liquidity cumulative index and the variable borrow index. * @param reserve the reserve object **/ function updateState(DataTypes.ReserveData storage reserve) internal { uint256 scaledVariableDebt = IVariableDebtToken(reserve.variableDebtTokenAddress).scaledTotalSupply(); uint256 previousVariableBorrowIndex = reserve.variableBorrowIndex; uint256 previousLiquidityIndex = reserve.liquidityIndex; uint40 lastUpdatedTimestamp = reserve.lastUpdateTimestamp; (uint256 newLiquidityIndex, uint256 newVariableBorrowIndex) = _updateIndexes( reserve, scaledVariableDebt, previousLiquidityIndex, previousVariableBorrowIndex, lastUpdatedTimestamp ); _mintToTreasury( reserve, scaledVariableDebt, previousVariableBorrowIndex, newLiquidityIndex, newVariableBorrowIndex, lastUpdatedTimestamp ); } /** * @dev Accumulates a predefined amount of asset to the reserve as a fixed, instantaneous income. Used for example to accumulate * the flashloan fee to the reserve, and spread it between all the depositors * @param reserve The reserve object * @param totalLiquidity The total liquidity available in the reserve * @param amount The amount to accomulate **/ function cumulateToLiquidityIndex( DataTypes.ReserveData storage reserve, uint256 totalLiquidity, uint256 amount ) internal { uint256 amountToLiquidityRatio = amount.wadToRay().rayDiv(totalLiquidity.wadToRay()); uint256 result = amountToLiquidityRatio.add(WadRayMath.ray()); result = result.rayMul(reserve.liquidityIndex); require(result <= type(uint128).max, Errors.RL_LIQUIDITY_INDEX_OVERFLOW); reserve.liquidityIndex = uint128(result); } /** * @dev Initializes a reserve * @param reserve The reserve object * @param aTokenAddress The address of the overlying atoken contract * @param interestRateStrategyAddress The address of the interest rate strategy contract **/ function init( DataTypes.ReserveData storage reserve, address aTokenAddress, address stableDebtTokenAddress, address variableDebtTokenAddress, address interestRateStrategyAddress ) external { require(reserve.aTokenAddress == address(0), Errors.RL_RESERVE_ALREADY_INITIALIZED); reserve.liquidityIndex = uint128(WadRayMath.ray()); reserve.variableBorrowIndex = uint128(WadRayMath.ray()); reserve.aTokenAddress = aTokenAddress; reserve.stableDebtTokenAddress = stableDebtTokenAddress; reserve.variableDebtTokenAddress = variableDebtTokenAddress; reserve.interestRateStrategyAddress = interestRateStrategyAddress; } struct UpdateInterestRatesLocalVars { address stableDebtTokenAddress; uint256 availableLiquidity; uint256 totalStableDebt; uint256 newLiquidityRate; uint256 newStableRate; uint256 newVariableRate; uint256 avgStableRate; uint256 totalVariableDebt; } /** * @dev Updates the reserve current stable borrow rate, the current variable borrow rate and the current liquidity rate * @param reserve The address of the reserve to be updated * @param liquidityAdded The amount of liquidity added to the protocol (deposit or repay) in the previous action * @param liquidityTaken The amount of liquidity taken from the protocol (redeem or borrow) **/ function updateInterestRates( DataTypes.ReserveData storage reserve, address reserveAddress, address aTokenAddress, uint256 liquidityAdded, uint256 liquidityTaken ) internal { UpdateInterestRatesLocalVars memory vars; vars.stableDebtTokenAddress = reserve.stableDebtTokenAddress; (vars.totalStableDebt, vars.avgStableRate) = IStableDebtToken(vars.stableDebtTokenAddress) .getTotalSupplyAndAvgRate(); //calculates the total variable debt locally using the scaled total supply instead //of totalSupply(), as it's noticeably cheaper. Also, the index has been //updated by the previous updateState() call vars.totalVariableDebt = IVariableDebtToken(reserve.variableDebtTokenAddress) .scaledTotalSupply() .rayMul(reserve.variableBorrowIndex); ( vars.newLiquidityRate, vars.newStableRate, vars.newVariableRate ) = IReserveInterestRateStrategy(reserve.interestRateStrategyAddress).calculateInterestRates( reserveAddress, aTokenAddress, liquidityAdded, liquidityTaken, vars.totalStableDebt, vars.totalVariableDebt, vars.avgStableRate, reserve.configuration.getReserveFactor() ); require(vars.newLiquidityRate <= type(uint128).max, Errors.RL_LIQUIDITY_RATE_OVERFLOW); require(vars.newStableRate <= type(uint128).max, Errors.RL_STABLE_BORROW_RATE_OVERFLOW); require(vars.newVariableRate <= type(uint128).max, Errors.RL_VARIABLE_BORROW_RATE_OVERFLOW); reserve.currentLiquidityRate = uint128(vars.newLiquidityRate); reserve.currentStableBorrowRate = uint128(vars.newStableRate); reserve.currentVariableBorrowRate = uint128(vars.newVariableRate); emit ReserveDataUpdated( reserveAddress, vars.newLiquidityRate, vars.newStableRate, vars.newVariableRate, reserve.liquidityIndex, reserve.variableBorrowIndex ); } struct MintToTreasuryLocalVars { uint256 currentStableDebt; uint256 principalStableDebt; uint256 previousStableDebt; uint256 currentVariableDebt; uint256 previousVariableDebt; uint256 avgStableRate; uint256 cumulatedStableInterest; uint256 totalDebtAccrued; uint256 amountToMint; uint256 reserveFactor; uint40 stableSupplyUpdatedTimestamp; } /** * @dev Mints part of the repaid interest to the reserve treasury as a function of the reserveFactor for the * specific asset. * @param reserve The reserve reserve to be updated * @param scaledVariableDebt The current scaled total variable debt * @param previousVariableBorrowIndex The variable borrow index before the last accumulation of the interest * @param newLiquidityIndex The new liquidity index * @param newVariableBorrowIndex The variable borrow index after the last accumulation of the interest **/ function _mintToTreasury( DataTypes.ReserveData storage reserve, uint256 scaledVariableDebt, uint256 previousVariableBorrowIndex, uint256 newLiquidityIndex, uint256 newVariableBorrowIndex, uint40 timestamp ) internal { MintToTreasuryLocalVars memory vars; vars.reserveFactor = reserve.configuration.getReserveFactor(); if (vars.reserveFactor == 0) { return; } //fetching the principal, total stable debt and the avg stable rate ( vars.principalStableDebt, vars.currentStableDebt, vars.avgStableRate, vars.stableSupplyUpdatedTimestamp ) = IStableDebtToken(reserve.stableDebtTokenAddress).getSupplyData(); //calculate the last principal variable debt vars.previousVariableDebt = scaledVariableDebt.rayMul(previousVariableBorrowIndex); //calculate the new total supply after accumulation of the index vars.currentVariableDebt = scaledVariableDebt.rayMul(newVariableBorrowIndex); //calculate the stable debt until the last timestamp update vars.cumulatedStableInterest = MathUtils.calculateCompoundedInterest( vars.avgStableRate, vars.stableSupplyUpdatedTimestamp, timestamp ); vars.previousStableDebt = vars.principalStableDebt.rayMul(vars.cumulatedStableInterest); //debt accrued is the sum of the current debt minus the sum of the debt at the last update vars.totalDebtAccrued = vars .currentVariableDebt .add(vars.currentStableDebt) .sub(vars.previousVariableDebt) .sub(vars.previousStableDebt); vars.amountToMint = vars.totalDebtAccrued.percentMul(vars.reserveFactor); if (vars.amountToMint != 0) { IAToken(reserve.aTokenAddress).mintToTreasury(vars.amountToMint, newLiquidityIndex); } } /** * @dev Updates the reserve indexes and the timestamp of the update * @param reserve The reserve reserve to be updated * @param scaledVariableDebt The scaled variable debt * @param liquidityIndex The last stored liquidity index * @param variableBorrowIndex The last stored variable borrow index **/ function _updateIndexes( DataTypes.ReserveData storage reserve, uint256 scaledVariableDebt, uint256 liquidityIndex, uint256 variableBorrowIndex, uint40 timestamp ) internal returns (uint256, uint256) { uint256 currentLiquidityRate = reserve.currentLiquidityRate; uint256 newLiquidityIndex = liquidityIndex; uint256 newVariableBorrowIndex = variableBorrowIndex; //only cumulating if there is any income being produced if (currentLiquidityRate > 0) { uint256 cumulatedLiquidityInterest = MathUtils.calculateLinearInterest(currentLiquidityRate, timestamp); newLiquidityIndex = cumulatedLiquidityInterest.rayMul(liquidityIndex); require(newLiquidityIndex <= type(uint128).max, Errors.RL_LIQUIDITY_INDEX_OVERFLOW); reserve.liquidityIndex = uint128(newLiquidityIndex); //as the liquidity rate might come only from stable rate loans, we need to ensure //that there is actual variable debt before accumulating if (scaledVariableDebt != 0) { uint256 cumulatedVariableBorrowInterest = MathUtils.calculateCompoundedInterest(reserve.currentVariableBorrowRate, timestamp); newVariableBorrowIndex = cumulatedVariableBorrowInterest.rayMul(variableBorrowIndex); require( newVariableBorrowIndex <= type(uint128).max, Errors.RL_VARIABLE_BORROW_INDEX_OVERFLOW ); reserve.variableBorrowIndex = uint128(newVariableBorrowIndex); } } //solium-disable-next-line reserve.lastUpdateTimestamp = uint40(block.timestamp); return (newLiquidityIndex, newVariableBorrowIndex); } }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import {IERC20} from './IERC20.sol'; import {SafeMath} from './SafeMath.sol'; import {Address} from './Address.sol'; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove( IERC20 token, address spender, uint256 value ) internal { require( (value == 0) || (token.allowance(address(this), spender) == 0), 'SafeERC20: approve from non-zero to non-zero allowance' ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), 'SafeERC20: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = address(token).call(data); require(success, 'SafeERC20: low-level call failed'); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), 'SafeERC20: ERC20 operation did not succeed'); } } }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, 'SafeMath: addition overflow'); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, 'SafeMath: subtraction overflow'); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, 'SafeMath: multiplication overflow'); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, 'SafeMath: division by zero'); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, 'SafeMath: modulo by zero'); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {IERC20} from '../dependencies/openzeppelin/contracts/IERC20.sol'; import {IScaledBalanceToken} from './IScaledBalanceToken.sol'; import {IInitializableAToken} from './IInitializableAToken.sol'; import {IRewarder} from './IRewarder.sol'; interface IAToken is IERC20, IScaledBalanceToken, IInitializableAToken { /** * @dev Emitted after the mint action * @param from The address performing the mint * @param value The amount being * @param index The new liquidity index of the reserve **/ event Mint(address indexed from, uint256 value, uint256 index); /** * @dev Mints `amount` aTokens to `user` * @param user The address receiving the minted tokens * @param amount The amount of tokens getting minted * @param index The new liquidity index of the reserve * @return `true` if the the previous balance of the user was 0 */ function mint( address user, uint256 amount, uint256 index ) external returns (bool); /** * @dev Emitted after aTokens are burned * @param from The owner of the aTokens, getting them burned * @param target The address that will receive the underlying * @param value The amount being burned * @param index The new liquidity index of the reserve **/ event Burn(address indexed from, address indexed target, uint256 value, uint256 index); /** * @dev Emitted during the transfer action * @param from The user whose tokens are being transferred * @param to The recipient * @param value The amount being transferred * @param index The new liquidity index of the reserve **/ event BalanceTransfer(address indexed from, address indexed to, uint256 value, uint256 index); /** * @dev Burns aTokens from `user` and sends the equivalent amount of underlying to `receiverOfUnderlying` * @param user The owner of the aTokens, getting them burned * @param receiverOfUnderlying The address that will receive the underlying * @param amount The amount being burned * @param index The new liquidity index of the reserve **/ function burn( address user, address receiverOfUnderlying, uint256 amount, uint256 index ) external; /** * @dev Mints aTokens to the reserve treasury * @param amount The amount of tokens getting minted * @param index The new liquidity index of the reserve */ function mintToTreasury(uint256 amount, uint256 index) external; /** * @dev Transfers aTokens in the event of a borrow being liquidated, in case the liquidators reclaims the aToken * @param from The address getting liquidated, current owner of the aTokens * @param to The recipient * @param value The amount of tokens getting transferred **/ function transferOnLiquidation( address from, address to, uint256 value ) external; /** * @dev Transfers the underlying asset to `target`. Used by the LendingPool to transfer * assets in borrow(), withdraw() and flashLoan() * @param user The recipient of the underlying * @param amount The amount getting transferred * @return The amount transferred **/ function transferUnderlyingTo(address user, uint256 amount) external returns (uint256); /** * @dev Invoked to execute actions on the aToken side after a repayment. * @param user The user executing the repayment * @param amount The amount getting repaid **/ function handleRepayment(address user, uint256 amount) external; /** * @dev Returns the address of the incentives controller contract **/ function getIncentivesController() external view returns (IRewarder); /** * @dev Returns the address of the underlying asset of this aToken (E.g. WETH for aWETH) **/ function UNDERLYING_ASSET_ADDRESS() external view returns (address); }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {ILendingPool} from './ILendingPool.sol'; import {IRewarder} from './IRewarder.sol'; /** * @title IInitializableAToken * @notice Interface for the initialize function on AToken * @author Aave **/ interface IInitializableAToken { /** * @dev Emitted when an aToken is initialized * @param underlyingAsset The address of the underlying asset * @param pool The address of the associated lending pool * @param treasury The address of the treasury * @param incentivesController The address of the incentives controller for this aToken * @param aTokenDecimals the decimals of the underlying * @param aTokenName the name of the aToken * @param aTokenSymbol the symbol of the aToken * @param params A set of encoded parameters for additional initialization **/ event Initialized( address indexed underlyingAsset, address indexed pool, address treasury, address incentivesController, uint8 aTokenDecimals, string aTokenName, string aTokenSymbol, bytes params ); /** * @dev Initializes the aToken * @param pool The address of the lending pool where this aToken will be used * @param treasury The address of the Aave treasury, receiving the fees on this aToken * @param underlyingAsset The address of the underlying asset of this aToken (E.g. WETH for aWETH) * @param incentivesController The smart contract managing potential incentives distribution * @param aTokenDecimals The decimals of the aToken, same as the underlying asset's * @param aTokenName The name of the aToken * @param aTokenSymbol The symbol of the aToken */ function initialize( ILendingPool pool, address treasury, address underlyingAsset, IRewarder incentivesController, uint8 aTokenDecimals, string calldata aTokenName, string calldata aTokenSymbol, bytes calldata params ) external; }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {ILendingPool} from './ILendingPool.sol'; import {IRewarder} from './IRewarder.sol'; /** * @title IInitializableDebtToken * @notice Interface for the initialize function common between debt tokens * @author Aave **/ interface IInitializableDebtToken { /** * @dev Emitted when a debt token is initialized * @param underlyingAsset The address of the underlying asset * @param pool The address of the associated lending pool * @param incentivesController The address of the incentives controller for this aToken * @param debtTokenDecimals the decimals of the debt token * @param debtTokenName the name of the debt token * @param debtTokenSymbol the symbol of the debt token * @param params A set of encoded parameters for additional initialization **/ event Initialized( address indexed underlyingAsset, address indexed pool, address incentivesController, uint8 debtTokenDecimals, string debtTokenName, string debtTokenSymbol, bytes params ); /** * @dev Initializes the debt token. * @param pool The address of the lending pool where this aToken will be used * @param underlyingAsset The address of the underlying asset of this aToken (E.g. WETH for aWETH) * @param incentivesController The smart contract managing potential incentives distribution * @param debtTokenDecimals The decimals of the debtToken, same as the underlying asset's * @param debtTokenName The name of the token * @param debtTokenSymbol The symbol of the token */ function initialize( ILendingPool pool, address underlyingAsset, IRewarder incentivesController, uint8 debtTokenDecimals, string memory debtTokenName, string memory debtTokenSymbol, bytes calldata params ) external; }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import {ILendingPoolAddressesProvider} from './ILendingPoolAddressesProvider.sol'; import {DataTypes} from '../protocol/libraries/types/DataTypes.sol'; interface ILendingPool { /** * @dev Emitted on deposit() * @param reserve The address of the underlying asset of the reserve * @param user The address initiating the deposit * @param onBehalfOf The beneficiary of the deposit, receiving the aTokens * @param amount The amount deposited * @param referral The referral code used **/ event Deposit( address indexed reserve, address user, address indexed onBehalfOf, uint256 amount, uint16 indexed referral ); /** * @dev Emitted on withdraw() * @param reserve The address of the underlyng asset being withdrawn * @param user The address initiating the withdrawal, owner of aTokens * @param to Address that will receive the underlying * @param amount The amount to be withdrawn **/ event Withdraw(address indexed reserve, address indexed user, address indexed to, uint256 amount); /** * @dev Emitted on borrow() and flashLoan() when debt needs to be opened * @param reserve The address of the underlying asset being borrowed * @param user The address of the user initiating the borrow(), receiving the funds on borrow() or just * initiator of the transaction on flashLoan() * @param onBehalfOf The address that will be getting the debt * @param amount The amount borrowed out * @param borrowRateMode The rate mode: 1 for Stable, 2 for Variable * @param borrowRate The numeric rate at which the user has borrowed * @param referral The referral code used **/ event Borrow( address indexed reserve, address user, address indexed onBehalfOf, uint256 amount, uint256 borrowRateMode, uint256 borrowRate, uint16 indexed referral ); /** * @dev Emitted on repay() * @param reserve The address of the underlying asset of the reserve * @param user The beneficiary of the repayment, getting his debt reduced * @param repayer The address of the user initiating the repay(), providing the funds * @param amount The amount repaid **/ event Repay( address indexed reserve, address indexed user, address indexed repayer, uint256 amount ); /** * @dev Emitted on swapBorrowRateMode() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user swapping his rate mode * @param rateMode The rate mode that the user wants to swap to **/ event Swap(address indexed reserve, address indexed user, uint256 rateMode); /** * @dev Emitted on setUserUseReserveAsCollateral() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user enabling the usage as collateral **/ event ReserveUsedAsCollateralEnabled(address indexed reserve, address indexed user); /** * @dev Emitted on setUserUseReserveAsCollateral() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user enabling the usage as collateral **/ event ReserveUsedAsCollateralDisabled(address indexed reserve, address indexed user); /** * @dev Emitted on rebalanceStableBorrowRate() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user for which the rebalance has been executed **/ event RebalanceStableBorrowRate(address indexed reserve, address indexed user); /** * @dev Emitted on flashLoan() * @param target The address of the flash loan receiver contract * @param initiator The address initiating the flash loan * @param asset The address of the asset being flash borrowed * @param amount The amount flash borrowed * @param premium The fee flash borrowed * @param referralCode The referral code used **/ event FlashLoan( address indexed target, address indexed initiator, address indexed asset, uint256 amount, uint256 premium, uint16 referralCode ); /** * @dev Emitted when the pause is triggered. */ event Paused(); /** * @dev Emitted when the pause is lifted. */ event Unpaused(); /** * @dev Emitted when a borrower is liquidated. This event is emitted by the LendingPool via * LendingPoolCollateral manager using a DELEGATECALL * This allows to have the events in the generated ABI for LendingPool. * @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation * @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation * @param user The address of the borrower getting liquidated * @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover * @param liquidatedCollateralAmount The amount of collateral received by the liiquidator * @param liquidator The address of the liquidator * @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants * to receive the underlying collateral asset directly **/ event LiquidationCall( address indexed collateralAsset, address indexed debtAsset, address indexed user, uint256 debtToCover, uint256 liquidatedCollateralAmount, address liquidator, bool receiveAToken ); /** * @dev Emitted when the state of a reserve is updated. NOTE: This event is actually declared * in the ReserveLogic library and emitted in the updateInterestRates() function. Since the function is internal, * the event will actually be fired by the LendingPool contract. The event is therefore replicated here so it * gets added to the LendingPool ABI * @param reserve The address of the underlying asset of the reserve * @param liquidityRate The new liquidity rate * @param stableBorrowRate The new stable borrow rate * @param variableBorrowRate The new variable borrow rate * @param liquidityIndex The new liquidity index * @param variableBorrowIndex The new variable borrow index **/ event ReserveDataUpdated( address indexed reserve, uint256 liquidityRate, uint256 stableBorrowRate, uint256 variableBorrowRate, uint256 liquidityIndex, uint256 variableBorrowIndex ); /** * @dev Deposits an `amount` of underlying asset into the reserve, receiving in return overlying aTokens. * - E.g. User deposits 100 USDC and gets in return 100 aUSDC * @param asset The address of the underlying asset to deposit * @param amount The amount to be deposited * @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user * wants to receive them on his own wallet, or a different address if the beneficiary of aTokens * is a different wallet * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man **/ function deposit( address asset, uint256 amount, address onBehalfOf, uint16 referralCode ) external; /** * @dev Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned * E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC * @param asset The address of the underlying asset to withdraw * @param amount The underlying amount to be withdrawn * - Send the value type(uint256).max in order to withdraw the whole aToken balance * @param to Address that will receive the underlying, same as msg.sender if the user * wants to receive it on his own wallet, or a different address if the beneficiary is a * different wallet * @return The final amount withdrawn **/ function withdraw( address asset, uint256 amount, address to ) external returns (uint256); /** * @dev Allows users to borrow a specific `amount` of the reserve underlying asset, provided that the borrower * already deposited enough collateral, or he was given enough allowance by a credit delegator on the * corresponding debt token (StableDebtToken or VariableDebtToken) * - E.g. User borrows 100 USDC passing as `onBehalfOf` his own address, receiving the 100 USDC in his wallet * and 100 stable/variable debt tokens, depending on the `interestRateMode` * @param asset The address of the underlying asset to borrow * @param amount The amount to be borrowed * @param interestRateMode The interest rate mode at which the user wants to borrow: 1 for Stable, 2 for Variable * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man * @param onBehalfOf Address of the user who will receive the debt. Should be the address of the borrower itself * calling the function if he wants to borrow against his own collateral, or the address of the credit delegator * if he has been given credit delegation allowance **/ function borrow( address asset, uint256 amount, uint256 interestRateMode, uint16 referralCode, address onBehalfOf ) external; /** * @notice Repays a borrowed `amount` on a specific reserve, burning the equivalent debt tokens owned * - E.g. User repays 100 USDC, burning 100 variable/stable debt tokens of the `onBehalfOf` address * @param asset The address of the borrowed underlying asset previously borrowed * @param amount The amount to repay * - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode` * @param rateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable * @param onBehalfOf Address of the user who will get his debt reduced/removed. Should be the address of the * user calling the function if he wants to reduce/remove his own debt, or the address of any other * other borrower whose debt should be removed * @return The final amount repaid **/ function repay( address asset, uint256 amount, uint256 rateMode, address onBehalfOf ) external returns (uint256); /** * @dev Allows a borrower to swap his debt between stable and variable mode, or viceversa * @param asset The address of the underlying asset borrowed * @param rateMode The rate mode that the user wants to swap to **/ function swapBorrowRateMode(address asset, uint256 rateMode) external; /** * @dev Rebalances the stable interest rate of a user to the current stable rate defined on the reserve. * - Users can be rebalanced if the following conditions are satisfied: * 1. Usage ratio is above 95% * 2. the current deposit APY is below REBALANCE_UP_THRESHOLD * maxVariableBorrowRate, which means that too much has been * borrowed at a stable rate and depositors are not earning enough * @param asset The address of the underlying asset borrowed * @param user The address of the user to be rebalanced **/ function rebalanceStableBorrowRate(address asset, address user) external; /** * @dev Allows depositors to enable/disable a specific deposited asset as collateral * @param asset The address of the underlying asset deposited * @param useAsCollateral `true` if the user wants to use the deposit as collateral, `false` otherwise **/ function setUserUseReserveAsCollateral(address asset, bool useAsCollateral) external; /** * @dev Function to liquidate a non-healthy position collateral-wise, with Health Factor below 1 * - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives * a proportionally amount of the `collateralAsset` plus a bonus to cover market risk * @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation * @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation * @param user The address of the borrower getting liquidated * @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover * @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants * to receive the underlying collateral asset directly **/ function liquidationCall( address collateralAsset, address debtAsset, address user, uint256 debtToCover, bool receiveAToken ) external; /** * @dev Allows smartcontracts to access the liquidity of the pool within one transaction, * as long as the amount taken plus a fee is returned. * IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept into consideration. * For further details please visit https://developers.aave.com * @param receiverAddress The address of the contract receiving the funds, implementing the IFlashLoanReceiver interface * @param assets The addresses of the assets being flash-borrowed * @param amounts The amounts amounts being flash-borrowed * @param modes Types of the debt to open if the flash loan is not returned: * 0 -> Don't open any debt, just revert if funds can't be transferred from the receiver * 1 -> Open debt at stable rate for the value of the amount flash-borrowed to the `onBehalfOf` address * 2 -> Open debt at variable rate for the value of the amount flash-borrowed to the `onBehalfOf` address * @param onBehalfOf The address that will receive the debt in the case of using on `modes` 1 or 2 * @param params Variadic packed params to pass to the receiver as extra information * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man **/ function flashLoan( address receiverAddress, address[] calldata assets, uint256[] calldata amounts, uint256[] calldata modes, address onBehalfOf, bytes calldata params, uint16 referralCode ) external; /** * @dev Returns the user account data across all the reserves * @param user The address of the user * @return totalCollateralETH the total collateral in ETH of the user * @return totalDebtETH the total debt in ETH of the user * @return availableBorrowsETH the borrowing power left of the user * @return currentLiquidationThreshold the liquidation threshold of the user * @return ltv the loan to value of the user * @return healthFactor the current health factor of the user **/ function getUserAccountData(address user) external view returns ( uint256 totalCollateralETH, uint256 totalDebtETH, uint256 availableBorrowsETH, uint256 currentLiquidationThreshold, uint256 ltv, uint256 healthFactor ); function initReserve( address reserve, address aTokenAddress, address stableDebtAddress, address variableDebtAddress, address interestRateStrategyAddress ) external; function setReserveInterestRateStrategyAddress(address reserve, address rateStrategyAddress) external; function setConfiguration(address reserve, uint256 configuration) external; /** * @dev Returns the configuration of the reserve * @param asset The address of the underlying asset of the reserve * @return The configuration of the reserve **/ function getConfiguration(address asset) external view returns (DataTypes.ReserveConfigurationMap memory); /** * @dev Returns the configuration of the user across all the reserves * @param user The user address * @return The configuration of the user **/ function getUserConfiguration(address user) external view returns (DataTypes.UserConfigurationMap memory); /** * @dev Returns the normalized income normalized income of the reserve * @param asset The address of the underlying asset of the reserve * @return The reserve's normalized income */ function getReserveNormalizedIncome(address asset) external view returns (uint256); /** * @dev Returns the normalized variable debt per unit of asset * @param asset The address of the underlying asset of the reserve * @return The reserve normalized variable debt */ function getReserveNormalizedVariableDebt(address asset) external view returns (uint256); /** * @dev Returns the state and configuration of the reserve * @param asset The address of the underlying asset of the reserve * @return The state of the reserve **/ function getReserveData(address asset) external view returns (DataTypes.ReserveData memory); function finalizeTransfer( address asset, address from, address to, uint256 amount, uint256 balanceFromAfter, uint256 balanceToBefore ) external; function getReservesList() external view returns (address[] memory); function getAddressesProvider() external view returns (ILendingPoolAddressesProvider); function setPause(bool val) external; function paused() external view returns (bool); }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; /** * @title LendingPoolAddressesProvider contract * @dev Main registry of addresses part of or connected to the protocol, including permissioned roles * - Acting also as factory of proxies and admin of those, so with right to change its implementations * - Owned by the Aave Governance * @author Aave **/ interface ILendingPoolAddressesProvider { event MarketIdSet(string newMarketId); event LendingPoolUpdated(address indexed newAddress); event ConfigurationAdminUpdated(address indexed newAddress); event EmergencyAdminUpdated(address indexed newAddress); event LendingPoolConfiguratorUpdated(address indexed newAddress); event LendingPoolCollateralManagerUpdated(address indexed newAddress); event PriceOracleUpdated(address indexed newAddress); event LendingRateOracleUpdated(address indexed newAddress); event ProxyCreated(bytes32 id, address indexed newAddress); event AddressSet(bytes32 id, address indexed newAddress, bool hasProxy); function getMarketId() external view returns (string memory); function setMarketId(string calldata marketId) external; function setAddress(bytes32 id, address newAddress) external; function setAddressAsProxy(bytes32 id, address impl) external; function getAddress(bytes32 id) external view returns (address); function getLendingPool() external view returns (address); function setLendingPoolImpl(address pool) external; function getLendingPoolConfigurator() external view returns (address); function setLendingPoolConfiguratorImpl(address configurator) external; function getLendingPoolCollateralManager() external view returns (address); function setLendingPoolCollateralManager(address manager) external; function getPoolAdmin() external view returns (address); function setPoolAdmin(address admin) external; function getEmergencyAdmin() external view returns (address); function setEmergencyAdmin(address admin) external; function getUiSigner() external view returns (address); function setUiSigner(address signer) external; function getPriceOracle() external view returns (address); function setPriceOracle(address priceOracle) external; function getLendingRateOracle() external view returns (address); function setLendingRateOracle(address lendingRateOracle) external; }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; /** * @title IReserveInterestRateStrategyInterface interface * @dev Interface for the calculation of the interest rates * @author Aave */ interface IReserveInterestRateStrategy { function baseVariableBorrowRate() external view returns (uint256); function getMaxVariableBorrowRate() external view returns (uint256); function calculateInterestRates( address reserve, uint256 availableLiquidity, uint256 totalStableDebt, uint256 totalVariableDebt, uint256 averageStableBorrowRate, uint256 reserveFactor ) external view returns ( uint256, uint256, uint256 ); function calculateInterestRates( address reserve, address aToken, uint256 liquidityAdded, uint256 liquidityTaken, uint256 totalStableDebt, uint256 totalVariableDebt, uint256 averageStableBorrowRate, uint256 reserveFactor ) external view returns ( uint256 liquidityRate, uint256 stableBorrowRate, uint256 variableBorrowRate ); }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface IRewarder { event RewardsAccrued(address indexed user, uint256 amount); event RewardsClaimed(address indexed user, address indexed to, uint256 amount); event RewardsClaimed( address indexed user, address indexed to, address indexed claimer, uint256 amount ); event ClaimerSet(address indexed user, address indexed claimer); /* * @dev Returns the configuration of the distribution for a certain asset * @param asset The address of the reference asset of the distribution * @return The asset index, the emission per second and the last updated timestamp **/ function getAssetData(address asset) external view returns ( uint256, uint256, uint256 ); /* * LEGACY ************************** * @dev Returns the configuration of the distribution for a certain asset * @param asset The address of the reference asset of the distribution * @return The asset index, the emission per second and the last updated timestamp **/ function assets(address asset) external view returns ( uint128, uint128, uint256 ); /** * @dev Whitelists an address to claim the rewards on behalf of another address * @param user The address of the user * @param claimer The address of the claimer */ function setClaimer(address user, address claimer) external; /** * @dev Returns the whitelisted claimer for a certain address (0x0 if not set) * @param user The address of the user * @return The claimer address */ function getClaimer(address user) external view returns (address); /** * @dev Configure assets for a certain rewards emission * @param assets The assets to incentivize * @param emissionsPerSecond The emission for each asset */ function configureAssets(address[] calldata assets, uint256[] calldata emissionsPerSecond) external; /** * @dev Called by the corresponding asset on any update that affects the rewards distribution * @param asset The address of the user * @param userBalance The balance of the user of the asset in the lending pool * @param totalSupply The total supply of the asset in the lending pool **/ function handleAction( address asset, uint256 userBalance, uint256 totalSupply ) external; /** * @dev Returns the total of rewards of an user, already accrued + not yet accrued * @param user The address of the user * @return The rewards **/ function getRewardsBalance(address[] calldata assets, address user) external view returns (uint256); /** * @dev Claims reward for an user, on all the assets of the lending pool, accumulating the pending rewards * @param amount Amount of rewards to claim * @param to Address that will be receiving the rewards * @return Rewards claimed **/ function claimRewards( address[] calldata assets, uint256 amount, address to ) external returns (uint256); /** * @dev Claims reward for an user on behalf, on all the assets of the lending pool, accumulating the pending rewards. The caller must * be whitelisted via "allowClaimOnBehalf" function by the RewardsAdmin role manager * @param amount Amount of rewards to claim * @param user Address to check and claim rewards * @param to Address that will be receiving the rewards * @return Rewards claimed **/ function claimRewardsOnBehalf( address[] calldata assets, uint256 amount, address user, address to ) external returns (uint256); /** * @dev returns the unclaimed rewards of the user * @param user the address of the user * @return the unclaimed user rewards */ function getUserUnclaimedRewards(address user) external view returns (uint256); /** * @dev returns the unclaimed rewards of the user * @param user the address of the user * @param asset The asset to incentivize * @return the user index for the asset */ function getUserAssetData(address user, address asset) external view returns (uint256); /** * @dev for backward compatibility with previous implementation of the Incentives controller */ function REWARD_TOKEN() external view returns (address); /** * @dev for backward compatibility with previous implementation of the Incentives controller */ function PRECISION() external view returns (uint8); /** * @dev Gets the distribution end timestamp of the emissions */ function DISTRIBUTION_END() external view returns (uint256); }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; interface IScaledBalanceToken { /** * @dev Returns the scaled balance of the user. The scaled balance is the sum of all the * updated stored balance divided by the reserve's liquidity index at the moment of the update * @param user The user whose balance is calculated * @return The scaled balance of the user **/ function scaledBalanceOf(address user) external view returns (uint256); /** * @dev Returns the scaled balance of the user and the scaled total supply. * @param user The address of the user * @return The scaled balance of the user * @return The scaled balance and the scaled total supply **/ function getScaledUserBalanceAndSupply(address user) external view returns (uint256, uint256); /** * @dev Returns the scaled total supply of the variable debt token. Represents sum(debt/index) * @return The scaled total supply **/ function scaledTotalSupply() external view returns (uint256); }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {IInitializableDebtToken} from './IInitializableDebtToken.sol'; import {IRewarder} from './IRewarder.sol'; /** * @title IStableDebtToken * @notice Defines the interface for the stable debt token * @dev It does not inherit from IERC20 to save in code size * @author Aave **/ interface IStableDebtToken is IInitializableDebtToken { /** * @dev Emitted when new stable debt is minted * @param user The address of the user who triggered the minting * @param onBehalfOf The recipient of stable debt tokens * @param amount The amount minted * @param currentBalance The current balance of the user * @param balanceIncrease The increase in balance since the last action of the user * @param newRate The rate of the debt after the minting * @param avgStableRate The new average stable rate after the minting * @param newTotalSupply The new total supply of the stable debt token after the action **/ event Mint( address indexed user, address indexed onBehalfOf, uint256 amount, uint256 currentBalance, uint256 balanceIncrease, uint256 newRate, uint256 avgStableRate, uint256 newTotalSupply ); /** * @dev Emitted when new stable debt is burned * @param user The address of the user * @param amount The amount being burned * @param currentBalance The current balance of the user * @param balanceIncrease The the increase in balance since the last action of the user * @param avgStableRate The new average stable rate after the burning * @param newTotalSupply The new total supply of the stable debt token after the action **/ event Burn( address indexed user, uint256 amount, uint256 currentBalance, uint256 balanceIncrease, uint256 avgStableRate, uint256 newTotalSupply ); /** * @dev Mints debt token to the `onBehalfOf` address. * - The resulting rate is the weighted average between the rate of the new debt * and the rate of the previous debt * @param user The address receiving the borrowed underlying, being the delegatee in case * of credit delegate, or same as `onBehalfOf` otherwise * @param onBehalfOf The address receiving the debt tokens * @param amount The amount of debt tokens to mint * @param rate The rate of the debt being minted **/ function mint( address user, address onBehalfOf, uint256 amount, uint256 rate ) external returns (bool); /** * @dev Burns debt of `user` * - The resulting rate is the weighted average between the rate of the new debt * and the rate of the previous debt * @param user The address of the user getting his debt burned * @param amount The amount of debt tokens getting burned **/ function burn(address user, uint256 amount) external; /** * @dev Returns the average rate of all the stable rate loans. * @return The average stable rate **/ function getAverageStableRate() external view returns (uint256); /** * @dev Returns the stable rate of the user debt * @return The stable rate of the user **/ function getUserStableRate(address user) external view returns (uint256); /** * @dev Returns the timestamp of the last update of the user * @return The timestamp **/ function getUserLastUpdated(address user) external view returns (uint40); /** * @dev Returns the principal, the total supply and the average stable rate **/ function getSupplyData() external view returns ( uint256, uint256, uint256, uint40 ); /** * @dev Returns the timestamp of the last update of the total supply * @return The timestamp **/ function getTotalSupplyLastUpdated() external view returns (uint40); /** * @dev Returns the total supply and the average stable rate **/ function getTotalSupplyAndAvgRate() external view returns (uint256, uint256); /** * @dev Returns the principal debt balance of the user * @return The debt balance of the user since the last burn/mint action **/ function principalBalanceOf(address user) external view returns (uint256); /** * @dev Returns the address of the incentives controller contract **/ function getIncentivesController() external view returns (IRewarder); }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {IScaledBalanceToken} from './IScaledBalanceToken.sol'; import {IInitializableDebtToken} from './IInitializableDebtToken.sol'; import {IRewarder} from './IRewarder.sol'; /** * @title IVariableDebtToken * @author Aave * @notice Defines the basic interface for a variable debt token. **/ interface IVariableDebtToken is IScaledBalanceToken, IInitializableDebtToken { /** * @dev Emitted after the mint action * @param from The address performing the mint * @param onBehalfOf The address of the user on which behalf minting has been performed * @param value The amount to be minted * @param index The last index of the reserve **/ event Mint(address indexed from, address indexed onBehalfOf, uint256 value, uint256 index); /** * @dev Mints debt token to the `onBehalfOf` address * @param user The address receiving the borrowed underlying, being the delegatee in case * of credit delegate, or same as `onBehalfOf` otherwise * @param onBehalfOf The address receiving the debt tokens * @param amount The amount of debt being minted * @param index The variable debt index of the reserve * @return `true` if the the previous balance of the user is 0 **/ function mint( address user, address onBehalfOf, uint256 amount, uint256 index ) external returns (bool); /** * @dev Emitted when variable debt is burnt * @param user The user which debt has been burned * @param amount The amount of debt being burned * @param index The index of the user **/ event Burn(address indexed user, uint256 amount, uint256 index); /** * @dev Burns user variable debt * @param user The user which debt is burnt * @param index The variable debt index of the reserve **/ function burn( address user, uint256 amount, uint256 index ) external; /** * @dev Returns the address of the incentives controller contract **/ function getIncentivesController() external view returns (IRewarder); }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {Errors} from '../helpers/Errors.sol'; import {DataTypes} from '../types/DataTypes.sol'; /** * @title ReserveConfiguration library * @author Aave * @notice Implements the bitmap logic to handle the reserve configuration */ library ReserveConfiguration { uint256 constant LTV_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // prettier-ignore uint256 constant LIQUIDATION_THRESHOLD_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000FFFF; // prettier-ignore uint256 constant LIQUIDATION_BONUS_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000FFFFFFFF; // prettier-ignore uint256 constant DECIMALS_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00FFFFFFFFFFFF; // prettier-ignore uint256 constant ACTIVE_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFF; // prettier-ignore uint256 constant FROZEN_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFFFFFFFFFFFFFF; // prettier-ignore uint256 constant BORROWING_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFF; // prettier-ignore uint256 constant STABLE_BORROWING_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFFFFF; // prettier-ignore uint256 constant RESERVE_FACTOR_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000FFFFFFFFFFFFFFFF; // prettier-ignore /// @dev For the LTV, the start bit is 0 (up to 15), hence no bitshifting is needed uint256 constant LIQUIDATION_THRESHOLD_START_BIT_POSITION = 16; uint256 constant LIQUIDATION_BONUS_START_BIT_POSITION = 32; uint256 constant RESERVE_DECIMALS_START_BIT_POSITION = 48; uint256 constant IS_ACTIVE_START_BIT_POSITION = 56; uint256 constant IS_FROZEN_START_BIT_POSITION = 57; uint256 constant BORROWING_ENABLED_START_BIT_POSITION = 58; uint256 constant STABLE_BORROWING_ENABLED_START_BIT_POSITION = 59; uint256 constant RESERVE_FACTOR_START_BIT_POSITION = 64; uint256 constant MAX_VALID_LTV = 65535; uint256 constant MAX_VALID_LIQUIDATION_THRESHOLD = 65535; uint256 constant MAX_VALID_LIQUIDATION_BONUS = 65535; uint256 constant MAX_VALID_DECIMALS = 255; uint256 constant MAX_VALID_RESERVE_FACTOR = 65535; /** * @dev Sets the Loan to Value of the reserve * @param self The reserve configuration * @param ltv the new ltv **/ function setLtv(DataTypes.ReserveConfigurationMap memory self, uint256 ltv) internal pure { require(ltv <= MAX_VALID_LTV, Errors.RC_INVALID_LTV); self.data = (self.data & LTV_MASK) | ltv; } /** * @dev Gets the Loan to Value of the reserve * @param self The reserve configuration * @return The loan to value **/ function getLtv(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return self.data & ~LTV_MASK; } /** * @dev Sets the liquidation threshold of the reserve * @param self The reserve configuration * @param threshold The new liquidation threshold **/ function setLiquidationThreshold(DataTypes.ReserveConfigurationMap memory self, uint256 threshold) internal pure { require(threshold <= MAX_VALID_LIQUIDATION_THRESHOLD, Errors.RC_INVALID_LIQ_THRESHOLD); self.data = (self.data & LIQUIDATION_THRESHOLD_MASK) | (threshold << LIQUIDATION_THRESHOLD_START_BIT_POSITION); } /** * @dev Gets the liquidation threshold of the reserve * @param self The reserve configuration * @return The liquidation threshold **/ function getLiquidationThreshold(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return (self.data & ~LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION; } /** * @dev Sets the liquidation bonus of the reserve * @param self The reserve configuration * @param bonus The new liquidation bonus **/ function setLiquidationBonus(DataTypes.ReserveConfigurationMap memory self, uint256 bonus) internal pure { require(bonus <= MAX_VALID_LIQUIDATION_BONUS, Errors.RC_INVALID_LIQ_BONUS); self.data = (self.data & LIQUIDATION_BONUS_MASK) | (bonus << LIQUIDATION_BONUS_START_BIT_POSITION); } /** * @dev Gets the liquidation bonus of the reserve * @param self The reserve configuration * @return The liquidation bonus **/ function getLiquidationBonus(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return (self.data & ~LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION; } /** * @dev Sets the decimals of the underlying asset of the reserve * @param self The reserve configuration * @param decimals The decimals **/ function setDecimals(DataTypes.ReserveConfigurationMap memory self, uint256 decimals) internal pure { require(decimals <= MAX_VALID_DECIMALS, Errors.RC_INVALID_DECIMALS); self.data = (self.data & DECIMALS_MASK) | (decimals << RESERVE_DECIMALS_START_BIT_POSITION); } /** * @dev Gets the decimals of the underlying asset of the reserve * @param self The reserve configuration * @return The decimals of the asset **/ function getDecimals(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return (self.data & ~DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION; } /** * @dev Sets the active state of the reserve * @param self The reserve configuration * @param active The active state **/ function setActive(DataTypes.ReserveConfigurationMap memory self, bool active) internal pure { self.data = (self.data & ACTIVE_MASK) | (uint256(active ? 1 : 0) << IS_ACTIVE_START_BIT_POSITION); } /** * @dev Gets the active state of the reserve * @param self The reserve configuration * @return The active state **/ function getActive(DataTypes.ReserveConfigurationMap storage self) internal view returns (bool) { return (self.data & ~ACTIVE_MASK) != 0; } /** * @dev Sets the frozen state of the reserve * @param self The reserve configuration * @param frozen The frozen state **/ function setFrozen(DataTypes.ReserveConfigurationMap memory self, bool frozen) internal pure { self.data = (self.data & FROZEN_MASK) | (uint256(frozen ? 1 : 0) << IS_FROZEN_START_BIT_POSITION); } /** * @dev Gets the frozen state of the reserve * @param self The reserve configuration * @return The frozen state **/ function getFrozen(DataTypes.ReserveConfigurationMap storage self) internal view returns (bool) { return (self.data & ~FROZEN_MASK) != 0; } /** * @dev Enables or disables borrowing on the reserve * @param self The reserve configuration * @param enabled True if the borrowing needs to be enabled, false otherwise **/ function setBorrowingEnabled(DataTypes.ReserveConfigurationMap memory self, bool enabled) internal pure { self.data = (self.data & BORROWING_MASK) | (uint256(enabled ? 1 : 0) << BORROWING_ENABLED_START_BIT_POSITION); } /** * @dev Gets the borrowing state of the reserve * @param self The reserve configuration * @return The borrowing state **/ function getBorrowingEnabled(DataTypes.ReserveConfigurationMap storage self) internal view returns (bool) { return (self.data & ~BORROWING_MASK) != 0; } /** * @dev Enables or disables stable rate borrowing on the reserve * @param self The reserve configuration * @param enabled True if the stable rate borrowing needs to be enabled, false otherwise **/ function setStableRateBorrowingEnabled( DataTypes.ReserveConfigurationMap memory self, bool enabled ) internal pure { self.data = (self.data & STABLE_BORROWING_MASK) | (uint256(enabled ? 1 : 0) << STABLE_BORROWING_ENABLED_START_BIT_POSITION); } /** * @dev Gets the stable rate borrowing state of the reserve * @param self The reserve configuration * @return The stable rate borrowing state **/ function getStableRateBorrowingEnabled(DataTypes.ReserveConfigurationMap storage self) internal view returns (bool) { return (self.data & ~STABLE_BORROWING_MASK) != 0; } /** * @dev Sets the reserve factor of the reserve * @param self The reserve configuration * @param reserveFactor The reserve factor **/ function setReserveFactor(DataTypes.ReserveConfigurationMap memory self, uint256 reserveFactor) internal pure { require(reserveFactor <= MAX_VALID_RESERVE_FACTOR, Errors.RC_INVALID_RESERVE_FACTOR); self.data = (self.data & RESERVE_FACTOR_MASK) | (reserveFactor << RESERVE_FACTOR_START_BIT_POSITION); } /** * @dev Gets the reserve factor of the reserve * @param self The reserve configuration * @return The reserve factor **/ function getReserveFactor(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return (self.data & ~RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION; } /** * @dev Gets the configuration flags of the reserve * @param self The reserve configuration * @return The state flags representing active, frozen, borrowing enabled, stableRateBorrowing enabled **/ function getFlags(DataTypes.ReserveConfigurationMap storage self) internal view returns ( bool, bool, bool, bool ) { uint256 dataLocal = self.data; return ( (dataLocal & ~ACTIVE_MASK) != 0, (dataLocal & ~FROZEN_MASK) != 0, (dataLocal & ~BORROWING_MASK) != 0, (dataLocal & ~STABLE_BORROWING_MASK) != 0 ); } /** * @dev Gets the configuration paramters of the reserve * @param self The reserve configuration * @return The state params representing ltv, liquidation threshold, liquidation bonus, the reserve decimals **/ function getParams(DataTypes.ReserveConfigurationMap storage self) internal view returns ( uint256, uint256, uint256, uint256, uint256 ) { uint256 dataLocal = self.data; return ( dataLocal & ~LTV_MASK, (dataLocal & ~LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION, (dataLocal & ~LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION, (dataLocal & ~DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION, (dataLocal & ~RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION ); } /** * @dev Gets the configuration paramters of the reserve from a memory object * @param self The reserve configuration * @return The state params representing ltv, liquidation threshold, liquidation bonus, the reserve decimals **/ function getParamsMemory(DataTypes.ReserveConfigurationMap memory self) internal pure returns ( uint256, uint256, uint256, uint256, uint256 ) { return ( self.data & ~LTV_MASK, (self.data & ~LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION, (self.data & ~LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION, (self.data & ~DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION, (self.data & ~RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION ); } /** * @dev Gets the configuration flags of the reserve from a memory object * @param self The reserve configuration * @return The state flags representing active, frozen, borrowing enabled, stableRateBorrowing enabled **/ function getFlagsMemory(DataTypes.ReserveConfigurationMap memory self) internal pure returns ( bool, bool, bool, bool ) { return ( (self.data & ~ACTIVE_MASK) != 0, (self.data & ~FROZEN_MASK) != 0, (self.data & ~BORROWING_MASK) != 0, (self.data & ~STABLE_BORROWING_MASK) != 0 ); } }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; /** * @title Errors library * @author Aave * @notice Defines the error messages emitted by the different contracts of the Aave protocol * @dev Error messages prefix glossary: * - VL = ValidationLogic * - MATH = Math libraries * - CT = Common errors between tokens (AToken, VariableDebtToken and StableDebtToken) * - AT = AToken * - SDT = StableDebtToken * - VDT = VariableDebtToken * - LP = LendingPool * - LPAPR = LendingPoolAddressesProviderRegistry * - LPC = LendingPoolConfiguration * - RL = ReserveLogic * - LPCM = LendingPoolCollateralManager * - P = Pausable */ library Errors { //common errors string public constant CALLER_NOT_POOL_ADMIN = '33'; // 'The caller must be the pool admin' string public constant BORROW_ALLOWANCE_NOT_ENOUGH = '59'; // User borrows on behalf, but allowance are too small //contract specific errors string public constant VL_INVALID_AMOUNT = '1'; // 'Amount must be greater than 0' string public constant VL_NO_ACTIVE_RESERVE = '2'; // 'Action requires an active reserve' string public constant VL_RESERVE_FROZEN = '3'; // 'Action cannot be performed because the reserve is frozen' string public constant VL_CURRENT_AVAILABLE_LIQUIDITY_NOT_ENOUGH = '4'; // 'The current liquidity is not enough' string public constant VL_NOT_ENOUGH_AVAILABLE_USER_BALANCE = '5'; // 'User cannot withdraw more than the available balance' string public constant VL_TRANSFER_NOT_ALLOWED = '6'; // 'Transfer cannot be allowed.' string public constant VL_BORROWING_NOT_ENABLED = '7'; // 'Borrowing is not enabled' string public constant VL_INVALID_INTEREST_RATE_MODE_SELECTED = '8'; // 'Invalid interest rate mode selected' string public constant VL_COLLATERAL_BALANCE_IS_0 = '9'; // 'The collateral balance is 0' string public constant VL_HEALTH_FACTOR_LOWER_THAN_LIQUIDATION_THRESHOLD = '10'; // 'Health factor is lesser than the liquidation threshold' string public constant VL_COLLATERAL_CANNOT_COVER_NEW_BORROW = '11'; // 'There is not enough collateral to cover a new borrow' string public constant VL_STABLE_BORROWING_NOT_ENABLED = '12'; // stable borrowing not enabled string public constant VL_COLLATERAL_SAME_AS_BORROWING_CURRENCY = '13'; // collateral is (mostly) the same currency that is being borrowed string public constant VL_AMOUNT_BIGGER_THAN_MAX_LOAN_SIZE_STABLE = '14'; // 'The requested amount is greater than the max loan size in stable rate mode string public constant VL_NO_DEBT_OF_SELECTED_TYPE = '15'; // 'for repayment of stable debt, the user needs to have stable debt, otherwise, he needs to have variable debt' string public constant VL_NO_EXPLICIT_AMOUNT_TO_REPAY_ON_BEHALF = '16'; // 'To repay on behalf of an user an explicit amount to repay is needed' string public constant VL_NO_STABLE_RATE_LOAN_IN_RESERVE = '17'; // 'User does not have a stable rate loan in progress on this reserve' string public constant VL_NO_VARIABLE_RATE_LOAN_IN_RESERVE = '18'; // 'User does not have a variable rate loan in progress on this reserve' string public constant VL_UNDERLYING_BALANCE_NOT_GREATER_THAN_0 = '19'; // 'The underlying balance needs to be greater than 0' string public constant VL_DEPOSIT_ALREADY_IN_USE = '20'; // 'User deposit is already being used as collateral' string public constant LP_NOT_ENOUGH_STABLE_BORROW_BALANCE = '21'; // 'User does not have any stable rate loan for this reserve' string public constant LP_INTEREST_RATE_REBALANCE_CONDITIONS_NOT_MET = '22'; // 'Interest rate rebalance conditions were not met' string public constant LP_LIQUIDATION_CALL_FAILED = '23'; // 'Liquidation call failed' string public constant LP_NOT_ENOUGH_LIQUIDITY_TO_BORROW = '24'; // 'There is not enough liquidity available to borrow' string public constant LP_REQUESTED_AMOUNT_TOO_SMALL = '25'; // 'The requested amount is too small for a FlashLoan.' string public constant LP_INCONSISTENT_PROTOCOL_ACTUAL_BALANCE = '26'; // 'The actual balance of the protocol is inconsistent' string public constant LP_CALLER_NOT_LENDING_POOL_CONFIGURATOR = '27'; // 'The caller of the function is not the lending pool configurator' string public constant LP_INCONSISTENT_FLASHLOAN_PARAMS = '28'; string public constant CT_CALLER_MUST_BE_LENDING_POOL = '29'; // 'The caller of this function must be a lending pool' string public constant CT_CANNOT_GIVE_ALLOWANCE_TO_HIMSELF = '30'; // 'User cannot give allowance to himself' string public constant CT_TRANSFER_AMOUNT_NOT_GT_0 = '31'; // 'Transferred amount needs to be greater than zero' string public constant RL_RESERVE_ALREADY_INITIALIZED = '32'; // 'Reserve has already been initialized' string public constant LPC_RESERVE_LIQUIDITY_NOT_0 = '34'; // 'The liquidity of the reserve needs to be 0' string public constant LPC_INVALID_ATOKEN_POOL_ADDRESS = '35'; // 'The liquidity of the reserve needs to be 0' string public constant LPC_INVALID_STABLE_DEBT_TOKEN_POOL_ADDRESS = '36'; // 'The liquidity of the reserve needs to be 0' string public constant LPC_INVALID_VARIABLE_DEBT_TOKEN_POOL_ADDRESS = '37'; // 'The liquidity of the reserve needs to be 0' string public constant LPC_INVALID_STABLE_DEBT_TOKEN_UNDERLYING_ADDRESS = '38'; // 'The liquidity of the reserve needs to be 0' string public constant LPC_INVALID_VARIABLE_DEBT_TOKEN_UNDERLYING_ADDRESS = '39'; // 'The liquidity of the reserve needs to be 0' string public constant LPC_INVALID_ADDRESSES_PROVIDER_ID = '40'; // 'The liquidity of the reserve needs to be 0' string public constant LPC_INVALID_CONFIGURATION = '75'; // 'Invalid risk parameters for the reserve' string public constant LPC_CALLER_NOT_EMERGENCY_ADMIN = '76'; // 'The caller must be the emergency admin' string public constant LPAPR_PROVIDER_NOT_REGISTERED = '41'; // 'Provider is not registered' string public constant LPCM_HEALTH_FACTOR_NOT_BELOW_THRESHOLD = '42'; // 'Health factor is not below the threshold' string public constant LPCM_COLLATERAL_CANNOT_BE_LIQUIDATED = '43'; // 'The collateral chosen cannot be liquidated' string public constant LPCM_SPECIFIED_CURRENCY_NOT_BORROWED_BY_USER = '44'; // 'User did not borrow the specified currency' string public constant LPCM_NOT_ENOUGH_LIQUIDITY_TO_LIQUIDATE = '45'; // "There isn't enough liquidity available to liquidate" string public constant LPCM_NO_ERRORS = '46'; // 'No errors' string public constant LP_INVALID_FLASHLOAN_MODE = '47'; //Invalid flashloan mode selected string public constant MATH_MULTIPLICATION_OVERFLOW = '48'; string public constant MATH_ADDITION_OVERFLOW = '49'; string public constant MATH_DIVISION_BY_ZERO = '50'; string public constant RL_LIQUIDITY_INDEX_OVERFLOW = '51'; // Liquidity index overflows uint128 string public constant RL_VARIABLE_BORROW_INDEX_OVERFLOW = '52'; // Variable borrow index overflows uint128 string public constant RL_LIQUIDITY_RATE_OVERFLOW = '53'; // Liquidity rate overflows uint128 string public constant RL_VARIABLE_BORROW_RATE_OVERFLOW = '54'; // Variable borrow rate overflows uint128 string public constant RL_STABLE_BORROW_RATE_OVERFLOW = '55'; // Stable borrow rate overflows uint128 string public constant CT_INVALID_MINT_AMOUNT = '56'; //invalid amount to mint string public constant LP_FAILED_REPAY_WITH_COLLATERAL = '57'; string public constant CT_INVALID_BURN_AMOUNT = '58'; //invalid amount to burn string public constant LP_FAILED_COLLATERAL_SWAP = '60'; string public constant LP_INVALID_EQUAL_ASSETS_TO_SWAP = '61'; string public constant LP_REENTRANCY_NOT_ALLOWED = '62'; string public constant LP_CALLER_MUST_BE_AN_ATOKEN = '63'; string public constant LP_IS_PAUSED = '64'; // 'Pool is paused' string public constant LP_NO_MORE_RESERVES_ALLOWED = '65'; string public constant LP_INVALID_FLASH_LOAN_EXECUTOR_RETURN = '66'; string public constant RC_INVALID_LTV = '67'; string public constant RC_INVALID_LIQ_THRESHOLD = '68'; string public constant RC_INVALID_LIQ_BONUS = '69'; string public constant RC_INVALID_DECIMALS = '70'; string public constant RC_INVALID_RESERVE_FACTOR = '71'; string public constant LPAPR_INVALID_ADDRESSES_PROVIDER_ID = '72'; string public constant VL_INCONSISTENT_FLASHLOAN_PARAMS = '73'; string public constant LP_INCONSISTENT_PARAMS_LENGTH = '74'; string public constant UL_INVALID_INDEX = '77'; string public constant LP_NOT_CONTRACT = '78'; string public constant SDT_STABLE_DEBT_OVERFLOW = '79'; string public constant SDT_BURN_EXCEEDS_BALANCE = '80'; enum CollateralManagerErrors { NO_ERROR, NO_COLLATERAL_AVAILABLE, COLLATERAL_CANNOT_BE_LIQUIDATED, CURRRENCY_NOT_BORROWED, HEALTH_FACTOR_ABOVE_THRESHOLD, NOT_ENOUGH_LIQUIDITY, NO_ACTIVE_RESERVE, HEALTH_FACTOR_LOWER_THAN_LIQUIDATION_THRESHOLD, INVALID_EQUAL_ASSETS_TO_SWAP, FROZEN_RESERVE } }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {SafeMath} from '../../../dependencies/openzeppelin/contracts/SafeMath.sol'; import {WadRayMath} from './WadRayMath.sol'; library MathUtils { using SafeMath for uint256; using WadRayMath for uint256; /// @dev Ignoring leap years uint256 internal constant SECONDS_PER_YEAR = 365 days; /** * @dev Function to calculate the interest accumulated using a linear interest rate formula * @param rate The interest rate, in ray * @param lastUpdateTimestamp The timestamp of the last update of the interest * @return The interest rate linearly accumulated during the timeDelta, in ray **/ function calculateLinearInterest(uint256 rate, uint40 lastUpdateTimestamp) internal view returns (uint256) { //solium-disable-next-line uint256 timeDifference = block.timestamp.sub(uint256(lastUpdateTimestamp)); return (rate.mul(timeDifference) / SECONDS_PER_YEAR).add(WadRayMath.ray()); } /** * @dev Function to calculate the interest using a compounded interest rate formula * To avoid expensive exponentiation, the calculation is performed using a binomial approximation: * * (1+x)^n = 1+n*x+[n/2*(n-1)]*x^2+[n/6*(n-1)*(n-2)*x^3... * * The approximation slightly underpays liquidity providers and undercharges borrowers, with the advantage of great gas cost reductions * The whitepaper contains reference to the approximation and a table showing the margin of error per different time periods * * @param rate The interest rate, in ray * @param lastUpdateTimestamp The timestamp of the last update of the interest * @return The interest rate compounded during the timeDelta, in ray **/ function calculateCompoundedInterest( uint256 rate, uint40 lastUpdateTimestamp, uint256 currentTimestamp ) internal pure returns (uint256) { //solium-disable-next-line uint256 exp = currentTimestamp.sub(uint256(lastUpdateTimestamp)); if (exp == 0) { return WadRayMath.ray(); } uint256 expMinusOne = exp - 1; uint256 expMinusTwo = exp > 2 ? exp - 2 : 0; uint256 ratePerSecond = rate / SECONDS_PER_YEAR; uint256 basePowerTwo = ratePerSecond.rayMul(ratePerSecond); uint256 basePowerThree = basePowerTwo.rayMul(ratePerSecond); uint256 secondTerm = exp.mul(expMinusOne).mul(basePowerTwo) / 2; uint256 thirdTerm = exp.mul(expMinusOne).mul(expMinusTwo).mul(basePowerThree) / 6; return WadRayMath.ray().add(ratePerSecond.mul(exp)).add(secondTerm).add(thirdTerm); } /** * @dev Calculates the compounded interest between the timestamp of the last update and the current block timestamp * @param rate The interest rate (in ray) * @param lastUpdateTimestamp The timestamp from which the interest accumulation needs to be calculated **/ function calculateCompoundedInterest(uint256 rate, uint40 lastUpdateTimestamp) internal view returns (uint256) { return calculateCompoundedInterest(rate, lastUpdateTimestamp, block.timestamp); } }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {Errors} from '../helpers/Errors.sol'; /** * @title PercentageMath library * @author Aave * @notice Provides functions to perform percentage calculations * @dev Percentages are defined by default with 2 decimals of precision (100.00). The precision is indicated by PERCENTAGE_FACTOR * @dev Operations are rounded half up **/ library PercentageMath { uint256 constant PERCENTAGE_FACTOR = 1e4; //percentage plus two decimals uint256 constant HALF_PERCENT = PERCENTAGE_FACTOR / 2; /** * @dev Executes a percentage multiplication * @param value The value of which the percentage needs to be calculated * @param percentage The percentage of the value to be calculated * @return The percentage of value **/ function percentMul(uint256 value, uint256 percentage) internal pure returns (uint256) { if (value == 0 || percentage == 0) { return 0; } require( value <= (type(uint256).max - HALF_PERCENT) / percentage, Errors.MATH_MULTIPLICATION_OVERFLOW ); return (value * percentage + HALF_PERCENT) / PERCENTAGE_FACTOR; } /** * @dev Executes a percentage division * @param value The value of which the percentage needs to be calculated * @param percentage The percentage of the value to be calculated * @return The value divided the percentage **/ function percentDiv(uint256 value, uint256 percentage) internal pure returns (uint256) { require(percentage != 0, Errors.MATH_DIVISION_BY_ZERO); uint256 halfPercentage = percentage / 2; require( value <= (type(uint256).max - halfPercentage) / PERCENTAGE_FACTOR, Errors.MATH_MULTIPLICATION_OVERFLOW ); return (value * PERCENTAGE_FACTOR + halfPercentage) / percentage; } }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {Errors} from '../helpers/Errors.sol'; /** * @title WadRayMath library * @author Aave * @dev Provides mul and div function for wads (decimal numbers with 18 digits precision) and rays (decimals with 27 digits) **/ library WadRayMath { uint256 internal constant WAD = 1e18; uint256 internal constant halfWAD = WAD / 2; uint256 internal constant RAY = 1e27; uint256 internal constant halfRAY = RAY / 2; uint256 internal constant WAD_RAY_RATIO = 1e9; /** * @return One ray, 1e27 **/ function ray() internal pure returns (uint256) { return RAY; } /** * @return One wad, 1e18 **/ function wad() internal pure returns (uint256) { return WAD; } /** * @return Half ray, 1e27/2 **/ function halfRay() internal pure returns (uint256) { return halfRAY; } /** * @return Half ray, 1e18/2 **/ function halfWad() internal pure returns (uint256) { return halfWAD; } /** * @dev Multiplies two wad, rounding half up to the nearest wad * @param a Wad * @param b Wad * @return The result of a*b, in wad **/ function wadMul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0 || b == 0) { return 0; } require(a <= (type(uint256).max - halfWAD) / b, Errors.MATH_MULTIPLICATION_OVERFLOW); return (a * b + halfWAD) / WAD; } /** * @dev Divides two wad, rounding half up to the nearest wad * @param a Wad * @param b Wad * @return The result of a/b, in wad **/ function wadDiv(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0, Errors.MATH_DIVISION_BY_ZERO); uint256 halfB = b / 2; require(a <= (type(uint256).max - halfB) / WAD, Errors.MATH_MULTIPLICATION_OVERFLOW); return (a * WAD + halfB) / b; } /** * @dev Multiplies two ray, rounding half up to the nearest ray * @param a Ray * @param b Ray * @return The result of a*b, in ray **/ function rayMul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0 || b == 0) { return 0; } require(a <= (type(uint256).max - halfRAY) / b, Errors.MATH_MULTIPLICATION_OVERFLOW); return (a * b + halfRAY) / RAY; } /** * @dev Divides two ray, rounding half up to the nearest ray * @param a Ray * @param b Ray * @return The result of a/b, in ray **/ function rayDiv(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0, Errors.MATH_DIVISION_BY_ZERO); uint256 halfB = b / 2; require(a <= (type(uint256).max - halfB) / RAY, Errors.MATH_MULTIPLICATION_OVERFLOW); return (a * RAY + halfB) / b; } /** * @dev Casts ray down to wad * @param a Ray * @return a casted to wad, rounded half up to the nearest wad **/ function rayToWad(uint256 a) internal pure returns (uint256) { uint256 halfRatio = WAD_RAY_RATIO / 2; uint256 result = halfRatio + a; require(result >= halfRatio, Errors.MATH_ADDITION_OVERFLOW); return result / WAD_RAY_RATIO; } /** * @dev Converts wad up to ray * @param a Wad * @return a converted in ray **/ function wadToRay(uint256 a) internal pure returns (uint256) { uint256 result = a * WAD_RAY_RATIO; require(result / WAD_RAY_RATIO == a, Errors.MATH_MULTIPLICATION_OVERFLOW); return result; } }
// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; library DataTypes { // refer to the whitepaper, section 1.1 basic concepts for a formal description of these properties. struct ReserveData { //stores the reserve configuration ReserveConfigurationMap configuration; //the liquidity index. Expressed in ray uint128 liquidityIndex; //variable borrow index. Expressed in ray uint128 variableBorrowIndex; //the current supply rate. Expressed in ray uint128 currentLiquidityRate; //the current variable borrow rate. Expressed in ray uint128 currentVariableBorrowRate; //the current stable borrow rate. Expressed in ray uint128 currentStableBorrowRate; uint40 lastUpdateTimestamp; //tokens addresses address aTokenAddress; address stableDebtTokenAddress; address variableDebtTokenAddress; //address of the interest rate strategy address interestRateStrategyAddress; //the id of the reserve. Represents the position in the list of the active reserves uint8 id; } struct ReserveConfigurationMap { //bit 0-15: LTV //bit 16-31: Liq. threshold //bit 32-47: Liq. bonus //bit 48-55: Decimals //bit 56: Reserve is active //bit 57: reserve is frozen //bit 58: borrowing is enabled //bit 59: stable rate borrowing enabled //bit 60-63: reserved //bit 64-79: reserve factor uint256 data; } struct UserConfigurationMap { uint256 data; } enum InterestRateMode {NONE, STABLE, VARIABLE} }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"asset","type":"address"},{"indexed":false,"internalType":"uint256","name":"liquidityRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"stableBorrowRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"variableBorrowRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"liquidityIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"variableBorrowIndex","type":"uint256"}],"name":"ReserveDataUpdated","type":"event"}]
Contract Creation Code
61023b610026600b82828239805160001a60731461001957fe5b30600052607381538281f3fe73000000000000000000000000000000000000000030146080604052600436106100355760003560e01c80632b33897c1461003a575b600080fd5b81801561004657600080fd5b5061008b600480360360a081101561005d57600080fd5b508035906001600160a01b03602082013581169160408101358216916060820135811691608001351661008d565b005b6004850154604080518082019091526002815261199960f11b6020820152906001600160a01b03161561013e5760405162461bcd60e51b81526004018080602001828103825283818151815260200191508051906020019080838360005b838110156101035781810151838201526020016100eb565b50505050905090810190601f1680156101305780820380516001836020036101000a031916815260200191505b509250505060405180910390fd5b506101476101f5565b6001860180546fffffffffffffffffffffffffffffffff19166001600160801b039290921691909117905561017a6101f5565b6001860180546001600160801b03928316600160801b0292169190911790556004850180546001600160a01b039586166001600160a01b031991821617909155600586018054948616948216949094179093556006850180549285169284169290921790915560079093018054939092169216919091179055565b6b033b2e3c9fd0803ce80000009056fea264697066735822122094ddede85a3e69fdd2f05447c5156c41de72f7d1fd6723be9246ac7c9f494b8b64736f6c634300060c0033
Deployed Bytecode
0x734513d77ef48bde68ac03ae4972b2bf1c4e465d0730146080604052600436106100355760003560e01c80632b33897c1461003a575b600080fd5b81801561004657600080fd5b5061008b600480360360a081101561005d57600080fd5b508035906001600160a01b03602082013581169160408101358216916060820135811691608001351661008d565b005b6004850154604080518082019091526002815261199960f11b6020820152906001600160a01b03161561013e5760405162461bcd60e51b81526004018080602001828103825283818151815260200191508051906020019080838360005b838110156101035781810151838201526020016100eb565b50505050905090810190601f1680156101305780820380516001836020036101000a031916815260200191505b509250505060405180910390fd5b506101476101f5565b6001860180546fffffffffffffffffffffffffffffffff19166001600160801b039290921691909117905561017a6101f5565b6001860180546001600160801b03928316600160801b0292169190911790556004850180546001600160a01b039586166001600160a01b031991821617909155600586018054948616948216949094179093556006850180549285169284169290921790915560079093018054939092169216919091179055565b6b033b2e3c9fd0803ce80000009056fea264697066735822122094ddede85a3e69fdd2f05447c5156c41de72f7d1fd6723be9246ac7c9f494b8b64736f6c634300060c0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.